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Abstract. Motivated in part by hook-content formulas for certain restricted partitions
in representation theory, we consider the total number of hooks of fixed length in odd
versus distinct partitions. We show that there are more hooks of length 2, respectively
3, in all odd partitions of n than in all distinct partitions of n, and make the analogous
conjecture for arbitrary hook length t ≥ 2. To this end, we establish very general linear
inequalities for the number of distinct partitions, which is also of independent interest.
We also establish additional related partition bias results.
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1 Introduction

Background. Connections between representation theory and the theory of integer par-
titions are well-known. For example, the irreducible polynomial representations of
GLn(C) may be indexed by partitions of length at most n; moreover, the conjugacy
classes of the symmetric group Sn, and therefore the number of non-equivalent irre-
ducible complex representations, may be indexed by the partitions of n. Hook lengths of
partitions play particularly important roles in establishing these connections. Namely,
such irreducible representations can be analyzed via partition Young tableaux. The di-
mension of a representation of Sn (respectively GLn(C)) corresponding to a particular
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partition is given by a hook length formula (respectively a hook-content formula). (For more
on these topics, see e.g. [17].)

One of many celebrated results in this subject is the Nekrasov-Okounkov formula
for arbitrary powers of Euler’s infinite product in terms of hook numbers, as well as
Han’s extension [9], which unifies the Macdonald identities in representation theory
and t-core partition generating functions. Restricted partitions also play important roles
in this context. For example, Han and Xiong have established hook-content formulas
for distinct partitions in [10, 11]. See also [12, 16] for more in this direction. Here, we
further study hook lengths associated to distinct partitions versus odd partitions. Before
stating our results, we briefly define some terminology (and refer the reader to [1] for
more background on partitions).
Terminology. Recall that a partition λ = (λ1, λ2, . . . , λj) of size n ∈ N0 is a non-increasing
sequence of positive integers λ1 ≥ λ2 ≥ · · · ≥ λj called parts that add up to n. By
convention, the empty partition is the only partition of size 0. We write |λ| for the size
of λ. We denote by p(n) the number of partitions of n. We define the multiplicity mλ(i)
of a part i of a partition λ to be the number of times i appears as a part of λ. We define
the length ℓ(λ) of a partition λ to be the number of parts of λ, and define ℓ1(λ) (resp.
ℓ2(λ)) to be the number of parts λi of λ with λi − λi+1 = 1 (resp. λi − λi+1 = 2). We
assume λk = 0 if k > ℓ(λ).

Each partition is naturally equipped with a Young diagram, a left-justified vertical
array of boxes with rows corresponding to parts (see Figure 1). We abuse notation,
and refer to partitions as their Young diagrams, with their parts referred to as rows.
The conjugate of a partition λ is the partition λ′ whose Young diagram has the columns
of λ as rows. Each box in a Young diagram of λ may be labeled with a hook number,
also called hook length, which, informally, is the number of boxes in the upside-down-L-
shaped portion of the diagram with the box appearing as its corner. More precisely, for
a box in the i-th row and j-th column of the Young diagram of a partition λ, its hook
length is defined as h(i, j) = λi + λ′

j − i − j + 1 (see Figure 1).

8 7 4 3 1

6 5 2 1

3 2

2 1

Figure 1: Young diagram with hook lengths for the partition λ = (5, 4, 2, 2).

In what follows, we refer to a partition into odd parts as an odd partition and to
a partition into distinct parts as a distinct partition. We denote by O(n), respectively
D(n), the set of odd, respectively distinct, partitions of n. Euler’s identity [1, Corollary
1.2] states that |O(n)| = |D(n)| for all n ≥ 0.
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Results. Let at(n) (respectively bt(n)) be the total number of hooks of length t in all odd
(respectively distinct) partitions of n.

For a partition λ, a box in its Young diagram has hook length 1 if and only if it is at
the end of a row and there is no box directly below it. Thus, in a partition λ, the number
of hooks of length 1 equals the number of different part sizes in λ.

The next result was conjectured by Beck [13] and proved analytically by Andrews [2].

Theorem 1 (Theorem 2, [2]). The difference between the total number of parts in all distinct
partitions of n and the total number of different part sizes in all odd partitions of n equals c(n),
the number of partitions of n with exactly one part occurring three times while all other parts
occur only once.

Corollary 2. For n ≥ 0, b1(n)− a1(n) = c(n).

Thus, there are at least as many hooks of length 1 in all distinct partitions of n as
there are in all odd partitions of n. On the other hand, Euler’s identity yields

∑
t≥1

at(n) = ∑
t≥1

bt(n).

It is natural to study the relationship between at(n) and bt(n) for any fixed t ≥ 1. For
t = 1 the above shows that b1(n) ≥ a1(n). We conjecture that this bias reverses for
t ≥ 2: eventually (for large enough n), we conjecture that there are at least as many
hooks of length t in all odd partitions of n as there are in all distinct partitions of n.
More specifically, we make the following conjecture.

Conjecture 3. For every integer t ≥ 2, there exists an integer Nt such that for all n > Nt,
we have at(n) ≥ bt(n), and at(n) − bt(n) → ∞ as n → ∞. Moreover, for 4 ≤ t ≤ 10, we
conjecture the following values of Nt:

t 2 3 4 5 6 7 8 9 10
Nt 0 7 8 18 16 34 34 56 59

Figure 2: Conjectural values for Nt.

Data supporting this conjecture was obtained by enumerating partitions and not from
generating functions; this is because the generating functions for at(n) and bt(n) are
difficult to derive explicitly. We are, however, able to write down generating functions
for t = 2 and t = 3, which we use to prove Conjecture 3 for t = 2 and t = 3.

Theorem 4. Conjecture 3 is true for t = 2 and t = 3 with N2 = 0 and N3 = 7, respectively.

Analogous to Corollary 2, for t = 2, we prove that a2(n)− b2(n) = c2(n), where c2(n)
is the number of overpartitions λ of n into odd parts with mλ(1) ≡ 0, 3 (mod 4), and



4 C. Ballantine, H. Burson, W. Craig, A. Folsom, B. Wen

exactly one part greater than 1 overlined. An overpartition of n is a partition of n in
which the first occurrence of a part may be overlined [5].

We give complete details for the case t = 2 of Theorem 4. The case t = 3 is more
complicated, and requires tools from combinatorics as well as analytic number theory.
For space considerations, we broadly sketch the main idea used in the proof for t = 3,
and will publish the complete proof in a forthcoming work [3].

2 Hooks of length 2

Let a2(m, n) (respectively b2(m, n)) be the number of odd (respectively distinct) partitions
of n with m hooks of length 2. To prove Theorem 4 for t = 2, we first establish the gen-
erating functions for the sequences a2(n) and b2(n) by finding the bivariate generating
functions ∑m,n≥0 a2(m, n)zmqn and ∑m,n≥0 b2(m, n)zmqn, differentiating with respect to z,
and evaluating at z = 1. We follow with the analysis of a2(n)− b2(n).
Odd partitions. Let λ be an odd partition. The number of hooks of length 2 in λ is
equal to the number of different part sizes of λ that are greater than 1 plus the number
of different parts of λ that occur at least twice. Thus,

F2(z; q) := ∑
n,m≥0

a2(m, n)zmqn =

(
1 + q +

zq2

1 − q

) ∞

∏
n=2

(
1 + zq2n−1 +

z2q2(2n−1)

1 − q2n−1

)
,

and hence

∑
n≥0

a2(n)qn =
∂

∂z

∣∣∣∣
z=1

F2(z; q) =
1

(q; q2)∞

(
q2 + ∑

n≥2
(q2n−1 + q2(2n−1))

)
.

Here and throughout, the q-Pochhammer symbol is defined for n ∈ N0 ∪ {∞} by

(a; q)n :=
n−1

∏
j=0

(1 − aqj).

Distinct partitions. If λ is a distinct partition, the number of hooks of length 2 in λ

equals the number of parts λi such that λi − λi+1 ≥ 2. Thus, the number of hooks of
length 2 in λ can be calculated as follows: starting with the Young diagram of λ, remove
a staircase of length ℓ(λ) (i.e. subtract 1 from the smallest part, 2 from the second to
last part, etc.) to obtain a partition µ. Then, we count the number of different part sizes
in µ. We note that the number of different part sizes in µ is equal to the number of
different part sizes in its conjugate µ′. Let un(t, m) be the number of partitions of m with
t different part sizes and all parts at most n. Then

∑
m,t≥0

un(t, m)ztqm =
n

∏
j=1

(
1 +

zqj

1 − qj

)
,
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and

G2(z; q) := ∑
n,m≥0

b2(m, n)zmqn = ∑
n≥1

qn(n+1)/2
n

∏
j=1

(
1 +

zqj

1 − qj

)
.

Then, differentiating with respect to z and evaluating at z = 1, we obtain

∑
n≥0

b2(n)qn =
∂

∂z

∣∣∣
z=1

G2(z; q) = ∑
n≥1

qn(n+1)/2 1
(q; q)n

q − qn+1

1 − q
.

Using the well-known limiting case of the q-binomial theorem (see e.g. [1, (2.2.6)])

∑∞
n=0 q

n(n+1)
2 zn/(q; q)n = (−zq; q)∞ with z = q, this can be re-written as:

∑
n≥0

b2(n)qn =
q

1 − q ∑
n≥1

q
n2+n

2

(q; q)n−1
=

q2

1 − q ∑
n≥0

q
n2+3n

2

(q; q)n
=

q2

1 − q
(−q2; q)∞.

Hook bias for t = 2. We consider the generating function for a2(n)− b2(n). We have

∑
n≥0

(a2(n)− b2(n))qn =
1

(q; q2)∞

(
q2 + ∑

n≥2
(q2n−1 + q2(2n−1))

)
− q2

1 − q
(−q2; q)∞

= (−q; q)∞
q2

1 − q2

(
1 + q + q3

1 + q2 − 1
)
= (−q; q)∞

q2

1 − q2

(
q − q2 + q3

1 + q2

)
= q3 1 + q3

1 − q2 (−q3; q)∞ =
q3

1 − q2 ((−q3; q)∞ + q1+2(−q3; q)∞). (2.1)

In the second line, we used Euler’s identity [1, (1.2.5)] 1/(q; q2)∞ = (−q; q)∞. Clearly,
the expression in (2.1), expanded as a q-series, has non-negative coefficients which can
be interpreted combinatorially as follows. The expression (−q3; q)∞ is the generating
function for the number of distinct partitions of n that do not have 1 and 2 as parts.
Glaisher’s bijection [7], which splits each even part in a distinct partition into equal odd
parts, maps these partitions bijectively to odd partitions λ of n with mλ(1) ≡ 0 (mod 4).
Similarly, q1+2(−q3; q)∞ is the generating function for the number of distinct partitions
of n that have both 1 and 2 as parts. Glaisher’s bijection maps these partitions bijectively
to odd partitions λ of n with mλ(1) ≡ 3 (mod 4). Moreover, q3/(1 − q2) = q3 + q5 + · · ·
is the generating function of the number of partitions of n consisting of a single odd part
greater than 1, which we overline. Thus, the right hand side of (2.1) is the generating
function for the number of overpartitions of n into odd parts with mλ(1) ≡ 0, 3 (mod 4)
and exactly one part overlined, which is greater than 1.

3 Hooks of length 3

In this section, we briefly sketch the main ideas of the proof of Theorem 4 for t = 3.
The complete proof is very involved and not suited for an extended abstract. It will be
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published in our forthcoming paper [3].
As in Section 2, we define a3(m, n) (respectively b3(m, n)) to be the number of odd

(respectively distinct) partitions of n with m hooks of length 3, and use the same strategy
to find the generating functions for the sequences a3(n) and b3(n).
Odd partitions. Let λ be an odd partition. Among parts equal to 1, there is a hook of
length 3 only in the third to last part equal to 1 (thus, only if the multiplicity of 1 is at
least three). For all other parts, there is a hook of length 3 in the second to last and third
to last occurrence of the part size (if the multiplicity of the part permits). There is also a
hook of length 3 in the last occurrence of the part size if that last occurrence is in row i
with λi − λi+1 ̸= 2. Therefore a3(m, n) is the number of odd partitions λ of n such that

δmλ(1)≥3 +

(
∑
u≥2

(δmλ(u)≥1 + δmλ(u)≥2 + δmλ(u)≥3)

)
− ℓ2(λ) = m.

Here, δρ denotes the Kronecker delta symbol, which evaluates to 1 if property ρ is true,
and 0 if not. If x(k, n) is the number of odd partitions λ of n such that

δmλ(1)≥3 + ∑
u≥2

(δmλ(u)≥1 + δmλ(u)≥2 + δmλ(u)≥3) = k,

and y(k, n) is the number of odd partitions λ of n with ℓ2(λ) = k, then

a3(n) = ∑
m≥0

m a3(m, n) = ∑
k≥0

k x(k, n)− ∑
k≥0

k y(k, n).

Let F1(z; q) := ∑
n,k≥0

x(k, n)zkqn and F2(z; q) := ∑
n,k≥0

y(k, n)zkqn. Then,

∑
n≥0

a3(n)qn =
∂

∂z

∣∣∣
z=1

F1(z; q)− ∂

∂z

∣∣∣
z=1

F2(z; q).

We have

F1(z; q) =
(

1 + q + q2 +
zq3

1 − q

)
∏
n≥1

(
1 + zq2n+1 + z2q2(2n+1) +

z3q3(2n+1)

1 − q2n+1

)
.

To find F2(z; q), we consider the conjugate of the 2-modular diagram of a partition. In
the conjugate diagram, the boxes in the top row are filled with 1 and the boxes in all
other rows are filled with 2. We need to count rows with multiplicity 1 among the rows
filled with 2 that are less than the first row, which we record in the exponent of z. Thus,

F2(z; q) = ∑
n≥1

qn

1 − q2n

n−1

∏
j=1

(
1 + zq2j +

q2(2j)

1 − q2j

)
.
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Furthermore,

∂

∂z

∣∣∣
z=1

F1(z; q) =
1

(q; q2)∞

(
q3 + ∑

n≥1
(q2n+1 + q2(2n+1) + q3(2n+1))

)

= (−q; q)∞

(
q3 +

q3

1 − q2 +
q6

1 − q4 +
q9

1 − q6

)
and

∂

∂z

∣∣∣
z=1

F2(z; q) = ∑
n≥1

qn 1
(q2; q2)n

n−1

∑
j=1

q2j(1 − q2j).

Using the well-known identity ∑
n≥0

zn/(q; q)n = 1/(z; q)∞ (see e.g. [1, (2.2.5)]) and further

simplifications similar to those in the calculation of ∂
∂z |z=1G2(z; q), we obtain

∂

∂z

∣∣∣
z=1

F2(z; q) =
1

(q; q2)∞

q4

1 − q4 .

Finally, we have

∑
n≥0

a3(n)qn =
∂

∂z

∣∣∣
z=1

F1(z; q)− ∂

∂z

∣∣∣
z=1

F2(z; q)

= (−q; q)∞

(
q3 +

q3

1 − q2 +
q6

1 − q4 +
q9

1 − q6 − q4

1 − q4

)
= (−q3; q)∞

q3(1 + q3)

1 − q2 + (−q; q)∞

(
q6

1 − q4 +
q3

1 − q6

)
. (3.1)

Distinct partitions. Let λ be a distinct partition. There is a hook of length 3 in every row
λi > 1 except when λi − λi+1 = 2. Therefore b3(m, n) is the number of distinct partitions
of n such that ℓ(λ)− mλ(1)− ℓ2(λ) = m. If u(k, n) is the number of distinct partitions
of n with exactly k parts greater than 1, and v(k, n) is the number of distinct partitions λ

of n with ℓ2(λ) = k, then

b3(n) = ∑
m≥0

m b3(m, n) = ∑
k≥0

k u(k, n)− ∑
k≥0

k v(k, n).

Let G1(z; q) := ∑
n,k≥0

u(k, n)zkqn and G2(z; q) := ∑
n,k≥0

v(k, n)zkqn. Then,

∑
n≥0

b3(n)qn =
∂

∂z

∣∣∣
z=1

G1(z; q)− ∂

∂z

∣∣∣
z=1

G2(z; q).
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We have
G1(z; q) = (1 + q)(−zq2; q)∞.

To find G2(z; q), let λ be a partition with distinct parts and, as in the case t = 2, remove
a staircase of length ℓ(λ) from λ to obtain a partition µ with at most ℓ(λ) parts. Recall
that ℓ1(µ) is the number of parts µi of µ such that µi − µi+1 = 1. Note that parts µi
in µ such that µi − µi+1 = 1 correspond to parts λi in λ such that λi − λi+1 = 2. Thus,
ℓ1(µ) = ℓ2(λ). For a partition ν, denote by ℓ̃(ν) the number of parts of ν with multiplicity
one. Since ℓ1(µ) = ℓ̃(µ′), we have

G2(z; q) = ∑
m≥1

q
m(m+1)

2

m

∏
j=1

(
1 + zqj +

q2j

1 − qj

)
.

We compute
∂

∂z

∣∣∣
z=1

G1(z; q) = (−q; q)∞ ∑
m≥2

qm

1 + qm

and

∂

∂z

∣∣∣
z=1

G2(z; q) = ∑
n≥1

q
n(n+1)

2

(q; q)n

n

∑
j=1

qj(1 − qj) = ∑
n≥1

q
n(n+1)

2

(q; q)n

(
1 − qn+1

1 − q
− 1 − q2(n+1)

1 − q2

)

=
q

1 − q2 ∑
n≥1

q
n(n+1)

2

(q; q)n−1
(1 − qn+1) =

q
1 − q2

(
∑
n≥0

q
n(n+1)

2 +n+1

(q; q)n
− ∑

n≥0

q
n(n+1)

2 +2n+3

(q; q)n

)

=
q

1 − q2

(
q(−q2; q)∞ − q3(−q3; q)∞

)
=

q2

1 − q2 (−q3; q)∞.

For the second to last equality we have again used the q-binomial theorem.
Finally, we have

∑
n≥0

b3(n)qn =
∂

∂z

∣∣∣
z=1

G1(z; q)− ∂

∂z

∣∣∣
z=1

G2(z; q)

= (−q; q)∞ ∑
m≥2

qm

1 + qm − q2

1 − q2 (−q3; q)∞. (3.2)

Hook bias for t = 3. Next we consider the difference a3(n)− b3(n). Establishing non-
negativity for n > 7 is more complex than for a2(n)− b2(n) in Section 2, so we provide
a sketch of the proof, leaving the full details to our forthcoming paper [3].
Sketch of proof of Theorem 4 for t = 3. We begin by subtracting the generating func-
tions established in (3.1) and (3.2). After a lengthy series of manipulations, calculations,
and simplifications, we prove that, to establish the desired non-negativity result, it is
sufficient to establish certain linear inequalities for the (restricted) partition numbers

q(n) := p(n | distinct parts) and ρ(n, m) := p(n | distinct parts at least m).
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An intermediate ingredient we use is the following result of Erdös-Nicolas-Szalay relat-
ing q(n) and ρ(n, m).

Theorem 5 (Theorem 1, [6]). For all n and m satisfying 1 ≤ m ≤ n, we have that

q(n)
2m−1 ≤ ρ(n, m) ≤ q(n + m(m − 1)/2)

2m−1 .

To complete our proof of Theorem 4 for t = 3, we prove the following general theorem
on linear inequalities for q(n), which is also of independent interest.

Theorem 6 (Theorem 1.11, [3]). Suppose ∑r
k=1 αk < ∑s

ℓ=1 βℓ, where {αk}r
k=1, {βℓ}s

ℓ=1 ⊂ N,
and r, s ∈ N. Moreover, let {µk}r

k=1, {νℓ}s
ℓ=1 ⊂ N, where µk ̸= µj and νj ̸= νk for j ̸= k. Then

for sufficiently large n, we have that

r

∑
k=1

αkq(n + µk) ≤
s

∑
ℓ=1

βℓq(n + νℓ). (3.3)

Remark 7. In [3], we make Theorem 6 effective, and establish a lower bound on n (depending on
the sequences given in the hypothesis of the theorem) sufficient to guarantee (3.3).

Sketch of Proof of Theorem 6. We first show that it suffices to establish

Proposition 8 (Proposition 2.1, [3]). For L ∈ N, and ε > 0, there exists an Nε,L such that for
n > Nε,L

0 <
q(n + L)

q(n)
− 1 < ε.

Continuing our sketch of proof of Theorem 6, we recall the following beautiful exact
formula for q(n) as an infinite sum of Kloosterman sums multiplied by Bessel func-
tions due to Hagis [8], reminiscent of the celebrated exact formula for p(n) by Hardy-
Ramanujan-Rademacher [15] obtained using the Circle Method.

Theorem 9 (Theorem 4, [8]). For n ∈ N, we have that

q(n) =
π

(24n + 1)1/2

∞

∑
k=1
k odd

k−1

(
∑

′

h (mod k)

χ(h, k) exp(−2πinh/k)

)
I1

(
π

12k
(48n + 2)1/2

)
.

Above, I1 is the Bessel function of the first order, χ is an explicit exponential function,
and the sum on h is taken over h (mod k) relatively prime to k. Using Theorem 9,
Beckwith-Bessenrodt establish the following asymptotic estimate on q(n), an important
ingredient in our proof of Theorem 6.
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Theorem 10 (Theorem 2.3, [4]). Let µ := π
6
√

2

√
24n + 1. Then for n ∈ N, we have that

q(n) =
π√

24n + 1
I1(µ) + E(n),

where

|E(n)| ≤ 0.9π√
24n + 1

· eµ

µ

(
1 + 5µ2e−µ

)
.

Given the above, a last key ingredient in our proof of Theorem 6 is certain effective
estimates on the I1-Bessel function.

Proposition 11 (Exercise 7.13.2, [14]). Let z be a complex number with |arg(z)| ≤ π
2 and let

s ∈ C. Then we have

I1(z) =
ez

√
2πz

[1 + δ(z)] + i
e−z

√
2πz

[1 + γ(z)] ,

where we have the bounds

|γ(z)| ≤ 3
4|z| exp

(
3

4|z|

)
, |δ(z)| ≤ 3π

8|z| exp
(

3π

8|z|

)
.

Then, a lengthy calculation using Theorem 10 and Proposition 11 proves Proposi-
tion 8. We refer the interested reader to [3] for full details of the proof of Theorem 4 for
t = 3 and Theorem 6 using the ingredients given here.

4 Further bias results

Recall that ℓ2(λ) is the number of parts λi of λ with λi − λi+1 = 2. Note that this
partition statistic appeared in our calculations of both a3(n) and b3(n). Thus, it is natural
to investigate a possible bias in the total number of gaps of size exactly 2 in odd versus
distinct partitions. We prove that such a bias exists.

Theorem 12. For n ∈ N0, we have that

∑
λ∈O(n)

ℓ2(λ)− ∑
λ∈D(n)

ℓ2(λ)

is non-negative except for n = 2 and n = 6 in which cases it equals −1.

Proof. From Section 3,

∑
λ∈D(n)

ℓ2(λ) = (−q3; q)∞
q2

1 − q2 and ∑
λ∈O(n)

ℓ2(λ) = (−q; q)∞
q4

1 − q4 .
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Thus, we need to show that, the coefficients of qn, n ̸= 2, 6, in

H(q) := (−q; q)∞
q4

1 − q4 − (−q3; q)∞
q2

1 − q2

are non-negative. A direct calculation shows that the coefficients of q2 and q6 in H(q)
are both equal to −1.

After some q-series manipulations, we have that

H(q) + q2 + q6 = (−q3; q)∞
q5

1 − q2 − q5(−q4; q)∞ − q2(1 + q4) ∑
m≥5

qm(−qm+1; q)∞

= (−q4; q)∞
q7

1 − q
− q2(1 + q4) ∑

m≥5
qm(−qm+1; q)∞

= (−q4; q)∞ ∑
k≥7

qk − (1 + q4) ∑
k≥7

qk(−qk−1; q)∞

= (1 + q4) ∑
k≥7

qk
(
(−q5; q)∞ − (−qk−1; q)∞

)
.

Moreover, for k ≥ 7, we have

(−q5; q)∞ − (−qk−1; q)∞ = ∑
j≥5

qj(−qj+1; q)∞ − ∑
j≥k−1

qj(−qj+1; q)∞ =
k−2

∑
j=5

qj(−qj+1; q)∞.

Thus,

H(q) + q2 + q6 = (1 + q4) ∑
k≥7

qk
k−2

∑
j=5

qj(−qj+1; q)∞, (4.1)

which clearly has non-negative coefficients and completes the proof.

We interpret (4.1) as the generating function for |H(n)|, where H(n) is the set of
partitions λ of n satisfying all of the following conditions:

(i) mλ(3) ≥ 2, and if mλ(3) = 2, then λℓ(λ) < 3,

(ii) 3 is the only repeated part, and 1 and 2 cannot both occur as parts in λ,

(iii) λ has part greater than 4 and the smallest part s greater than 4 satisfies 5 ≤ s ≤(
∑λi≤3 λi

)
− 2.

To see this, write k ≥ 7 as k = 3d + r. 0 ≤ r ≤ 2 and interpret qk as generating d parts
equal to 3 and one part equal to r. Moreover, ∑k−2

j=5 qj(−qj+1; q)∞ generates non-empty
distinct partitions with smallest part between 5 and k − 2 (inclusive). Then, in analogy
to Theorem 1, for n ̸= 2, 6,

∑
λ∈O(n)

ℓ2(λ)− ∑
λ∈D(n)

ℓ2(λ) = |H(n)|.
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