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Abstract. We give a rule for the multiplication of a Schubert class by a tautological class
in the (small) quantum cohomology ring of the full flag manifold. As an intermediary
step, we establish a formula for the multiplication of a Schubert class by a quantum
Schur polynomial indexed by a hook partition.

Résumé. On décrit une règle pour la multiplication d’une classe de Schubert par une
classe tautologique dans le (petit) anneau de cohomologie quantique de la variété de
drapeaux. En cours de route, on obtient une formule pour la multiplication d’une
classe de Schubert par un polynôme de Schur quantique correspondant à une équerre.
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The Murnaghan–Nakayama rule is a method for computing values of the irreducible
characters of symmetric groups. Under the identification of the character ring with the
ring of symmetric functions, it translates into a rule for the multiplication of a Schur
symmetric function sλ by a Newton power sum pr. As explained in [15, Sect. 2], in
the cohomology ring of the full flag manifold, the Newton power sums correspond to
tautological classes that are components of the Chern character. Accordingly, a formula
describing multiplication by a tautological class is also called a Murnaghan–Nakayama
rule since it corresponds to multiplication by a Newton power sum.

Here, in Corollary 2.3 we describe a rule for multiplication by a tautological class in
the small quantum cohomology ring of the full flag manifold. As an intermediary step,
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we show in Theorem 2.2 a formula for multiplication by a hook quantum Schur poly-
nomial. This entails a detailed analysis of chains and intervals in the quantum Bruhat
order. Making use of results by N. C. Leung and C. Li [10] and A. Postnikov [17], it turns
out that quantum products by hook Schur polynomials can be reduced to the classical
product from [18].

1 A Murnaghan–Nakayama rule for (classic) cohomology

We begin by reviewing combinatorial models for the cohomology ring of the flag ma-
nifold. (We omit the precise definitions of the flag manifold and its cohomology as the
combinatorial models will suffice for our purposes; the interested reader can consult [7].)
Then we will derive a formula for the product of a Schubert polynomial and a Newton
power sum, which will be instructive in deriving our quantum analogue.

Let Fℓn denote the manifold of complete flags in Cn. Its cohomology ring H∗Fℓn with
coefficients in Z is a Z-module with a distinguished basis {Sw}w∈Sn whose elements Sw
are called Schubert classes and are indexed by elements of the symmetric group Sn.

Borel [4] gave a presentation of H∗Fℓn as a quotient of a polynomial ring: specifically,
H∗Fℓn ≃ Z[x1, . . . , xn]/In, where In = ⟨el(x1, . . . , xn) | l ∈ [n]⟩ where el is the lth
elementary symmetric polynomial and [n] = {1, . . . , n}.

Lascoux and Schützenberger [9] defined a set of polynomials in Z[x] called Schubert
polynomials that correspond to the Schubert classes Sw under Borel’s isomorphism. We
write Sw(x) for the Schubert polynomial associated with Sw on the set of variables
x := {x1, . . . , xn}. Every Schur polynomial sλ(x1, . . . , xk) is a Schubert polynomial, as
follows. Let w ∈ Sn be a permutation with a unique descent at k. Then the sequence
(w(k)−k, . . . , w(2)−2, w(1)−1) is a partition contained in the rectangular partition Rk,n−k
of k(n−k) into k parts with each part of size n−k. This is a bijection and for λ ⊆ Rk,n−k we
write v(λ, k) ∈ Sn for the corresponding permutation. Then Sv(λ,k)(x) = sλ(x1, . . . , xk).

Open Problem 1.1. Find a combinatorial rule expressing Su · Sv in terms of the basis
{Sw}w∈Sn of H∗Fℓn. That is, find a combinatorial rule for the coefficients cw

u,v ∈ Z in the
product

Su(x) ·Sv(x) = ∑
w

cw
u,vSw(x). (1.1)

A remarkable property of the Schubert polynomials is that the computation in Open
Problem 1.1 is performed in the polynomial ring, not in the quotient. The resulting
coefficients cw

u,v in the quotient will be the same.
Although Problem 1.1 remains open in general, several special cases are known.

Monk’s Formula [13] treats the case where v is the simple transposition (k, k + 1): for any
u ∈ Sn, we have Su ·S(k,k+1) = ∑Su(i,j) with the sum ranging over all transpositions (i, j)
satisfying i ≤ k < j ≤ n and ℓ(u) + 1 = ℓ(u(i, j)), where ℓ(u) := #{i < j | u(i) > u(j)}.
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The terms appearing in Monk’s Formula define a partial order on Sn graded by ℓ(u).
The k-Bruhat order ≤k is defined by the covering relation u ⋖k u(i, j) if i ≤ k < j ≤ n and
ℓ(u) + 1 = ℓ(u(i, j)); that is, u ⋖k u(i, j) if Su(i,j) appears in the product Su(x) ·S(k,k+1).

Write [u, w]k for the interval between u and w in the k-Bruhat order. Label each cover
relation u⋖k u(i, j) by u(i) and write u u(i)−−→ u(i, j). The maximal element of a (saturated)
chain γ = (u

a1−→ u1
a2−→ · · · ar−→ ur) is denoted end(γ) = ur and this chain has length r. If

a1 > · · · > al < al+1 < · · · < ar, then γ is a peakless chain of height l and length r.
The following case of Open Problem 1.1 was proved in [18].

Proposition 1.2. Let u ∈ Sn, l ≤ k, and m ≤ n−k. Then

Su(x) · s(m,1l−1)(x1, . . . , xk) = ∑
γ

Send(γ)(x) (1.2)

summing over all peakless chains of height l and length m + l − 1 in the labeled k-Bruhat order.

To describe the multiplicities in (1.2), we define the Grassmannian–Bruhat order on Sn
by η ⪯ ζ if there are a permutation u ∈ Sn and an integer k with u ≤k ηu ≤k ζu. This is
a graded partial order on Sn with minimal element the identity permutation e. Its rank
function is L(ζ) := ℓ(ζu) − ℓ(u) for any u ∈ Sn and k ∈ N with u ≤k ζu. The cover
relations also inherit the labelling from the k-Bruhat orders. As shown in [1], neither ⪯,
L nor the labelling depend on the choice of k or u.

We say that a permutation ζ is minimal if L(ζ) = # supp(ζ)− s(ζ), where supp(ζ) =
{i ∈ [n] | ζ(i) ̸= i} and s(ζ) is the number of nontrivial cycles in the factorization of ζ

into disjoint cycles. The height of a minimal permutation ζ is ht(ζ) := #{i ∈ [n] | i <
ζ(i)}. Using results from [3], the following characterizes minimal permutations in terms
of the Grassmannian–Bruhat order.

Lemma 1.3. A permutation ζ is minimal if and only if the interval [e, ζ]⪯ has a peakless chain.
The number of peakless chains of height l in [e, ζ]⪯ is the binomial coefficient

(
s(ζ)−1
ht(ζ)−l

)
.

Proposition 1.2 now reads as follows.

Proposition 1.4. Let u ∈ Sn, l ≤ k and m ≤ n−k. Then

Su(x) · s(m,1l−1)(x1, . . . , xk) = ∑
(

s(ζ)−1
ht(ζ)−l

)
Sζu(x) , (1.3)

summing over all minimal permutations ζ ∈ Sn such that u ≤k ζu and L(ζ) = m + l − 1.

We use this to describe the product of a Schubert polynomial and a power sum
symmetric polynomial. Let pr(x1, . . . , xk) := xr

1 + · · · + xr
k denote the rth power sum

polynomial. Expanded in terms of Schur polynomials [11], we have

pr(x1, . . . , xk) =

s(r)(x1, . . . , xk)− s(r−1,1)(x1, . . . , xk) + · · ·+ (−1)r+1s(1r)(x1, . . . , xk). (1.4)
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Corollary 1.5. Let u ∈ Sn. Then

Su(x) · pr(x1, . . . , xk) = ∑(−1)ht(ζ)+1Sζu(x) ,

summing over all minimal cycles ζ ∈ Sn such that u ≤k ζu and L(ζ) = r.

Proof. Expanding the product Su(x) · pr(x1, . . . , xk) using Equations (1.4) and (1.3) shows
that the coefficient of Sζu for u ≤k ζu is zero unless L(ζ) = r and ζ is minimal. When ζ

is the product of s(ζ) minimal cycles whose supports are disjoint, this coefficient is

(−1)ht(ζ)+1
r

∑
l=1

(−1)l−ht(ζ)
(

s(ζ)− 1
ht(ζ)− l

)
=

{
0, if s(ζ) ̸= 1,
(−1)ht(ζ)+1, if s(ζ) = 1.

This proof differs from that given in [14, 15].

2 A Murnaghan–Nakayama rule for quantum cohomology

The (small) quantum cohomology ring qH∗Fℓn of the flag manifold is a deformation
the cohomology ring H∗Fℓn whose product encodes the three-point Gromov–Witten
invariants of Fℓn. To simplify notation, write Z[q] for Z[q1, . . . , qn−1], where q1, . . . , qn−1
are indeterminates. As a Z-module, we have qH∗Fℓn = Z[q]⊗Z H∗Fℓn. It follows that
the Schubert classes {Sw}w∈Sn in H∗Fℓn form a Z[q]-basis of qH∗Fℓn. We write ∗ to
distinguish this “quantum product” from the “classical product” in H∗Fℓn.

Open Problem 2.1. Find a combinatorial rule for the coefficients Cw
u,v ∈ Z[q] in the product

Su ∗Sv = ∑
w∈Sn

Cw
u,vSw. (2.1)

Givental and Kim [8] proved an analogue of Borel’s presentation, expressing qH∗Fℓn
as a quotient of Z[q][x]. We write ψ : Z[q][x] → qH∗Fℓn for the corresponding surjection.
Fomin, Gelfand, and Postnikov [5] defined quantum Schubert polynomials Sq

w(x) ∈ Z[q][x]
so that the quantum product of Schubert classes satisfies Su ∗Sv = ψ(S

q
u(x) ·Sq

v(x)).
To simplify notation, for f (x) ∈ Z[q][x], we will write Su ∗ f (x) for ψ(S

q
u(x) · f (x)).

As we already mentioned, if λ ⊆ Rk,n−k, then sλ(x1, . . . , xk) = Sv(λ,k)(x). Analo-
gously, for λ ⊆ Rk,n−k, define the quantum Schur polynomials as

sq
λ(x1, . . . , xk) := S

q
v(λ,k)(x),

and following Equation (1.4), define the quantum power sum as:

pq
r (x1, . . . , xk) :=

sq
(r)(x1, . . . , xk)− sq

(r−1,1)(x1, . . . , xk) + · · ·+ (−1)r+1sq
(1r)

(x1, . . . , xk). (2.2)
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We derive a formula for Su ∗ pq
r (x) via intermediary formulas for Su ∗ sq

(b,1a−1)
(x), as in

the proof of Corollary 1.5.

We begin with the quantum Monk Formula of Fomin, Gelfand, and Postnikov [5]: for
u ∈ Sn and 1 ≤ k < n, Su ∗S(k,k+1) = ∑Su(i,j) + ∑ qi,jSu(i,j), where the first sum is
given by the classical Monk Formula and the second sum is over transpositions (i, j)
with i ≤ k < j and ℓ(u) + 1 = ℓ(u(i, j)) + 2(j−i), and qi,j := qiqi+1 · · · qj−1. For example,

S1432 ∗S(2,3) = S2431 +S3412 + q2S1342 + q2,4S1234.

The terms appearing in the quantum Monk Formula define a ranked partial order
on Sn[q] := {qαu : u ∈ Sn and qα is a monomial in q1, . . . , qn−1} as follows. The quantum
k-Bruhat order ≤q

k on Sn[q] is defined by the following cover relations:
1. u ⋖q

k u(i, j) if i ≤ k < j and ℓ(u) + 1 = ℓ(u(i, j)), so that u ⋖k u(i, j);
2. u ⋖q

k qi,ju(i, j) if i ≤ k < j and ℓ(u) + 1 = ℓ(u(i, j)) + 2(j−i) ; and
3. extend q-multiplicatively: u ≤q

k w if and only if qαu ≤q
k qαw for u, w ∈ Sn[q].

We display two levels of the quantum 2-Bruhat order on S4[q] above 1432.
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The rank function ℓ on the quantum k-Bruhat order is given by ℓ(qαu) := 2 deg qα + ℓ(u),
where deg qα is the usual degree of the monomial qα in Z[q]. As far as we know, there is
no analogue of the Grassmannian–Bruhat order related to the quantum k-Bruhat order.
Consequently, rather than speak of minimal permutations (as in the classical case), we
will define minimal intervals in the quantum k-Bruhat order. Suppose that u, w ∈ Sn
are permutations and u ≤q

k qαw. We say that the interval [u, qαw]
q
k is minimal if its rank

ℓ(qαw)− ℓ(u) equals # supp(wu−1)− s(wu−1). When qα = 1, the interval is minimal if
and only if wu−1 is a minimal permutation.

We state our two main results.

Theorem 2.2. Let u ∈ Sn , l ≤ k and m ≤ n − k. Then

Su ∗ sq
(m,1l−1)

(x1, . . . , xk) = ∑
(

s(wu−1)−1
ht(wu−1)−l

)
qαSw ,

summing over all minimal intervals [u, qαw]
q
k such that ℓ(qαw)− ℓ(u) = m + l − 1.

The following quantum Murnaghan–Nakayama formula was conjectured in [14]. It
follows from Theorem 2.2 in the same way that Corollary 1.5 follows from Proposi-
tion 1.4.
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Corollary 2.3. Let u ∈ Sn. Then

Su ∗ pq
r (x1, . . . , xk) = ∑(−1)ht(w−1u)+1qαSw,

summing over all minimal intervals [u, qαw]
q
k of rank r such that w−1u is a single cycle.

For example, in qH∗Fℓ8, if u = 38254671, then the product Su ∗ pq
4(x1, . . . , x4) is

S(2,5,6,3,4)u +S(2,3,5,6,4)u −S(2,5,7,6,4)u −S(3,5,7,6,4)u − q4S(2,4,7,6,5)u − q4S(3,4,7,6,5)u

+q4S(2,3,4,6,5)u + q2,5S(2,4,6,5,8)u + q2,5S(2,5,6,4,8)u − q2,5S(2,3,4,5,8)u

+q4,8S(1,7,6,5,4)u − q2,8S(1,7,6,5,8)u + q2,8S(1,8,2,3,4)u + q4q2,8S(1,8,2,4,5)u .

3 Sketch of Proof and Remarks

We prove Theorem 2.2 in two parts. In the first part we show that if [u, qαw]
q
k is a minimal

interval, then there is a hook partition λ with |λ| = ℓ(qαw)− ℓ(u) such that Cqαw
v(λ,k),u is

nonzero. This uses a study of chains in the interval [u, qαw]
q
k in terms of certain left

operators modeled on those for the ordinary k-Bruhat order as developed in [2]. This is
sketched in Section 3.1.

Our second part of the proof uses a Corollary to the proof of Theorem 1.2 in [10], the
result of Leung and Li that “quantum equals classical”. We discuss this in Section 3.2.
A consequence is that if Cqαw

v(λ,k),u ̸= 0 for some partition λ, then there are y, z ∈ Sn with

y ≤k z, ℓ(z)− ℓ(y) = ℓ(qαw)− ℓ(u) = |λ|, and zy−1 = wu−1 such that for all partitions µ

with |µ| = |λ|, Cqαw
v(µ,k),u = qαcz

v(µ,k),y. If λ is a hook partition, then Proposition 1.4 implies

that the interval [u, qαw]
q
k is minimal. Then Theorem 2.2 follows from these results and

Proposition 1.4.
We point out Theorem 15 of [12] also claims that quantum equals classical for hook

partitions, and from which one could in principle deduce our Theorem 2.2. Unfortu-
nately, its proof invokes a lemma (Lemma 13 in [12]) whose hypotheses do not apply to
the case (hook partitions) that is invoked. We sketch this in Section 3.3. This necessitates
the alternative proof we provide.

3.1 Left Operators

We now sketch a proof of the first part in the following result.

Theorem 3.1. Let u, w ∈ Sn and qαw ∈ Sn[q]. Then [u, qαw]
q
k is a minimal quantum interval if

and only if there is a hook partition λ with |λ| = ℓ(qαw)− ℓ(u) such that Cqαw
v(λ,k),u ̸= 0.
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A cover y ⋖q
k qαz in the quantum k-Bruhat order gives a transposition (a, b) = zy−1.

Therefore, a chain in [u, qαw]
q
k provides a factorization of ζ := wu−1 into transpositions

ζ = (ar, br) · · · (a2, b2) (a1, b1) , (3.1)

which in turn defines a (multi) graph with vertex set [n] whose edges are (ai, bi) for each
transposition above.

Lemma 3.2. Suppose that [u, qαw]
q
k is minimal and (3.1) is a factorization of ζ = wu−1 corre-

sponding to a chain in [u, qαw]
q
k. Let F be the corresponding multigraph. Then

1. F is a forest: it is acyclic without multiple edges and its connected components are trees.
2. The vertices in connected components of F form a noncrossing partition of [n].
3. ζ is a product of disjoint cycles, one for each tree in F.

Example 3.3. We have the following chain in the quantum 3-Bruhat order:

635214 = u ⋖q
3 q1,5 (1 6)u ⋖q

3 q1,5 (1 2)(1 6)u = q1,5 235164

⋖q
3 q1,5 (3 4)(1 2)(1 6)u ⋖q

3 q1,5q3 (1 5)(3 4)(1 2)(1 6)u = q1q2q2
3q4 241563.

The interval [635214, q1q2q2
3q4 241563]q3 has rank four, as

ℓ(q1q2q2
3q4 241563) = 10 + 5 = 15 and ℓ(635214) = 11.

Set ζ = (1, 5)(3, 4)(1, 2)(1, 6) = (3, 4)(1, 6, 2, 5). Its support has six elements and ζ con-
sists of two cycles, and thus this interval is minimal. The supports of the two cycles in ζ

are non-crossing. We draw its corresponding forest.

1 2 3 4 5 6

Postnikov [17] observed that the quantum Bruhat order (union over k of all quantum
k-Bruhat orders) has a cyclic symmetry. We describe this for the quantum k-Bruhat order.
Write o for the n-cycle (1, 2, . . . , n). If i > j, define qi,j := q−1

j,i , a Laurent monomial. For
u, w ∈ Sn, define q(u, w) := qw−1(n),u−1(n).

Lemma 3.4. Let u, w ∈ Sn. We have u <
q
k qαw if and only if ou <

q
k q(u, w)qαow.

For a < b in [n], define an operator va,b on Sn[q] ∪ {0} by va,b • 0 = 0, and for u ∈ Sn,

va,b • u :=


(a, b)u if u ⋖k (a, b)u,
qi,j(b, a)u if u ⋖q

k qi,j(b, a)u with u−1(b) = i ≤ k < u−1(a) = j,
0 otherwise ,
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and extend this action multiplicatively. We will say that va,b is a classical operator if the
first case holds, and that it is a quantum operator when the second case holds.

A composition of operators v = var,br · · · va1,b1 is zero if for all u ∈ Sn, v • u = 0 and
otherwise it is nonzero. If v′ = vcr,dr · · · vc1,d1 is another composition of operators, then
it is equivalent to v if for all u ∈ Sn, v • u = v′ • u. When v is nonzero, there are u, w ∈ Sn
and qαw ∈ Sn[q] such that v • u = qαw. In this case, u ≤q

k qαw, v corresponds to a chain
in [u, qαw]

q
k, and v corresponds to a factorization (3.1) of ζ = wu−1. Then the chains in

[u, qαw]
q
k correspond to compositions v′ of operators equivalent to v.

By Lemma 3.4, cyclic shift (multiplication by o) is an isomorphism of intervals
[u, qαw]

q
k, and it acts (via conjugation) on chains in intervals and on the operators va,b,

preserving relations. If b ̸= n, then ova,bo
−1 = va+1,b+1 and this preserves classical/quan-

tum operators. However, if b = n, then ova,no
−1 = v1,a+1, and it interchanges classical

operators with quantum operators. Key to our proof of the forward implication of The-
orem 3.1 is showing that a chain in a minimal interval may be cyclically shifted (conju-
gated by some power of o) to become a chain of classical operators.

The relations among classical operators were determined in [2], and they are all of
degree two or three. In particular, given two classical operators va,b and vc,d:

• they commute if (a, b)(c, d) is non-crossing, in the sense of Lemma 3.2(2);
• their product is nonzero and they do not commute if b = c or a = d; and
• their product is zero if the partition {a, b} ⊔ {c, d} is crossing or if a = c or b = d.

There is an interesting relation of degree three that we do not describe. If we also con-
sider quantum operators, we do not have a complete set of relations, but do know those
of degrees two and three, for they are induced from the classical relations by the cyclic
symmetry of Lemma 3.4.

A composition v = var,br · · · va1,b1 is a connected (classical) row if b1 = a2, b2 = a3,
. . ., br−1 = ar. It is a connected (classical) column if a1 = b2, . . . , ar−1 = br. The graph
with vertices {a1, b1, . . . , ar, br} and edges (aibi) is a path in either case. A classical row
is a composition of connected rows in which every pair has noncrossing support (a
noncrossing composition), and the same for a classical column. A composition is a row
(column) if may be cyclically shifted to a classical row (column).

Given these definitions, we may express Postnikov’s quantum Pieri formula [16] as

Su ∗ sq
(m)

(x1, . . . , xk) = ∑ qαSv,

summing over all qαv = R • u, where R is a row of length m. For quantum multiplica-
tion by sq

1m(x1, . . . , xk), replace row by column. A consequence of the Pieri formula and
Lemma 3.4 is that if u ≤q

k qαw and λ is a partition with |λ| = ℓ(qαw)− ℓ(u), then

q(u, w)Cqαw
v(λ,k),u = Cq(u,w)qαow

v(λ,k),ou . (3.2)

A composition T = vat,bt · · · va1b1 is a tree if the graph with vertices {at, bt, . . . , a1, b1}
given by the corresponding factorization is a tree. By Lemma 3.2, if [u, qαw]

q
k is a minimal
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quantum interval, then any chain has corresponding composition of operators that is a
noncrossing forest: a composition of trees in which every pair has noncrossing support.
We state our main technical result.

Lemma 3.5. Suppose that v is a nonzero noncrossing forest. Then v is equivalent to the product
of a row R and a column C, and the product R · C may be cyclically shifted to the product of a
classical row and a classical column.

Proof of the forward implication of Theorem 3.1. Suppose that [u, qαw]
q
k is a minimal interval.

By Lemma 3.2, there is a noncrossing forest F of left operators of length ℓ(qαw)− ℓ(u)
with qαw = F • u. By Lemma 3.5, there are a row R and a column C of lengths m and
l, respectively, with m + l = ℓ(qαw)− ℓ(u) and qαw = (R · C) • u. By Lemma 3.5 again,
R · C may be cyclically shifted to the product of a classical row and a classical column.
If r is that shift, then Sorw appears in

s(m)(x1, . . . , xk) · s1l(x1, . . . , xk) ·Soru =

(s(m,1l)(x1, . . . , xk) + s(m+1,1l−1)(x1, . . . , xk)) ·Soru,

which is a product in H∗Fℓn. By (3.2), at least one of Cqαw
v((m,1l),k),u or Cqαw

v((m+1,1l−1),k),u is
nonzero.

3.2 Quantum equals Classical

Leung and Li [10] gave a different identity among the quantum coefficients than (3.2).
In it, the exponent of qα is reduced. For i ∈ [n − 1] let ei be the exponent of qi, so that
qei = qi. We state the results of Leung and Li, in the form that we use.

Proposition 3.6. Suppose that u, w ∈ Sn, qαw ∈ Sn[q], and that λ is a partition such that
Cqαw

v(λ,k),u ̸= 0. Then there is an i ∈ [n−1] such that one of the following two conditions hold:
1. We have i ̸= k and 1 = 2αi − αi−1 − αi+1, ℓ(w(i, i+1)) = ℓ(w) − 1, ℓ(u(i, i+1)) =

ℓ(u) + 1, and qα−di w(i, i+1) ≥q
k u(i, i+1).

2. We have i = k and 2 = 2αk − αk−1 − αk+1, ℓ(w(k, k+1)) = ℓ(w)− 1, ℓ(u(k, k+1)) =
ℓ(u) + 1, and qα−ek w(k, k+1) ≥q

k u(k, k+1).

Proposition 3.7. Suppose that u, w ∈ Sn, qαw ∈ Sn[q], and i ∈ [n−1], and either condition of

Proposition 3.6 holds. Then for any partition λ, Cqαw
v(λ,k),u = qiC

qα−ei w(i,i+1)
v(λ,k),u(i,i+1).

In [10] these are formulated in a weaker form; the stronger result of Proposition 3.7
is not stated. The journal version of this abstract will contain a complete explanation.

Observe that in the statement of Proposition 3.7, wu−1 = (w(i, i + 1))(u(i, i + 1))−1.
An induction on deg(qα) using Propositions 3.6 and 3.7 shows that if Cqαw

v(λ,k),u ̸= 0, then
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there exist y, z ∈ Sn with y ≤k z, |λ| = ℓ(z) − ℓ(y) = ℓ(qαw) − ℓ(u), zy−1 = wu−1,
and qαcz

v(λ,k),y = Cqαw
v(λ,k),u ̸= 0. If λ is a hook partition, then this implies that zy−1 is a

minimal permutation and thus [u, qαw]
q
k is minimal, which is the reverse implication in

Theorem 3.1.

Proof of Theorem 2.2. By Theorem 3.1, [u, qαw]
q
k is a minimal interval if and only if there

is a hook partition λ = (m, 1l−1) with Cqαw
v(λ),u ̸= 0.

It remains to compute the coefficient Cqαw
v(λ,k),u. By the induction sketched above, and

using the same notation, this coefficient equals qαcz
v(λ,k),y. Now by Proposition 1.4, this

equals qα
(

s(wu−1)−1
ht(wu−1)−l

)
, as wu−1 = zy−1.

3.3 Remarks

Proposition 1.4 may be deduced from a stronger result of Mészáros, Panova, and Post-
nikov [12, Thm. 8]. There, they establish a formula for a ‘lift’ of the Schur polynomial
s(m,1l−1)(x1, . . . , xk) to the Fomin–Kirillov [6] algebra En, which is a subalgebra (generated
by certain Dunkl elements θi) of the quotient of a free associative algebra with generators
xi,j for 1 ≤ i < j ≤ n by certain relations, which include x2

i,j = 0. Their paper contains
another result [12, Thm. 15] which is a quantum analog of [12, Thm. 8], giving a formula
for a ‘quantum lift’ sq

(m,1l−1)
(x1, . . . , xk) in the quantum Fomin–Kirillov algebra E q

n [16].
This formula would imply Theorem 2.2. Unfortunately, as we now sketch, there is a gap
in the proof of [12, Thm. 15] (we have communicated this to the authors).

In [12], the result [12, Thm. 15] is deduced from the proof of [12, Thm. 8] using a
technical result [12, Lem. 13] which roughly asserts the following: If an identity involv-
ing positive terms holds in En, and if no relations x2

i,j = 0 were used to deduce the

identity, then the same identity holds in E q
n. We are convinced this lemma is correct, but

it unfortunately does not apply in the case invoked to prove [12, Thm. 15].
In addition to using relations (but not x2

i,j = 0), the proof of [12, Thm. 8] uses in
a fundamental way [12, Cor. 10], that ea(θ1, . . . , θa)hb(θ1, . . . , θa) = 0 in Ea+b (in their
notation). However, this identity can only be proven directly in Ea+b using the relations
x2

i,j = 0. For example, when a = b = 1, as θ1 = x1,2, it becomes 0 = e1(x1,2)h1(x1,2) = x2
1,2.

We can prove a stronger version of Theorem 3.1 which is nearly a quantum analog
of Proposition 1.2. Its arguments involve a significantly more detailed study of the left
operators and their relations than our proof of Theorem 3.1.



Quantum Murnaghan–Nakayama rule 11

Acknowledgements

This collaboration was initiated in the Algebraic Combinatorics seminar at the Fields Insti-
tute in 2017.

References

[1] N. Bergeron and F. Sottile. “Schubert polynomials, the Bruhat order, and the geometry of
flag manifolds”. Duke Math. J. 95.2 (1998), pp. 373–423.

[2] N. Bergeron and F. Sottile. “A monoid for the Grassmannian Bruhat order”. European J.
Combin. 20.3 (1999), pp. 197–211.

[3] N. Bergeron and F. Sottile. “A Pieri-type formula for isotropic flag manifolds”. Trans. Amer.
Math. Soc. 354.7 (2002), pp. 2659–2705.

[4] A. Borel. “Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de
groupes de Lie compacts”. Ann. of Math. (2) 57 (1953), pp. 115–207.

[5] S. Fomin, S. Gelfand, and A. Postnikov. “Quantum Schubert polynomials”. J. Amer. Math.
Soc. 10.3 (1997), pp. 565–596.

[6] S. Fomin and A. N. Kirillov. “Quadratic algebras, Dunkl elements, and Schubert calculus”.
Advances in geometry. Vol. 172. Progr. Math. Birkhäuser, Boston, MA, 1999, pp. 147–182.

[7] W. Fulton. Young tableaux. Vol. 35. London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 1997.

[8] A. Givental and B. Kim. “Quantum cohomology of flag manifolds and Toda lattices”.
Comm. Math. Phys. 168.3 (1995), pp. 609–641.

[9] A. Lascoux and M.-P. Schützenberger. “Polynômes de Schubert”. C. R. Acad. Sci. Paris Sér.
I Math. 294.13 (1982), pp. 447–450.

[10] N. C. Leung and C. Li. “Classical aspects of quantum cohomology of generalized flag
varieties”. Int. Math. Res. Not. IMRN 16 (2012), pp. 3706–3722.

[11] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Mono-
graphs. Second edition with contributions by A. Zelevinsky. The Clarendon Press, Oxford
University Press, New York, 1995, pp. x+475.

[12] K. Mészáros, G. Panova, and A. Postnikov. “Schur times Schubert via the Fomin-Kirillov
algebra”. Electron. J. Combin. 21.1 (2014), Paper 1.39, 22.

[13] D. Monk. “The Geometry of Flag Manifolds”. Proc. London Math. Soc. 9 (1959), pp. 253–286.

[14] A. Morrison. “A Murgnahan-Nakayama rule for Schubert polynomials”. 26th International
Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014). Assoc. Discrete
Math. Theor. Comput. Sci., Nancy, 2014, pp. 525–536.



12 Benedetti, Bergeron, Colmenarejo, Saliola, Sottile

[15] A. Morrison and F. Sottile. “Two Murnaghan-Nakayama rules in Schubert Calculus”. An-
nals of Combinatorics 22.2 (2018), pp. 363–375.

[16] A. Postnikov. “On a quantum version of Pieri’s formula”. Adv. in Geometry 172 (1999),
pp. 371–383.

[17] A. Postnikov. “Symmetries of Gromov-Witten invariants”. Advances in algebraic geometry
motivated by physics (Lowell, MA, 2000). Vol. 276. Contemp. Math. Amer. Math. Soc.,
Providence, RI, 2001, pp. 251–258.

[18] F. Sottile. “Pieri’s formula for flag manifolds and Schubert polynomials”. Ann. Inst. Fourier
(Grenoble) 46.1 (1996), pp. 89–110.


	A Murnaghan–Nakayama rule for (classic) cohomology
	A Murnaghan–Nakayama rule for quantum cohomology
	Sketch of Proof and Remarks
	Left Operators
	Quantum equals Classical
	Remarks


