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Studying triangulations of even-dimensional cyclic
polytopes via directed graphs
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Abstract. We prove two results on triangulations of even-dimensional cyclic polytopes
using the directed graphs (digraphs) implicitly associated to them by Oppermann and
Thomas. First, we show that the digraph of a 2d-dimensional triangulation encodes
whether or not the triangulation has an interior (d + 1)-simplex, and we describe the
digraphs of such triangulations. Secondly, we show that the digraph of the triangu-
lation allows one to identify the internal d-simplices which admit bistellar flips. This
also allows one to easily compute the outcome of a bistellar flip.
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1 Introduction

Cyclic polytopes are a very special family of polytopes. Perhaps their most famous
property is that they attain equality in the Upper Bound Theorem [17]: they have the
largest possible number of faces of every single dimension out of all polytopes with a
given dimension and number of vertices. This result was generalised by Stanley [19],
which gave birth to what is now called ‘Stanley–Reisner theory’. Another remarkable
property of cyclic polytopes is that for every n and for every sufficiently large collection
of points in Rm in general position, there exists a subset of n points which form the
vertices of a polytope combinatorially equivalent to a cyclic polytope [6]. In fact, cyclic
polytopes are precisely the polytopes which have this property [3, Proposition 9.4.7].
This is a higher-dimensional version of the Erdős–Szekeres Theorem, and is related to
Ramsey theory.

Triangulations of cyclic polytopes are particularly interesting, and for several rea-
sons. For one thing, they are relatively well-understood amongst triangulations of high-
dimensional polytopes [7, Section 6.1], admitting elegant combinatorial descriptions [18,
22]. However, there are yet many unresolved problems, such as finding a formula for the
number of triangulations of a cyclic polytope. This has been solved in certain cases [2],
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but is even still an open problem for three-dimensional cyclic polytopes. But the prin-
cipal reason triangulations of cyclic polytopes are interesting is that their combinatorial
structure describes many phenomena in other areas of mathematics, including represen-
tation theory [18, 22], higher category theory [16, 10], integrable systems [9, 23], and
scattering amplitudes [1]. In many of these cases, the poset structure on triangulations
of cyclic polytopes appears. Two such poset structures were introduced in [16] and [11],
but these were proven to be the same in [21].

In this paper, which is an extended abstract of [20], we study triangulations of even-
dimensional cyclic polytopes. Even- and odd-dimensional cyclic polytopes behave quite
differently, and it is the even-dimensional cyclic polytopes which behave analogously
to convex polygons. In particular, we study triangulations of even-dimensional cyclic
polytopes by associating digraphs to them, in a way that was done implicitly in [18].
Results aside, this provides a visual tool for studying complex high-dimensional objects
which are otherwise impossible to visualise. The digraph Q(T ) of a triangulation T
of a 2d-dimensional cyclic polytope has the internal d-simplices of T as its vertices.
The arrows of the digraph connect simplices which are adjacent to each other in the
triangulation, in a precise sense.

Our first result shows that the digraph Q(T ) of a triangulation T of the cyclic poly-
tope C(n + 2d + 1, 2d) tells whether or not the triangulation contains interior (d + 1)-
simplices, that is, (d + 1)-simplices whose facets do not lie in the boundary of the poly-
tope.

Theorem 1 ([20]). A triangulation T of C(n + 2d + 1, 2d) contains no interior (d + 1)-
simplices if and only if Q(T ) is a cut digraph and this is the case if and only if Q(T ) does
not contain an oriented cycle.

We define cut digraphs in Section 2.2. They are the higher-dimensional analogues of
orientations of the type A Dynkin diagram.

As an application of this theorem, we prove that the triangulations of C(n + 2d +
1, 2d) without interior (d + 1)-simplices form a connected subgraph of the flip graph
of triangulations of C(n + 2d + 1, 2d). The flip graph of a polytope is the graph whose
vertices are triangulations of the polytope, with edges between triangulations related by
a bistellar flip. Here bistellar flips are the higher-dimensional analogues of flipping a
diagonal inside a quadrilateral.

Our second result studies bistellar flips of triangulations of even-dimensional cyclic
polytopes. It is obvious that every internal edge of a polygon triangulation can be
flipped, but the corresponding statement does not hold in higher dimensions. Indeed,
Oppermann and Thomas show that bistellar flips of triangulations of 2d-dimensional
cyclic polytopes correspond to replacing one internal d-simplex in a triangulation with
another. However, not every internal d-simplex in a triangulation of a 2d-dimensional
cyclic polytope is replaceable in this way. We call an internal d-simplex mutable if it can
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be replaced in a bistellar flip.
We show that the digraph of a triangulation encodes the mutability of internal d-

simplices. We show how the digraph can be decomposed into certain paths, which we
call ‘retrograde paths’, such that the following result holds.

Theorem 2 ([20]). An internal d-simplex is mutable if and only if it does not lie in the middle
of a retrograde path in the digraph of the triangulation.

One can then, in fact, read off the outcome of the bistellar flip from the digraph.
This paper is structured as follows. We start in Section 2 by giving background, pri-

marily on cyclic polytopes and their triangulations. In Section 3, we define the digraph
of a triangulation and describe the digraphs of 2d-dimensional triangulations without
interior (d + 1)-simplices. In Section 4, we present the second main result of the paper,
which shows how the digraphs of triangulations can be used to identify mutable internal
d-simplices.

2 Background

2.1 Cyclic polytopes

An introduction to cyclic polytopes, as well as historical background, can be found in
[14, 4.7]. In this paper, we are only interested in even-dimensional cyclic polytopes,
which can be realised in the following way. Let n ⩾ 0 and d ⩾ 1 and consider the curve
defined by q : (0, 2π] → R2d,

q(t) = (cos t, sin t, cos 2t, sin 2t, . . . , cos dt, sin dt)

which is known as the Carathéodory curve, after [4, 5]. The (regular) cyclic polytope C(n +
2d + 1, 2d) is the convex hull

conv
{

q
(

1
n + 2d + 1

2π

)
, q

(
2

n + 2d + 1
2π

)
, . . . , q (2π)

}
.

The vertices of C(n + 2d + 1, 2d) are labelled by [n + 2d + 1] := {1, 2, . . . , n + 2d + 1},
such that q(2πi/(n + 2d + 1)) is vertex i.

A triangulation of a cyclic polytope C(n + 2d + 1, 2d) is a set of 2d-simplices whose
vertices are vertices of C(n+ 2d+ 1, 2d), whose interiors are pairwise disjoint and whose
union is C(n + 2d + 1, 2d).

Convention 1. In this paper we specify k-simplices by their vertex tuples, for instance,
A = (a0, a1, . . . , ak) ∈ [n + 2d + 1]k+1, where a0 < a1 < · · · < ak. We always follow the
convention that simplices are denoted by upper case letters, with their vertices denoted
by the corresponding lower case letters with subscripts.
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Furthermore, we allow vertex tuples to be reordered using cyclically shifted order-
ings. The cyclically shifted order <i is the order

i <i i + 1 <i · · · <i n + 2d + 1 <i 1 <i 2 <i · · · <i i − 1.

Hence <1 is the usual order. For example, by changing the order on [n + 2d + 1], we
allow the simplex (1, 3, 5) to be represented by (5, 1, 3) or (3, 5, 1) as well.

We say that a0, a1, . . . , ak are cyclically ordered if a0 <i< a1 <i · · · <i ak for some i.

Triangulations of even-dimensional cyclic polytopes were given an elegant combi-
natorial description in [18], which we now explain. A d-simplex of a triangulation of
C(n + 2d + 1, 2d) is internal if it does not lie within a facet of C(n + 2d + 1, 2d), recall-
ing that a facet is a face of codimension one. It is clear that a triangulation of a convex
polygon is determined by the internal edges of the triangulation; similarly, a triangula-
tion of any 2d-dimensional convex polytope is determined by the internal d-simplices of
the triangulation, by a theorem of Dey [8]. We write d-simp(T ) for the set of internal
d-simplices of T . We say that a (d + 1)-simplex of T is interior if all of its facets are
internal d-simplices.

There exist combinatorial criteria for when d-simplices in C(n + 2d + 1, 2d) are inter-
nal d-simplices and for when internal d-simplices intersect in their interiors. Indeed, a
d-simplex A ∈ [n + 2d + 1]d+1 is an internal d-simplex in C(n + 2d + 1, 2d) if and only if
A contains no consecutive elements in the cyclic ordering of [n + 2d + 1]. A d-simplex A
and a d-simplex B are intertwining if

a0 < b0 < a1 < b1 < · · · < ad < bd

is a cyclic ordering, in which case we write A]B. Two internal d-simplices intersect in
their interiors if and only if they intertwine, as can easily be seen in the d = 1 case. A
collection of d-simplices is called non-intertwining if no pair of its elements are intertwin-
ing.

Theorem 3 ([18, Theorem 2.3, Theorem 2.4]). There is a bijection between triangulations of
C(n + 2d + 1, 2d) and non-intertwining sets of (n+d−1

d ) d-simplices in intd(n + 2d + 1), via
sending

T 7→ d-simp(T ).

The corresponding description for triangulations of odd-dimensional cyclic polytopes
was found in [22, Section 4].

Triangulations of cyclic polytopes can be mutated by operations known as bistellar flips
[7, Section 2.4]. The following theorem can be taken as a definition of this operation in
the case of triangulations of C(n + 2d + 1, 2d).

Theorem 4 ([18, Theorem 4.1]). Triangulations T and T ′ of C(n + 2d + 1, 2d) are bistellar
flips of each other if and only if d-simp(T ) and d-simp(T ′) have all but one element in common.
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Figure 1: Examples of the digraphs Q(d, n)
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Therefore, given a triangulation T of C(n + 2d + 1, 2d), we call an internal d-simplex
A ∈ d-simp(T ) mutable if there exists a triangulation T ′ such that

d-simp(T ′) = (d-simp(T ) \ {A}) ∪ {B},

where A ̸= B.

2.2 Cuts

We will associate digraphs to triangulations of even-dimensional cyclic polytopes and
show what properties of the triangulation are encoded in the digraph. Indeed, we now
define the digraphs which are higher analogues of orientations of the An Dynkin dia-
gram, following [15]. The main result of the first part of this paper is that these digraphs
tell that a triangulation of C(n + 2d + 1, 2d) has no interior (d + 1)-simplices.

Let Q(d, n) be the digraph with vertices

Q0(d, n) :=

{
(a0, . . . , ad) ∈ Zd+1

⩾0

∣∣∣∣∣ d

∑
i=0

ai = n − 1

}

and arrows Q1(d, n) := { A → A + Fi | A, A + Fi ∈ Q0(d, n) }, where Fi = (. . . , 0,
i

−1,
i+1
1 ,

0, . . . ), with Fd = (1, 0, . . . , 0,−1). See Figure 1 for pictures of these digraphs.
A subset C ⊆ Q1(d, n) is called cut if it contains exactly one arrow from each (d + 1)-

cycle in Q(d, n). Given a cut C, we write QC(d, n) for the digraph with arrows Q1(d, n) \
C and refer to this as the cut digraph. Examples of cut digraphs can be seen in Figure 2.
Note that the cut digraphs of Q(1, n) are precisely the orientations of the An Dynkin
diagram.
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Figure 2: Cuts of the digraphs Q(d, n)
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3 Triangulations without interior (d + 1)-simplices

In this section, we introduce the digraph of a triangulation of a 2d-dimensional cyclic
polytope, following [18]. We give the first main result, which states that the digraph
detects when the triangulation has no interior (d + 1)-simplices and describes such di-
graphs. We outline how this result is proved.

The digraph of a polygon triangulation was implicitly introduced in [12]. The vertices
of the digraph are given by internal edges of the triangulation, with an arrow from one
internal edge to another if the one precedes the other in the clockwise ordering of the
edges of one of the triangles. The key tool used to study triangulations in this paper is the
following generalisation of this notion to triangulations of arbitrary even-dimensional
cyclic polytopes.

Definition 1. Given a triangulation T of C(n + 2d + 1, 2d), we define the digraph Q(T )
of T to be the following directed graph. The vertices are

Q0(T ) = d-simp(T ).

The arrows of Q(T ) are

Q1(T ) =

{
A → A + rEi

∣∣∣∣ A, A + rEi ∈ intd(n + 2d + 1),
∄s ∈ [r− 1] such that A+ sEi ∈ Q0(T )

}
,

where

Ei := (. . . , 0,
i
1, 0, . . . ).

This was implicitly introduced in [18], but some work is required to show that the
digraph which arises in [18] coincides with the one from the definition above. The details
can be found in [20]. Note that in [20] and other related literature, digraphs are known
as ‘quivers’.
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Example 1. Consider the triangulation T of C(8, 4) with the set of 4-simplices

{12345, 12356, 12367, 12378, 13456, 13467, 13478, 14567, 14578, 15678}.

Here we write 12345 for the 4-simplex (1, 2, 3, 4, 5), and so on. One can compute the
internal d-simplices of T by finding the internal d-simplices which are faces of these
4-simplices, obtaining

d-simp(T ) = {135, 136, 137, 146, 147, 157}.

These form the vertices of Q(T ). Using the definition of the arrows of Q(T ), one obtains
that Q(T ) is the digraph

135

136

137

146

147

157.

This is a more informative picture than simply considering the set of 4-simplices.

Recall that a (d + 1)-simplex of a triangulation T of C(n + 2d + 1, 2d) is interior if
all of its facets are internal d-simplices. The first main theorem of the paper describes
digraphs of 2d-dimensional triangulations with no (d + 1)-simplices.

Theorem 5. A triangulation T of C(n + 2d + 1, 2d) has no interior (d + 1)-simplices if and
only if its digraph Q(T ) is a cut of Q(d, n), and this is the case if and only if its digraph has no
cycle.

It was implicit in the relation between the two papers [15] and [18] that cuts of Q(d, n)
corresponded to a particular class of triangulations of C(n+ 2d+ 1, 2d), but these papers
left open what class of triangulations this was. The embedding of Q(T ) into Q(d, n) is
not unique, even up to symmetries of Q(d, n). However, there are certain canonical
embeddings which are unique up to said symmetries.

As an application of Theorem 5, we prove that the set of triangulations of C(n + 2d +
1, 2d) with no interior (d + 1)-simplices forms a connected subgraph of the flip graph of
C(n + 2d + 1, 2d). Here, the flip graph of C(n + 2d + 1, 2d) is the graph whose vertices
are triangulations of C(n + 2d + 1, 2d), with edges connecting triangulations related by
a bistellar flip.

Example 2. It is straightforward to illustrate the two-dimensional version of Theorem 5.
In Figure 3, the triangulation on the left contains the internal triangle 135, and so the
digraph has a cycle, whereas the digraph on the right has no internal triangles, and so
its digraph is an orientation of the type A Dynkin diagram.
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Figure 3: Triangulations of polygons with and without interior triangles
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Figure 4: Triangulations of C(8, 4) with and without interior 3-simplices
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In four dimensions, one cannot draw the triangulations directly, but one can still draw
their digraphs. The triangulation on the left-hand side of Figure 4 has set of 4-simplices

{12347, 12356, 12467, 12378, 13478, 14567, 14578, 15678, 23456, 23467},

and has no internal 3-simplices. The triangulation on the right-hand side of Figure 4 has
set of 4-simplices

{12345, 12356, 12367, 12378, 13458, 13567, 13578, 34578, 15678, 34567},

with 1357 forming an internal 3-simplex. Note that the cycle this internal 3-simplex gives
in the digraph does not exclusively have faces of 1357 as its vertices: 136 and 358 are
also present in the cycle, but are not faces of this internal 3-simplex.

4 Identifying mutable d-simplices

In this section, we outline our second main result, which allows one to identify the mu-
table internal d-simplices of a triangulation from the digraph of the triangulation. It
is clear that every internal edge within a polygon triangulation is contained within a
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unique quadrilateral, and can therefore be flipped for the other diagonal of this quadri-
lateral to produce a new triangulation. As given in Theorem 4, the analogue of flipping
an internal edge for a triangulation of a 2d-dimensional cyclic polytope is exchanging
one internal d-simplex for another. Recall from Section 2.1 that if an internal d-simplex
can be exchanged for another internal d-simplex then it is called mutable. Not every
internal d-simplex is mutable, as is shown by the following example.

Example 3. Consider the triangulation T of C(7, 4) with set of 4-simplices

T = {12345, 12356, 12367, 13456, 13467, 14567}.

We then have
d-simp(T ) := {135, 136, 146}.

The internal 2-simplex 135 can be mutated in this triangulation by replacing it with 246
to obtain the triangulation T ′ with

d-simp(T ′) = {246, 136, 146}

and set of 4-simplices

T ′ = {12346, 12456, 12367, 13467, 14567, 23456}.

Similarly, the internal 2-simplex 146 can be flipped in T to obtain the triangulation T ′′

with
d-simp(T ′′) = {135, 136, 357}

and set of 4-simplices

T ′′ = {12345, 12356, 12367, 13457, 13567, 34567}.

However, one cannot perform a bistellar flip at the internal 2-simplex 136. There is no
triangulation of C(7, 4) which has both the internal 2-simplices 135 and 146 apart from
T .

The criterion in terms of the digraph for an internal d-simplex to be mutable uses the
following notion.

Definition 2. Given a triangulation T of C(n + 2d + 1, 2d), a path of length two

(. . . , ai−1, ai, ai+1, . . . ) → (. . . , ai−1, bi, ai+1, . . . ) → (. . . , ai−2, bi−1, bi, ai+1, . . . )

in Q(T ) is retrograde at (a0, . . . , ai−1, bi, ai+1, . . . , ad) if bi−1 < ai.
A path of length ⩾ 2

A0 → A1 → · · · → Al → Al+1

is retrograde if Ai−1 → Ai → Ai+1 is retrograde at Ai for all i ∈ [l]. For i ∈ [l], we say that
Ai is in the middle of this retrograde path. We consider paths of length one to be trivially
retrograde.



10 Nicholas J. Williams

It is straightforward to show that every arrow in the digraph is contained in a unique
maximal retrograde path. We then obtain the main theorem of the second half of this
paper.

Theorem 6. Let T be a triangulation of C(n + 2d + 1, 2d). Then an internal d-simplex of T is
mutable if and only if it is not in the middle of a retrograde path in Q(T ).

In fact, one can read off which internal d-simplex should result from the bistellar
flip by comparing the adjacent internal d-simplices in the digraph. We do not state this
procedure explicitly, but illustrate it in Example 4. This then allows one to determine
whether the bistellar flip is increasing or decreasing in the poset structure on the trian-
gulations of C(n + 2d + 1, 2d) mentioned in the introduction.

An interesting related question is how the digraph transforms under a bistellar flip.
This should give a higher-dimensional version of the quiver mutation of [13]. Presently,
we are only able to understand limited cases [20, 15].

Example 4. We provide examples of how one may use this criterion to identify the
mutable internal d-simplices of a triangulation. We also illustrate how to compute the
internal d-simplex obtained from the bistellar flip. We represent maximal retrograde
paths using consecutive arrows of the same colour.

We first consider the triangulation of C(8, 4) given in Figure 5a. The three retrograde
paths in this digraph are 136 → 137 → 147, 147 → 157 → 357, and 357 → 135 →
136. Here, the last path is seen to be retrograde by cyclically reordering using <3 to
357 → 351 → 361. The path 135 → 136 → 137 is not retrograde since one has increased
the same entry twice, instead of increasing the i-th entry and then the (i − 1)-th entry.
Cyclically reordering using <4, the path 571 → 573 → 513 is not retrograde, since 1 ̸< 1.
The mutable internal 2-simplices of the triangulation are then 136, 147, and 357, since
137, 157, and 135 are the ones lying in the middle of retrograde paths.

The bistellar flip at the internal 2-simplex 136 can be computed as follows. We seek
an internal 2-simplex abc which is intertwining with 136. Then we must have a = 2,
since this is the only number between 1 and 3. Moreover b = 5 since 135 is adjacent to
136 and c = 7 since 137 is adjacent to 136. Hence flipping 136 yields 257.

Note that maximal retrograde paths are not always of length d for a triangulation
of C(n + 2d + 1, 2d). This is shown by the triangulation of C(10, 6) given in Figure 5b,
where we use ‘A’ to denote 10. We have three retrograde paths of length three, and then
the retrograde path 1358 → 1359 → 1369 of length two. The mutable internal d-simplices
of this triangulation are 357A, 1368, 1479.

We finally illustrate the procedure for computing the outcome of a bistellar flip again,
now using 1368. We seek an internal 3-simplex abcd which intertwines with 1368. Then
a = 2 and c = 7 are forced. Looking at the adjacent simplices then gives us b = 5 and
d = 9, yielding 2579 as the outcome of the bistellar flip.
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Figure 5: Triangulations for Example 4

(a) Triangulation of C(8, 4)

135

136

137

357

147

157

(b) Triangulation of C(10, 6)

1359

1358 1369

1357 1368 1379

357A 1479

3579 1579

Acknowledgements

I would like to thank the reviewers of my abstract for their helpful comments.

References

[1] N. Arkani-Hamed and J. Trnka. “The Amplituhedron”. J. High Energ. Phys. 10 (2014). doi.

[2] M. Azaola and F. Santos. “The number of triangulations of the cyclic polytope C(n, n− 4)”.
Vol. 27. 1. Geometric combinatorics (San Francisco, CA/Davis, CA, 2000). 2002, pp. 29–48.
doi.

[3] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented matroids.
Second. Vol. 46. Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 1999, pp. xii+548. doi.

[4] C. Carathéodory. “Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die
gegebene Werte nicht annehmen”. Math. Ann. 64.1 (1907), pp. 95–115. doi.

[5] C. Carathéodory. “Über den Variabilitätsbereich der Fourier’schen Konstanten von posi-
tiven harmonischen Funktionen”. Rend. Circ. Mat. Palermo, I Ser. 32.1 (1911), pp. 193–217.
doi.

[6] R. Cordovil and P. Duchet. “Cyclic polytopes and oriented matroids”. Vol. 21. 1. Combi-
natorics of polytopes. 2000, pp. 49–64. doi.

[7] J. A. De Loera, J. Rambau, and F. Santos. Triangulations. Vol. 25. Algorithms and Compu-
tation in Mathematics. Structures for algorithms and applications. Springer-Verlag, Berlin,
2010, pp. xiv+535. doi.

https://dx.doi.org/10.1007/JHEP10(2014)030
https://dx.doi.org/10.1007/s00454-001-0050-y
https://dx.doi.org/10.1017/CBO9780511586507
https://dx.doi.org/10.1007/BF01449883
https://dx.doi.org/https://doi.org/10.1007/BF03014795
https://dx.doi.org/10.1006/eujc.1999.0317
https://dx.doi.org/10.1007/978-3-642-12971-1


12 Nicholas J. Williams

[8] T. K. Dey. “On counting triangulations in d dimensions”. Comput. Geom. 3.6 (1993), pp. 315–
325. doi.

[9] A. Dimakis and F. Müller-Hoissen. “KP solitons, higher Bruhat and Tamari orders”. Ed. by
F. Müller-Hoissen, J. M. Pallo, and J. Stasheff. Vol. 299. Progress in Mathematics. Tamari
memorial Festschrift. Birkhäuser/Springer, Basel, 2012, pp. 391–423. doi.

[10] T. Dyckerhoff and M. M. Kapranov. Higher Segal spaces. Vol. 2244. Lecture Notes in
Mathematics. Springer, Cham, 2019, pp. xv+218. doi.

[11] P. H. Edelman and V. Reiner. “The higher Stasheff–Tamari posets”. Mathematika 43.1 (1996),
pp. 127–154. doi.

[12] S. Fomin and A. Zelevinsky. “Cluster algebras. I. Foundations”. J. Amer. Math. Soc. 15.2
(2002), 497–529 (electronic). doi.

[13] S. Fomin and A. Zelevinsky. “Cluster algebras. II. Finite type classification”. Invent. Math.
154.1 (2003), pp. 63–121. doi.

[14] B. Grünbaum. Convex polytopes. Second. Vol. 221. Graduate Texts in Mathematics. Prepared
and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler. Springer-Verlag,
New York, 2003, pp. xvi+468. doi.

[15] O. Iyama and S. Oppermann. “n-representation-finite algebras and n-APR tilting”. Trans.
Amer. Math. Soc. 363.12 (2011), pp. 6575–6614. doi.

[16] M. M. Kapranov and V. A. Voevodsky. “Combinatorial-geometric aspects of polycategory
theory: pasting schemes and higher Bruhat orders (list of results)”. Cahiers Topologie Géom.
Différentielle Catég. 32.1 (1991). International Category Theory Meeting (Bangor, 1989 and
Cambridge, 1990), pp. 11–27.

[17] P. McMullen. “The maximum numbers of faces of a convex polytope”. Mathematika 17
(1970), pp. 179–184. doi.

[18] S. Oppermann and H. Thomas. “Higher-dimensional cluster combinatorics and represen-
tation theory”. J. Eur. Math. Soc. (JEMS) 14.6 (2012), pp. 1679–1737. doi.

[19] R. P. Stanley. “The upper bound conjecture and Cohen–Macaulay rings”. Studies in Appl.
Math. 54.2 (1975), pp. 135–142. doi.

[20] N. J. Williams. “Quiver combinatorics for higher-dimensional triangulations”. To appear
in Algebraic Combinatorics. 2021. arXiv:2112.09189.

[21] N. J. Williams. “The two higher Stasheff–Tamari orders are equal”. 2021. arXiv:2106.01050.

[22] N. J. Williams. “New interpretations of the higher Stasheff–Tamari orders”. Adv. Math. 407
(2022), p. 108552. doi.

[23] N. J. Williams. “The first higher Stasheff–Tamari orders are quotients of the higher Bruhat
orders”. Electron. J. Combin. 30.1 (2023). doi.

https://dx.doi.org/10.1016/0925-7721(93)90005-Q
https://dx.doi.org/10.1007/978-3-0348-0405-9_19
https://dx.doi.org/10.1007/978-3-030-27124-4
https://dx.doi.org/10.1112/S0025579300011633
https://dx.doi.org/10.1090/S0894-0347-01-00385-X
https://dx.doi.org/10.1007/s00222-003-0302-y
https://dx.doi.org/10.1007/978-1-4613-0019-9
https://dx.doi.org/10.1090/S0002-9947-2011-05312-2
https://dx.doi.org/10.1112/S0025579300002850
https://dx.doi.org/10.4171/JEMS/345
https://dx.doi.org/10.1002/sapm1975542135
https://arxiv.org/abs/2112.09189
https://arxiv.org/abs/2106.01050
https://dx.doi.org/https://doi.org/10.1016/j.aim.2022.108552
https://dx.doi.org/https://doi.org/10.37236/10877

	Introduction
	Background
	Cyclic polytopes
	Cuts

	Triangulations without interior d + 1-simplices
	Identifying mutable d-simplices

