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On the A2 Andrews–Schilling–Warnaar identities
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Abstract. In a groundbreaking work, Andrews–Schilling–Warnaar invented an A2

generalization of the A1 Bailey machinery and discovered many identities related to
the principal characters of standard modules for ŝl3, or equivalently, for the vertex op-
erator algebra W3(3, p′). Jointly with Russell, we have given conjectures for completing
this set of identities and proved these conjectures for small values of p′. In another di-
rection, character of Wr(p, p′) has been related to an appropriate limit of certain slr
coloured Jones polynomials of torus knots T(p, p′) under some restrictions on r, p, p′.
This note summarizes these developments.
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1 Introduction

1.1 Rogers–Ramanujan identities and their origins

Let us begin by recalling the celebrated pair of Rogers–Ramanujan identities:

∑
n≥0

qn2

(q)n
=

1
θ(q; q5)

, ∑
n≥0

qn2+n

(q)n
=

1
θ(q2; q5)

. (1.1)

where we use the standard notations for the Pochhammer symbols (q)n (and more gen-
erally (a; q)n) for n ∈ Z≥0 ∪ {∞} as found in [2] and we use the notation:

θ(a1, a2, · · · , ak; q) = ∏
1≤i≤k

(ai; q)∞(q/ai; q)∞. (1.2)

Rogers–Ramanujan identities, their various generalizations, and analogues appear in
many branches of mathematics. Most importantly for us, they appear in the study of
affine Lie algebras and vertex operator algebras (henceforth, VOAs). Secondly, they also
appear in relation to the coloured Jones polynomials of knots and links.
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The identities (1.1) were first proved completely representation-theoretically by Lep-
owsky and Wilson [18, 19, 20, 21] by considering standard (i.e., integrable, highest-
weight) level 3 modules for the affine Lie algebra ŝl2. Identities (1.1) also arise by con-
sidering the representation theory of Virasoro VOA Vir(2, 5). In general, representation
theory of VOAs is an enormously rich source of Rogers–Ramanujan-type identities hav-
ing the “sum=product” shape of (1.1).

On the knot-theoretical side, the second Rogers–Ramanujan identity in (1.1) seems to
have been proved first by Armond and Dasbach [6] by considering tails of Jones poly-
nomials for torus knots T(2, 5) coloured with finite dimensional irreducible sl2 modules.
Here, the product side is a result of using the Rosso–Jones formula [24] as explained by
Morton, [23]. The sum side is calculated using a combinatorial walk model [7]. More
generally, Armond and Dasbach proved one Andrews–Gordon identity at each modulus
2k + 1 by considering the torus knot T(2, 2k + 1).

1.2 Bailey machinery

In the world of q-series, Bailey machinery provides a highly productive mechanism to
prove Rogers–Ramanujan-type identities. By Bailey machinery, we mean the framework
that takes as input a Bailey pair (as defined in [1], for instance) and modifies this pair
iteratively (using the Bailey lemma, the Bailey lattice, or any other suitable transforma-
tions). The modified pairs then lead to requisite identities by taking appropriate limits.

From the point of view of representation theory and knot theory, this mechanism
is especially well suited to handle cases that are closely related to the Lie algebra sl2.
In particular, it produces identities related to principal characters (see (2.3) below) for
standard modules for affine Lie algebras ŝl2 = A(1)

1 and A(2)
2 , rational Virasoro algebras

Vir(p, q), etc. This machinery has also been successfully used (see [15], for instance) in
understanding Jones polynomials of links coloured with irreducible, finite-dimensional
sl2 modules.

For these and some more reasons explained in [3], we refer to the classical Bailey
machinery by the designation sl2 or A1.

1.3 Andrews–Schilling–Warnaar’s A2 Bailey machinery

In [3], Andrews–Schilling–Warnaar invented an A2 generalization of the A1 Bailey ma-
chinery. Specifically, they defined a notion of the A2 Bailey pair, found the unit A2 Bailey
pair, and gave a transformation law for A2 Bailey pairs. Note that this transformation
law is not yet as general as the one for A1 Bailey pairs.

In [3], the authors then used this mechanism to discover “sum=product” identities
related to principal characters of certain standard modules at every level ℓ ∈ Z>0 for the
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affine Lie algebra ŝl3. At levels ℓ ∈ Z>0 coprime to 3, these principal characters also arise
by considering characters of modules for the rational VOA W3(3, ℓ+ 3) (see [3, 12]).

The actual number of possible identities at level ℓ ∈ Z>0 grows as a quadratic in
ℓ, but the number of identities found in [3] grows linearly in ℓ. Consequently, a major
subset of identities were yet to be found.

Our recent work [17] gives precise conjectures for all these missing identities. We are
further able to prove our conjectures at levels 3 and 7. A further family of results valid
for all levels divisible by 3 is detailed in Section 3 below.

1.4 Certain slr coloured Jones polynomials of torus knots

Morton’s work [23] effectively relates characters of Vir(p, q) VOA to sl2 coloured Jones
polynomials of torus knots T(p, q) where 2 ≤ p < q are coprime. Now, Vir(p, q) VOA
is the r = 2 member in the family of principal Wr algebras of type A. It is thus natural
to investigate whether characters of Wr(p, q) algebras are analogously related to torus
knots. In [16] we show that limits of certain slr coloured invariants of torus knots T(p, q)
similarly give rise to characters of Wr(p, q) VOAs. For precise conditions and statements,
see in Section 4. Importantly, our hope is that generalizing the work of Armond and
Dasbach [6] to sl3 coloured invariants of torus knots T(3, p + 3) will put the Andrews–
Schilling–Warnaar identities in a very different light.

1.5 Recent and related developments

Recently, Andrews–Schilling–Warnaar’s A2 identities have gained much attention. Es-
pecially, the interested reader may look at [10], [29], [26], [27] and [30].

2 Foundations

In this section, we begin by collecting the basic setup required for this note.

2.1 Notation regarding the Lie algebras slr

As usual, we let the simple roots of slr be α1, . . . , αr−1. The set of positive roots will be
denoted by Φ+

r and the set of all roots will be Φr. The fundamental weights will be
denoted by Λ1, . . . , Λr−1. Qr and Pr will denote the root and the weight lattices, respec-
tively. The Weyl group will be denoted by Sr. The lattices Qr ⊊ Pr come equipped with
a symmetric, positive definite and Sr-invariant bilinear form (·, ·) such that (αi, αi) = 2
for all 0 ≤ i ≤ r − 1. We will let ∥ · ∥ be the norm corresponding to (·, ·). The Weyl vector
will be denoted by δ. Recall that w 7→ (−1)ℓ(w) is the sign representation of Sr where
ℓ(·) is the standard length function on Sr.



4 Shashank Kanade

2.2 Affine Lie algebras ŝlr

For ŝlr, we will reuse some notation from slr case. We shall provide adequate clarification
in the cases of potential confusion.

For 0 ≤ i ≤ r − 1, let αi be the simple roots and let Λi be the fundamental weights of
the affine Lie algebra ŝlr. Fix ℓ ∈ Z≥0 (called the level) and let λ = c0Λ0 + · · ·+ cr−1Λr−1,
where ci ∈ Z≥0 and c0 + · · · + cr−1 = ℓ. By L(λ) we denote the irreducible highest-
weight ŝlr module with highest-weight λ. The character of this module is denoted by
ch(L(λ)) and it belongs to:

ch(L(λ)) ∈ eλZ[[e−α0 , · · · , e−αr−1 ]]. (2.1)

Here, eλ and eαi are formal symbols. We define the principally specialized character and the
principal character1 of L(λ) to be respectively –

χ(L(λ)) =
(

e−λ ch(L(λ))
)
|e−α0 7→q,...,e−αr−1 7→q, (2.2)

χ(Ω(λ)) =
χ(L(λ))

χ(L(Λ0))
=

(q)∞

(qr; qr)∞
χ(L(λ)) (2.3)

Due to the Dynkin diagram symmetries in the ŝlr case, we also have that:

χ(Ω(λ)) = χ(Ω(σλ)), (2.4)

where σ is any dihedral permutation of c0, c1, . . . , cr−1. In the case of ŝl3, we have the
following for c0, c1, c2 ∈ Z≥0, c0 + c1 + c2 = ℓ, m = ℓ+ 3 (see [12, 28], etc.):

χ(Ω(c0Λ0 + c1Λ1 + c2Λ2)) =
(qm; qm)2

∞
(q)2

∞
θ(qc0+1; qm)θ(qc1+1; qm)θ(qc2+1; qm). (2.5)

2.3 Principal Wr algebras

Let r ≤ p, p′ be a pair of coprime integers. Now, principal Wr(p, p′) algebras are certain
simple vertex operator algebras (VOAs) that can be obtained as the quantum Hamilto-
nian reductions of affine VOAs based on ŝlr at levels p

p′ − r. For deep and foundational
properties of these VOAs, see [4, 5].

From [22] and [12], we recall characters of Wr(p, p′) VOAs and their modules.

1. In the notation of [12], the character of the VOA Wr(p, p′) is χ
r,p,p′
0,0 and up to a pure

power of q it equals the following normalized character:

χ
r,p,p′
0,0 = (q)1−r

∞ ∑
α∈Qr

∑
σ∈Sr

(−1)ℓ(σ)q
1
2 pp′∥α∥2−p′(α,δ)+p(α,σ(δ))−(δ,σ(δ)−δ). (2.6)

1Note that the first equality in (2.3) as a definition of principal characters is only valid for the affine Lie
algebras of type X(t)

r with X = A, D, E and t ∈ {1, 2, 3}.
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2. When p = r, inequivalent irreducible modules of Wr(r, p′) are enumerated by slr
weights ζ = c1Λ1 + · · · + cr−1Λr−1 ∈ Pr such that c1 + · · · + cr−1 ≤ p′ − r. The
character of the corresponding irreducible Wr(r, p′) module is denoted by χ

r,r,p′

0,ζ
[12] and up to a pure power of q it equals the normalized character:

χ
r,r,p′

0,ζ = (q)1−r
∞ ∑

α∈Qr

∑
σ∈Sr

(−1)ℓ(σ)q
1
2 rp′∥α∥2−p′(α,δ)+r(α,σ(ζ+δ))−(δ,σ(ζ+δ)−ζ−δ). (2.7)

2.4 Cylindric partitions

We let r ≥ 1 and ℓ ≥ 1.
A composition of ℓ of length r is an (ordered) sequence of non-negative integers c =

(c0, c1, . . . , cr−1) that adds up to ℓ. Note crucially that ℓ stands for the level and r for
rank as in Section 2.2.

A cylindric partition of profile c is defined to be an (ordered) sequence of partitions
Λ = (λ(0), . . . , λ(r−1)) such that:

1. Each λ(j) = λ
(j)
1 + λ

(j)
2 + · · · is written in a non-increasing order and is assumed to

continue indefinitely by appending an infinite string of zeroes.

2. For all 0 ≤ i ≤ r − 2 and all j, λ
(i)
j ≥ λ

(i+1)
j+ci+1

and λ
(r−1)
j ≥ λ

(0)
j+c0

.

Given a composition c = (c0, . . . , cr−1) of ℓ, define its set of non-negative indices by

Ic = {0 ≤ i ≤ r − 1 | ci > 0}.

For ∅ ⊊ J ⊆ Ic, define c(J) = (c0(J), . . . , cr−1(J)) as

ci(J) =


ci − 1 i ∈ J, i − 1 ̸∈ J
ci + 1 i ̸∈ J, i − 1 ∈ J
ci otherwise,

(2.8)

where we think of the indices 0, . . . , r − 1 (and consequently elements of the sets Ic and
J) as elements of the cyclic group Zr. Note that if c is a composition of ℓ, then so is c(J).

Let Cc be the collection of all cylindric partitions of profile c and define:

Hc(z, q) =
(zq)∞

(q)∞
∑

Λ∈Cc

zmax(Λ)qwt(Λ). (2.9)

Now, the following properties of cylindric partitions and the functions Hc are crucial.
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1. The functions Hc are governed by the Corteel–Welsh recurrence [11]. For a fixed r
and ℓ, the functions Hc as c varies over length r compositions of ℓ are the unique
solutions in Z[[z, q]] to the following finite system of recurrences and initial condi-
tions 2:

Hc(z, q) = ∑
∅⊊J⊆Ic

(−1)|J|−1(zq)|J|−1Hc(J)(zq|J|, q), (2.10)

Hc(0, q) = (q)−1
∞ , Hc(z, 0) = 1. (2.11)

2. Hc appear as characters as follows ([8, 25, 14, 12]):

(q)∞H(c0,...,cr−1)
(1, q) = χ(Ω(c0Λ0 + · · ·+ cr−1Λr−1)) = χr,r,ℓ+r

0, c1Λ1+···+cr−1Λr−1
. (2.12)

3. Hc functions have certain symmetries. The first follows from the definition of
cylindric partitions. The second follows from the previous relation to principal
characters, but can also be deduced from the properties of cylindric partitions.

H(c0,··· ,cr−1)
(z, q) = H(c1,c2,...,cr−1,c0)(z, q), (2.13)

H(c0,··· ,cr−1)
(1, q) = H(cr−1,cr−2,...,c1,c0)(1, q). (2.14)

Due to (2.13), we cyclically permute c and assume that c0 is the largest part.

3 Completing the A2 identities from [3]

In this section, we will now solely focus on the r = 3 case. That is, we will only consider
principal characters of standard ŝl3 modules of level ℓ ∈ Z>0. Equivalently, these are
the characters χ3,3,3+ℓ

0,ζ for irreducible modules for the VOA W3(3, 3 + ℓ) whenever ℓ is
coprime to 3, however, we will stick with the former description.

In [3], using an appropriate generalization of the usual Bailey machinery to the A2
root system, “sum=product” identities involving certain principal characters were found.
For identities found in [3], the triple (c0, c1, c2) appearing in (2.5) satisfies:

(cσ(0) + 1, cσ(1) + 1, cσ(2) + 1)

∈ {(i, i, 3k − 2i + s), (1, k − t, 2k + t − 1 ± 1) | k ≥ 2; 1 ≤ i ≤ k; t = 0, 1; s = −1, 0, 1}.
(3.1)

where σ is some permutation of the indices 0, 1, 2 (recall (2.4)). This implies that a
majority of identities at every level were yet to be found. In [17], jointly with Russell, we
were able to conjecture all of the missing identities and prove our conjectures at levels 3
and 7. In fact, our conjectures pertain to the two-variable generating functions Hc(z, q).
Upon setting z = 1, one gets conjectures for the principal characters of standard modules
(see (2.12)).

2The referee has kindly pointed out that Hc(z, 0) = 1 from (2.11) is redundant.
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3.1 The arrangement of modules

Fix ℓ > 0 and let m = ℓ+ 3 and let k be such that m = ℓ+ 3 ∈ 3k + {−1, 0, 1}.
We now arrange length 3 compositions of ℓ in a triangular array. Suppose that c =

(c0, c1, c2) is a composition of ℓ. Due to the cyclic symmetry (2.13), we assume that c0 is
the largest part of c. Let (λ0, λ1, λ2) be the sequence obtained by permuting (c0, c1, c2) in
a weakly decreasing order. Now place the composition c in row λ1 and column λ2. This
gives rise to a triangular arrangement of compositions. Lastly, we draw a horizontal line
after row k − 1. For example, here is the arrangement for ℓ = 11, m = 14, k = 5:

row 0 : 11, 0, 0
row 1 : 10, 1, 0/10, 0, 1 9, 1, 1
row 2 : 9, 2, 0/9, 0, 2 8, 2, 1/8, 1, 2 7, 2, 2
row 3 : 8, 3, 0/8, 0, 3 7, 3, 1/7, 1, 3 6, 3, 2/6, 2, 3 5, 3, 3
row 4 : 7, 4, 0/7, 0, 4 6, 4, 1/6, 1, 4 5, 4, 2/5, 2, 4 4, 4, 3

row 5 : 6, 5, 0/6, 0, 5 5, 5, 1

(3.2)

Theorem 1. [17, Thm 5.1] Fix ℓ > 0. Suppose that expressions for all Hc(z, q) are known
where c runs over length 3 compositions of ℓ that lie above the line, i.e., λ1 ≤ k − 1. Then, the
expressions for Hc(z, q) where c is a length 3 composition of ℓ that lies below the line, i.e., λ1 ≥ k
are determined by the Corteel–Welsh recursions (2.10).

This theorem implies that it is enough to produce conjectures for the compositions
that lie above the line.

3.2 Conjectures for compositions above the line

Let us continue to let ℓ, m, k as in the previous subsection. For 0 ≤ j ≤ k − 1, define:

ej = [

j︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1] ∈ Zk−1, e−1 = [2, 1, . . . , 1] ∈ Zk−1. (3.3)

For ρ, σ ∈ Zk−1, define (with the convention that (q)−1
n = 0 if n < 0):

S3k−1(ρ | σ) = ∑
r,s∈Zk−1

≥0

zr1 q(∑1≤i≤k−1 r2
i −risi+s2

i )+ρ·r+σ·s

∏1≤i≤k−2(q)ri−ri+1(q)si−si+1

· q2rk−1sk−1

(q)rk−1(q)sk−1(q)rk−1+sk−1+1

S3k+1(ρ | σ) = ∑
r,s∈Zk−1

≥0

zr1 q(∑1≤i≤k−1 r2
i −risi+s2

i )+ρ·r+σ·s

∏1≤i≤k−2(q)ri−ri+1(q)si−si+1

· 1
(q)rk−1(q)sk−1(q)rk−1+sk−1+1

(3.4)

S3k(ρ | σ) = ∑
r,s∈Zk−1

≥0

zr1 q(∑1≤i≤k−1 r2
i −risi+s2

i )+ρ·r+σ·s

∏1≤i≤k−2(q)ri−ri+1(q)si−si+1

· 1
(q)rk−1+sk−1(q)rk−1+sk−1+1

[
rk−1 + sk−1

rk−1

]
q3
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Conjecture 1. [17, Conj. 5.1] Fix ℓ and let c = (c0, c1, c2) be a composition above the line (i.e.,
λ1 ≤ k − 1). We then have:

H(c0,c1,c2)(z, q) =


Sℓ+3(ec1 | ec2)− qSℓ+3(ec1−1 | ec2−1) c1, c2 > 0
Sℓ+3(ec1 | e0) c2 = 0
Sℓ+3(e0 | ec2)− q(1 − z)Sℓ+3(e−1 | ec2−1) c1 = 0, c2 ̸= 0

(3.5)

Theorem 2. [17, Thm 5.3] The conjectures above satisfy the initial conditions (2.11), i.e.,
Hc(0, q) = (q)−1

∞ and Hc(z, 0) = 1.

3.3 Proving the conjectures at low levels and other results

We were able to prove our conjectures in some specific (small) levels:

Theorem 3. [17] Conjecture 1 is true for ℓ ∈ {2, 3, 4, 5, 7} (the cases ℓ ∈ {3, 7} are new).

Idea of proof. Broadly, the proof has two steps. First we find certain fundamental (recur-
rence) relations satisfied by the S functions defined in (3.4). This step is straight-forward
(see also [9]). The next step is to show that the Corteel–Welsh recursions (2.10) are a
consequence of these fundamental relations. This step requires a non-trivial amount of
computer assistance, especially in levels 5 and 7.

Recently, Uncu has extended the theorem above to include two further cases.

Theorem 4. [27] Conjecture 1 is true for ℓ ∈ {8, 10}.

In an important development, S. O. Warnaar has given a far reaching enhancement
of the A2 Bailey machinery of [3] and proved the following.

Theorem 5. [30] Conjecture 1 is true with z = 1.

In the case of 3 | ℓ and with z = 1, we are in fact able to improve Theorem 1. In
this case, we prove concrete formulas for Hc(1, q) when c is below the line. This process
crucially uses an identity of Weierstraß (see [17, Lem 6.1]). Note that the original for-
mulation in [17] of the theorem below was conditional upon the validity of Conjecture 1
with z = 1, which in turn has been proved in [30].

Theorem 6. [17, Thm. 6.4], [30] 3 Let k ≥ 3. Let c = (c0, c1, c2) with c0 ≥ c1 ≥ c2 ≥ 0,
c0 + c1 + c2 = ℓ = 3k − 3, and c1 ≥ k. Then:

Hc(1, q) = X(1, q)− qc2+1Y(1, q), (3.6)

3Here we correct two minor errors in [17]: In equations (6.10) and (6.11) of [17], S3m are supposed to
be S3k. Additionally, in equations (6.7) and (6.10) of [17], the second case never occurs.
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where

X(z, q) = S3k(e2k−c1−2 | e2k−c0−2)− qS3k(e2k−c1−3 | e2k−c0−3), (3.7)

Y(z, q) =

{
S3k(ec0−k | ec1−k)− qS3k(ec0−k−1 | ec1−k−1), c1 > k
S3k(ec0−k | e0) c1 = k.

(3.8)

3.4 Examples

As examples, we single out two new identities that emerge from the theorems above. In
both, ∑ stands for a sum over r1, r2, s1, s2 ≥ 0.

∑
qr2

1−r1s1+s2
1+r2

2−r2s2+s2
2+r2+s2(1 − 2q1+r1+s1)

(q)r1−r2(q)s1−s2(q)r2+s2(q)r2+s2+1

[
r2 + s2

r2

]
q3

=
1

(q)∞

1
θ(q, q2, q2, q3, q3; q9)∞

=
χ(Ω(3Λ0 + 3Λ1))

(q)∞
, (3.9)

∑
qr2

1−r1s1+s2
1+r2

2−r2s2+s2
2(q−r1+s1+s2 − qr2+s2 + q1+r1+r2+s1+s2)

(q)r1−r2(q)s1−s2(q)r2(q)s2(q)r2+s2+1

=
1

(q)∞

1
θ(q, q2, q2, q3, q3, q4; q10)

=
χ(Ω(4Λ0 + 3Λ1))

(q)∞
. (3.10)

Identity (3.9) arises from Theorem 6 with (c0, c1, c2) = (3, 3, 0). (3.10) is one of the
identities in Theorem 3 with ℓ = 7.

4 Coloured slr invariants of torus knots

Let us begin by collecting a few further facts about the representation theory of slr.
Recall that the Weyl denominator associated with slr is:

∆r = ∑
w∈Sr

(−1)ℓ(w)ew(δ),

where ew(δ) is a formal exponential, to be thought of as an element of the group algebra
of the weight lattice Pr. We denote:

qdim(∆r) = ∑
w∈Sr

(−1)ℓ(w)q(w(δ),δ).

Weyl denominator formula implies that:

qdim(∆r) = ∏
α∈Φ+

r

(q
1
2 (δ,α) − q−

1
2 (δ,α)).
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The function qdim can be defined more generally by qdim(eµ) = q(µ,δ) for µ ∈ Pr. In
particular, for a finite-dimensional irreducible module L, we may define qdim(L) as
simply qdim(ch(L)) where the character ch(L) belongs to the group algebra of Pr.

Let Lr(nΛ1) denote the (finite-dimensional) irreducible slr module of highest weight
nΛ1 and let Πr,n be the set of weights of Lr(nΛ1).

Given a knot K with a fixed framing f , a finite-dimensional simple Lie algebra g along
with a finite-dimensional irreducible module L, let J f

K(L) denote the framing-dependent,
un-normalized, L coloured Jones invariant of K. Here, un-normalized means that for the
unknot with zero framing this invariant equals qdim(L).

Let p, p′ be a pair of coprime positive integers, and let T(p, p′) be the torus knot
obtained by the (p, p′) cabling of the unknot of zero framing, see [23] for details. In this
case, T(p, p′) has writhe pp′. We will fix (and then forget) this framing of T(p, p′). Now,
the Rosso–Jones formula [24] (as explained by [23]) in conjunction with some elementary
properties of Πr,n leads to the following theorem.

Theorem 7. Let p, p′ be a pair of positive coprime integers.

1. [16, Thm. 5.1] The framing-dependent, un-normalized invariants of torus knots satisfy:

JT(p,p′)(Lr(nΛ1)) =
q−

p′
2p∥δ∥2

qdim(∆r)
∑

λ∈Πr,n,w∈Sr

(−1)ℓ(w)q(pλ+wδ,δ)+ p′
2p∥pλ+wδ∥2

.

2. [16, Thm. 6.1] We have:

lim
n→∞

JT(p,p′)(Lr(nrΛ1)) =
(q)r−1

∞

∏α∈Φ+
r
(1 − q(α,δ))

χ
r,p,p′
0,0 . (4.1)

3. [16, Prop. 3.4] If p < p′ and 1 ≤ p ≤ r − 1, then, χ
r,p,p′
0,0 = 0 and the limit in (4.1) is 0.

In part 3 above, the reason the limit equals 0 is that the lowest degree of the corre-
sponding Jones invariant approaches ∞ as n → ∞. Thus, it is interesting to understand
limits of the shifted invariants Ĵ f

K(L) which equal J f
K(L) divided by its trailing monomial.

We have the following conjecture:

Conjecture 2. [16, Conj. 6.6] Let 2 ≤ p < p′ be a pair of coprime positive integers such that
p < r. Letting Φ+

1 = ∅ and denoting the Weyl vector of slr by δr, we have:

lim
n→∞

ĴT(p,p′)(Lr(nΛ1)) =
∏α∈Φ+

r−p
(1 − q(α,δr−p))

∏α∈Φ+
r
(1 − q(α,δr))

(q)p−1
∞ χ

p,p,p′
0,0 .

Note that unlike (4.1) which involves Lr(nrΛ1), this conjecture involves Lr(nΛ1).

The r = 3 case of this conjecture holds due to the work [13] (see also [16]).
Our hope is that this connection of W3(3, 3+ ℓ) algebra characters to knot theory will

provide useful insights on the corresponding Andrews–Schilling–Warnaar identities.
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