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Abstract. The Ehrhart polynomial ehrP(n) of a lattice polytope P counts the number
of integer points in the n-th dilate of P. The f ∗-vector of P, introduced by Felix Breuer
in 2012, is the vector of coefficients of ehrP(n) with respect to the binomial coefficient
basis

{
(n−1

0 ), (n−1
1 ), ..., (n−1

d )
}

, where d = dimP. Similarly to h/h∗-vectors, the f ∗-vector
of P coincides with the f -vector of its unimodular triangulations (if they exist). We
present several inequalities that hold among the coefficients of f ∗-vectors of polytopes.
These inequalities resemble striking similarities with existing inequalities for the co-
efficients of f -vectors of simplicial polytopes; e.g., the first half of the f ∗-coefficients
increases and the last quarter decreases. Even though f ∗-vectors of polytopes are not
always unimodal, there are several families of polytopes that carry the unimodality
property. We also show that for any polytope with a given Ehrhart h∗-vector, there is a
polytope with the same h∗-vector whose f ∗-vector is unimodal.

Keywords: Lattice polytope, Ehrhart polynomial, Gorenstein polytope, f ∗-vector, h∗-
vector, unimodality.

1 Introduction

For a d-dimensional lattice polytope P ⊂ Rd (i.e., the convex hull of finitely many points in
Zd) and a positive integer n, let ehrP(n) denote the number of integer lattice points in nP.
Ehrhart’s famous theorem [12] says that ehrP(n) evaluates to a polynomial in n. Similar
to the situations with other combinatorial polynomials, it is useful to express ehrP(n) in
different bases; here we consider two such bases consisting of binomial coefficients:

ehrP(n) =
d

∑
k=0

h∗k

(
n + d − k

d

)
=

d

∑
k=0

f ∗k

(
n − 1

k

)
. (1.1)
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We call ( f ∗0 , f ∗1 , . . . , f ∗d ) the f ∗-vector and (h∗0 , h∗1 , . . . , h∗d) the h∗-vector of P. Stanley [16]
proved that the h∗-vector of any lattice polytope is nonnegative (whereas the coeffi-
cients of ehrP(n) written in the standard monomial basis can be negative). Breuer [10]
proved that the f ∗-vector of any lattice polytopal complex is nonnegative (whereas the
h∗-vector of a complex can have negative coefficients); his motivation was that various
combinatorially-defined polynomials can be realized as Ehrhart polynomials of com-
plexes and so the nonnegativity of the f ∗-vector yields a strong constraint for these
polynomials. The f ∗- and h∗-vector can also be defined through the Ehrhart series of P:

EhrP(z) := 1 + ∑
n≥1

ehrP(n) zn =
∑d

k=0 h∗k zk

(1 − z)d+1 = 1 +
d

∑
k=0

f ∗k

(
z

1 − z

)k+1

.

It is thus sometimes useful to add the definition f ∗−1 := 1. The polynomial ∑d
k=0 h∗k zk

is the h∗-polynomial of P, and its degree is the degree of P. For general background on
Ehrhart theory, see, e.g., [4]. The f ∗- and h∗-vectors share the same relation as f - and
h-vectors of polytopes/polyhedral complexes, namely

d

∑
k=0

h∗k zk =
d+1

∑
k=0

f ∗k−1 zk(1 − z)d−k+1 (1.2)

h∗k =
k−1

∑
j=−1

(−1)k−j−1
(

d − j
k − j − 1

)
f ∗j (1.3)

f ∗k =
k+1

∑
j=0

(
d − j + 1
k − j + 1

)
h∗j . (1.4)

The (very special) case that P admits a unimodular triangulation yields the strongest
connection between f ∗/h∗-vectors and f /h-vectors: in this case the f ∗/h∗-vector of P
equals the f /h-vector of the triangulation, respectively.

Example 1. Let P be the 2-dimensional cube [−1, 1]2. The unimodular triangulation of
P shown in Figure 1, has f -vector ( f0, f1, f2) = (9, 16, 8), as fi counts its i-dimensional
faces. Equivalently,

f ∗(P) = (9, 16, 8) ,

and one easily checks that (1.1) yields the familiar Ehrhart polynomial ehrP(n) = (2n +
1)2.

Example 2. The f ∗-vector of a d-dimensional unimodular simplex ∆ equals[(
d + 1

1

)
,
(

d + 1
2

)
, . . . ,

(
d + 1
d + 1

)]
,
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Figure 1: A (regular) unimodular triangulation of the cube [−1, 1]2.

coinciding with the f -vector of ∆ considered as a simplicial complex. If we append this
vector by f ∗−1 = 1, it gives the only instance of a symmetric f ∗-vector of a lattice polytope
P, since the equality f ∗−1 = f ∗d implies that h∗i = 0 for all 1 ≤ i ≤ d.

There has been much research on (typically linear) constraints for the h∗-vector of a
given lattice polytope (see, e.g., [17, 18]). On the other hand, f ∗-vectors seem to be much
less studied, and our goal is to rectify that situation. Our motivating question is how
close the f ∗-vector of a given lattice polytope is to being unimodal, i.e., the f ∗-coefficients
increase up to some point and then decrease. Our main results are as follows.

Theorem 3. Let d ≥ 2 and let P be a d-dimensional lattice polytope. Then

(a) f ∗0 < f ∗1 < · · · < f ∗⌊ d
2⌋−1

≤ f ∗⌊ d
2⌋

;

(b) f ∗⌊ 3d
4 ⌋

> f ∗⌊ 3d
4 ⌋+1

> · · · > f ∗d ;

(c) f ∗k ≤ f ∗d−1−k for 0 ≤ k ≤ (d−3)
2 .

Examples 1 and 2 yield cases of polytopes for which the inequalities f ∗⌊ 3d
4 ⌋−1

< f ∗⌊ 3d
4 ⌋

and f ∗⌊ d
2 ⌋

> f ∗⌊ d
2 ⌋+1

hold, respectively, and thus the strings of inequalities in ((a)) and ((b))

can, in general, not be extended further. We record the following immediate consequence
of Theorem 3.

Corollary 4. Let P be a d-dimensional lattice polytope. Then for 0 ≤ k ≤ d,

f ∗k ≥ min{ f ∗0 , f ∗d } .

We remark that one can prove that if P is of degree d ≥ 2, equal to its dimension,
then f ∗0 ≤ f ∗d , except when the h∗-vector of P has entries h∗2 = · · · = h∗d = 1.

Theorem 5. The f ∗-vector of a d-dimensional lattice polytope, where 1 ≤ d ≤ 13, is unimodal.
On the other hand, there exists a 15-dimensional lattice simplex with nonunimodal f ∗-vector.
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Even though f ∗-vectors are quite different from f -vectors of polytopes, the above
results resemble striking similarities with existing theorems on f -vectors. Namely, Björ-
ner [6, 7, 8] proved that the f -vector of a simplicial d-polytope satisfies all inequalities in
Theorem 3 (with the ∗s removed, and the last coordinate dropped). In fact, Björner also
showed that in the f -analogue of Theorem 3((b)) the decrease starts from ⌊3(d−1)

4 ⌋ − 1
instead of ⌊3d

4 ⌋, and that the inequalities in Theorem 3((a)) and ((b)) cannot be further
extended, by constructing a simplicial polytope with f -vector that peaks at f j, for any

⌊ d
2⌋ ≤ j ≤ ⌊3(d−1)

4 − 1⌋. Corollary 4 compares the entries of the f ∗-vector with the
minimum between the first and the last entry. Note that a similar relation for f -vectors
of polytopes was recently proven by Hinman [15], answering a question of Bárány from
the 1990s. (Hinman also proved a stronger result, namely certain lower bounds for the
ratios fk

f0
and fk

fd−1
.) The f -analogue of Theorem 5 is again older: Björner [6] showed

that the f -vector of any simplicial d-polytope is unimodal for d ≤ 15 (later improved
to d ≤ 19 by Eckhoff [11]), and he and Lee [5] produced examples of 20-dimensional
simplicial polytopes with nonunimodal f -vectors. For a special class of polytopes we
can increase the range in Theorem 3((b)). A lattice polytope P is Gorenstein of index g if

• nP contains no interior lattice points for 1 ≤ n < g,

• gP contains a unique interior lattice point, and

• ehrP(n − g) equals the number of interior lattice points in nP, for n > g.

This is equivalent to P having degree d + 1 − g and a symmetric h∗-vector (with respect
to its degree).

Theorem 6. Let P be a d-dimensional Gorenstein polytope of index g. Then

f ∗k−1 > f ∗k for 1
2

(
d + 1 +

⌊
d+1−g

2

⌋)
≤ k ≤ d .

Going even further, for a certain class of polytopes we can prove unimodality of the
f ∗-vector, a consequence of the following refinement of Theorem 3((b)) for polytopes
with degree < d

2 .

Theorem 7. Let P be a d-dimensional lattice polytope with positive degree ≤ s. Then

f ∗k−1 > f ∗k for ⌈ d+s
2 ⌉ ≤ k ≤ d ,

unless the degree of P is 0, i.e., P is a unimodular simplex with f ∗-vector as in Example 2.

This theorem implies that lattice d-polytopes of degree s satisfying s2 − s− 1 ≤ d
2 have

a unimodal f ∗-vector (see Proposition 9 below for details). One family with asymptot-
ically small degree, compared to the dimension, is given by taking iterated pyramids.
Given a polytope P ⊂ Rd, we denote by Pyr(P) ⊂ Rd+1 the convex hull of P and the
(d + 1)st unit vector. It is well known that P and Pyr(P) have the same h∗-vector (ignor-
ing an extra 0), and so we conclude:
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Corollary 8. If P is any lattice polytope then Pyrn(P) has unimodal f ∗-vector for sufficiently
large n.

2 Selected proofs

The aim of this section is to offer some insight into the proofs of the results stated in
Section 1. See [3] for full details of the proofs.

The main ingredient in the proofs of Theorem 3((a)) and ((c)) and Theorem 7 is the
nonnegativity of h∗-vectors; we omit the proof details. Corollary 8 is a consequence
of Theorem 7 together with the following proposition, whose proof again relies on the
nonnegativity of h∗-vectors.

Proposition 9. Let P be a d-dimensional lattice polytope that has degree at most s for some
s ≥ 1. If d ≥ 2s2 − 2s − 2 then the f ∗-vector is unimodal with a (not necessarily "sharp") peak
at f ∗p , where ⌊ d

2⌋ ≤ p ≤ ⌈ d+s
2 ⌉ − 1.

The next proofs use more than just the nonnegativity of h∗-vectors. The first result
needs the following elementary lemma on binomial coefficients.

Lemma 10. Let j, k, n be positive integers such that k ≤ n + 1 − j. Then, for n ̸= 2k − 1,∣∣∣∣(n
k

)
−
(

n
k − 1

)∣∣∣∣ ≥
∣∣∣∣(n − j

k

)
−
(

n − j
k − 1

)∣∣∣∣ .

We are now prepared to prove Theorem 3((b)).

Proof of Theorem 3((b)). The inequality f ∗d−1 > f ∗d holds by Theorem 7. Now, let
⌊

3d
4

⌋
+

1 ≤ k < d. By (1.4),

f ∗k−1 − f ∗k =
k+1

∑
j=0

((
d + 1 − j

k − j

)
−
(

d + 1 − j
k + 1 − j

))
h∗j . (2.1)

The difference (d+1−j
k−j )− (d+1−j

k+1−j) is nonnegative whenever k − j ≥ ⌊ d+1−j
2 ⌋ and negative

otherwise. Hence, the difference is nonnegative whenever j ≤ 2k − d and negative
whenever j > 2k − d. Since 2d − 2k < 2k + 1 − d for ⌊3d

4 ⌋+ 1 ≤ k, from (2.1) we obtain

f ∗k−1 − f ∗k ≥
2d−2k

∑
j=0

((
d + 1 − j

k − j

)
−
(

d + 1 − j
k + 1 − j

))
h∗j (2.2)

+
k+1

∑
j=2k+1−d

((
d + 1 − j

k − j

)
−
(

d + 1 − j
k + 1 − j

))
h∗j (2.3)
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where the differences appearing in (2.2) are nonnegative and the ones in (2.3) are neg-
ative. Our aim is to compare the sums in (2.2) and (2.3) to conclude that f ∗k−1 − f ∗k is
positive. Using standard identities for binomial coefficients, the right hand-side of (2.2)
equals

2d−2k

∑
j=0

(
2d−2k−1

∑
l=j

((
d − l
k − l

)
−
(

d − l
k + 1 − l

))
+

((
2k − d + 1

3k − 2d

)
−
(

2k − d + 1
3k − 2d + 1

)))
h∗j

=
2d−2k−1

∑
l=0

(((
d − l
k − l

)
−
(

d − l
k + 1 − l

)) 2d−2k−1−l

∑
j=0

h∗j

)

+

((
2k − d + 1

3k − 2d

)
−
(

2k − d + 1
3k − 2d + 1

)) 2d−2k

∑
j=0

h∗j ,

whence we conclude that right hand-side of (2.2) is bounded below by((
d
k

)
−
(

d
k + 1

))
h∗0 +

((
2k − d + 1

3k − 2d

)
−
(

2k − d + 1
3k − 2d + 1

)) 2d−2k

∑
j=0

h∗j

>

((
2k − d + 1

3k − 2d

)
−
(

2k − d + 1
3k − 2d + 1

)) 2d−2k

∑
j=0

h∗j (2.4)

since (d
k)− ( d

k+1) > 0 for
⌊

3d
4

⌋
+ 1 ≤ k < d, and h∗0 = 1, h∗j ≥ 0 for j = 1, ..., 2d − 2k − 1.

On the other hand, for the differences appearing in (2.3), using that 2d − 2k < j and
j ≤ k + 1, it follows by Lemma 10 that∣∣∣∣(d + 1 − (2d − 2k)

d + 1 − k

)
−
(

d + 1 − (2d − 2k)
d − k

)∣∣∣∣ ≥ ∣∣∣∣(d + 1 − j
d + 1 − k

)
−
(

d + 1 − j
d − k

)∣∣∣∣ ,

i.e., ∣∣∣∣(2k − d + 1
3k − 2d

)
−
(

2k − d + 1
3k − 2d + 1

)∣∣∣∣ ≥ ∣∣∣∣(d + 1 − j
k − j

)
−
(

d + 1 − j
k + 1 − j

)∣∣∣∣ .

Hence for j ≥ 2k + 1 − d,

−
((

2k − d + 1
3k − 2d

)
−
(

2k − d + 1
3k − 2d + 1

))
≤
(

d + 1 − j
k − j

)
−
(

d + 1 − j
k + 1 − j

)
.

Since both −(d+1−j
k−j ) + (d+1−j

k+1−j) and h∗j are nonnegative for j ≥ 2k + 1 − d, the sum in (2.3)
is bounded below by

−
((

2k − d + 1
3k − 2d

)
−
(

2k − d + 1
3k − 2d + 1

)) d

∑
j=2k+1−d

h∗j . (2.5)
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Now (2.4) and (2.5) yield

f ∗k−1 − f ∗k >

((
2k − d + 1

3k − 2d

)
−
(

2k − d + 1
3k − 2d + 1

))(2d−2k

∑
j=0

h∗j −
d

∑
j=2k+1−d

h∗j

)
.

Hibi [13] showed that the inequality

m+1

∑
j=0

h∗j ≥
d

∑
j=d−m

h∗j (2.6)

holds for m = 0, ..., ⌊ d
2⌋ − 1. Since 2d − 2k − 1 ≤ ⌊ d

2⌋ − 1 for
⌊

3d
4

⌋
+ 1 ≤ k, we can use

(2.6) to finally obtain
f ∗k−1 − f ∗k > 0 .

Proof of Theorem 5. If d = 1 or 2, there is nothing to prove. If 3 ≤ d ≤ 6, then by
Theorem 3, either

f ∗0 ≤ · · · ≤ f ∗⌊ d
2⌋

≥ f ∗⌊ 3d
4 ⌋

≥ · · · ≥ f ∗d

or
f ∗0 ≤ · · · ≤ f ∗⌊ d

2⌋
≤ f ∗⌊ 3d

4 ⌋
≥ · · · ≥ f ∗d .

For 7 ≤ d ≤ 13, it suffices to check that if f ∗i ≥ f ∗i+1, then f ∗i+1 ≥ f ∗i+2, for all
⌊

d
2

⌋
≤

i ≤
⌊

3d
4

⌋
− 2. By Theorem 3, this will imply the unimodality of ( f ∗0 , f ∗1 , ..., f ∗d ). Using the

inequality
m+1

∑
j=1

(h∗j − h∗d+1−j) > 0 , (2.7)

which holds for m = 0, ..., ⌊ d
2⌋ − 1 [17, Remark 1.2], as well as the nonnegativity of h∗-

vectors, for each value of d, we were able to verify that f ∗i+1 − f ∗i+2 ≥ c( f ∗i − f ∗i+1) for
some nonnegative real c in each case.

To construct a polytope with nonunimodal f ∗-vector, we employ a family of simplices
introduced by Higashitani [14]. Concretely, denote the jth unit vector by ej and let

∆w := conv
{

0, e1, e2, ..., e14, w
}

where
w := (1, 1, . . . , 1︸ ︷︷ ︸

7

, 131, 131, . . . , 131︸ ︷︷ ︸
7

, 132) .

It has h∗-vector
(1, 0, 0, . . . , 0︸ ︷︷ ︸

7

, 131, 0, 0, . . . , 0︸ ︷︷ ︸
7

)
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and, via (1.4), f ∗-vector

(16, 120, 560, 1820, 4368, 8008, 11440, 13001,
12488, 11676, 11704, 10990, 7896, 3788, 1064, 132) .

We record the following consequence of Theorem 5, which follows by the nonnega-
tivity of h∗-vectors.

Corollary 11. Every lattice polytope of degree at most 5 has unimodal f ∗-vector.

Proof of Theorem 6. Let s := d + 1 − g. We first consider the case that s is odd; the case s
even will be similar. Since h∗j = 0 for j > s and h∗j = h∗s−j,

f ∗k−1 − f ∗k =
s

∑
j=0

((
d − j + 1

k − j

)
−
(

d − j + 1
k − j + 1

))
h∗j

=
⌊ s

2 ⌋

∑
j=0

((
d − j + 1

k − j

)
−
(

d − j + 1
k − j + 1

))
h∗j +

s

∑
j=⌊ s

2 ⌋+1

((
d − j + 1

k − j

)
−
(

d − j + 1
k − j + 1

))
h∗j

=
⌊ s

2 ⌋

∑
j=0

((
d − j + 1

k − j

)
−
(

d − j + 1
k − j + 1

)
+

(
d − s + j + 1

k − s + j

)
−
(

d − s + j + 1
k − s + j + 1

))
h∗j .

Because we assume k ≥ 1
2(d + 1 + ⌊ s

2⌋),(
d − j + 1

k − j

)
−
(

d − j + 1
k − j + 1

)
> 0

for 0 ≤ j ≤ ⌊ s
2⌋. The inequality(

d − j + 1
k − j

)
−
(

d − j + 1
k − j + 1

)
+

(
d − s + j + 1

k − s + j

)
−
(

d − s + j + 1
k − s + j + 1

)
> 0

follows directly if (d−s+j+1
k−s+j )− (d−s+j+1

k−s+j+1) ≥ 0 or k − s + j + 1 < 0. Otherwise, Lemma 10
implies that, for the same range of j,(

d − j + 1
k − j

)
−
(

d − j + 1
k − j + 1

)
+

(
d − s + j + 1

k − s + j

)
−
(

d − s + j + 1
k − s + j + 1

)
≥ 0 .

In fact, the last inequality is strict for k ≥ 1
2(d + 1 + ⌊ s

2⌋) (the proof is analogous to that
of Lemma 10). Finally we use that h∗j ≥ 0 and h∗0 = 1 to deduce that f ∗k−1 − f ∗k > 0. The
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computations in the case s even is very similar. Now we write

f ∗k−1 − f ∗k =
s

∑
j=0

((
d − j + 1

k − j

)
−
(

d − j + 1
k − j + 1

))
h∗j

=

s
2−1

∑
j=0

((
d − j + 1

k − j

)
−
(

d − j + 1
k − j + 1

)
+

(
d − s + j + 1

k − s + j

)
−
(

d − s + j + 1
k − s + j + 1

))
h∗j

+

((
d − s

2 + 1
k − s

2

)
−
(

d − s
2 + 1

k − s
2 + 1

))
h∗s

2

and use the same argumentation as in the case s odd.

3 Concluding Remarks

There are many avenues to explore f ∗-vectors, e.g., along analogous studies of h∗-vectors,
and we hope the above results form an enticing starting point. The techniques in our
proof of Theorem 5 do not offer much insight in the case of 14-dimensional lattice poly-
topes as there are candidates f ∗-vectors with corresponding h∗-vectors that satisfy all
inequalities discussed in [17]. It is unknown, though, if such polytopes exist.

Higashitani [14, Theorem 1.1] provided examples of d-dimensional polytopes with
nonunimodal h∗-vector for all d ≥ 3. Therefore, by Theorem 5 we have examples of
polytopes that have such an h∗-vector but their f ∗-vector is unimodal. It would be
interesting to know if the opposite can be true, that is, if there exist polytopes with
unimodal h∗-vector and nonunimodal f ∗-vector. By Corollary 11, such polytopes would
need to have degree at least 6.

Whenever one detects that a given given is unimodal, it is natural to ask about the
stronger property that the polynomial is log concave or, even stronger, real rooted. Our
methods do not yield these properties but it would be interesting if one could extend,
e.g., Corollary 8 or Proposition 9 along these lines.

Finally, starting with Stapledon’s work [17], there has been much recent attention
to symmetric decompositions of h- and h∗-polynomials; see, e.g., [1, 2] and, in partic-
ular, [9] where analogous decompositions for f -vectors are discussed. We believe this
line of research is worthy of attention with regards to understanding f ∗-vectors and the
inequalities that hold among their coefficients.
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