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Degenerations of the Grassmannian via matroidal
subdivisions of the hypersimplex
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Abstract. We study initial degenerations of Gr0(3, 8)—the open part of the Grassman-
nian Gr(3, 8) defined by the nonvanishing of all Plücker coordinates—using matroid
subdivisions of the (3, 8)–hypersimplex. We show that all initial degenerations are
smooth and, outside of a single symmetry class, irreducible. As an application, we
show that the Chow quotient of Gr(3, 8) by the diagonal torus of PGL(8) is the log
canonical compactification of the moduli space of 8 lines in the projective plane in
linear general position. This fully resolves a conjecture of Hacking, Keel, and Tevelev.
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1 Introduction

Regular subdivisions of lattice polytopes, as developed by Gelfand, Kapranov, and
Zelevinsky [7] with roots in the 1908 work of Voronoi [24], are combinatorial construc-
tions that have deep connections to algebra and geometry. Of particular relevance is
the relationship between regular matroidal subdivisions of the hypersimplex and initial
degenerations of the Grassmannian. Denote by Gr(d, n) the Grassmannian of d-planes
in Cn and Gr◦(d, n) the open locus of Gr(d, n) defined by the nonvanishing of all Plücker
coordinates. Given a vector w in the tropicalization TGr◦(d, n) of Gr◦(d, n), we may form
its w-initial degeneration inw Gr◦(d, n). On the combinatorial side, the vector w induces a
regular subdivision of the hypersimplex ∆(d, n) into matroid polytopes, a result which
is proved independently by Lafforgue [18] and Speyer [22], see also [11]. From such a
subdivision, one may form a finite inverse limit of thin Schubert cells (also known as
matroid strata), which we denote by Gr(w). The first author in [3] shows that there is a
closed immersion inw Gr◦(d, n) ↪→ Gr(w), which is an isomorphism for (2, n), (3, 6) and
(3, 7).

In this extended abstract we discuss the main results and techniques of The Grass-
mannian of 3-planes in C8 is schön [4]. We study the initial degenerations of Gr◦(3, 8) via
finite inverse limits of thin Schubert cells as discussed in the previous paragraph.
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Theorem 1.1. The initial degenerations of Gr◦(3, 8) are smooth.

In particular, Gr◦(3, 8) is schön in the sense of Tevelev [23] (see the characterization in [9]).
We also consider connectedness of the initial degenerations of Gr◦(3, 8). Surprisingly, we
find that they are not all connected.

Theorem 1.2. There exists an initial degeneration of Gr◦(3, 8) with two connected components.
Up to S8–symmetry, the remaining initial degenerations are connected.

Given the size of the Plücker ideal, it is challenging to directly prove that the initial
degenerations of Gr◦(3, 8) are smooth, even with computer assistance. By contrast, once
the regular subdivision is computed, one may determine “by hand” if the corresponding
inverse limit is smooth, irreducible, and compute its dimension. We illustrate this in
Example 5.4. Of course, this is only useful if the closed immersions inw Gr◦(3, 8) ↪→
Gr(w) are isomorphisms. It turns out that they are. For example, if Gr(w) is smooth,
irreducible and has dimension 15, then inw Gr◦(3, 8) ↪→ Gr(w) is an isomorphism. Thus,
while these results are geometric, the proofs of Theorems 1.1 and 1.2 use techniques
from polyhedral geometry, matroid theory, and commutative algebra.

Denote by X(d, n) the moduli space of n hyperplanes in Pd−1 in linear general po-
sition, up to projective transformations. Our main application of the previous theorems
is to study compactifications of X(3, 8). The diagonal torus H ⊂ PGL(n) acts freely
on Gr◦(d, n), and the quotient Gr◦(d, n)/H is isomorphic to X(3, 8); this is the famous
Gelfand-MacPherson correspondence. The normalization X(d, n) of the Chow quotient
Gr(d, n)//H compactifies X(d, n), but it is in general not the log canonical compactifica-
tion, failing already for (3, 9) and (4, 8) [16]. Hacking, Keel, and Tevelev conjecture in
[loc. cit. , Conjecture 1.6] that X(d, n) is the log canonical compactification in the cases
(2, n), (3, 6), (3, 7), and (3, 8). This is motivated by the relationship between these spaces
and moduli spaces of del Pezzo surfaces as in [8]. The first 3 cases were handled previ-
ously by [15], [20], and [3], respectively.

Theorem 1.3. The normalization X(d, n) of the Chow quotient Gr(3, 8)//H is the log canonical
compactification of X(3, 8).

Code

Our results rely on extensive computations using polymake.jl [6, 12] and OSCAR [5, 21],
both of which run using julia [2]. The code can be found at the following link:

https://github.com/dcorey2814/Gr38Schoen

https://github.com/dcorey2814/Gr38Schoen
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Conventions and notation

Given a positive integers d ≤ n, we write [n] = {1, . . . , n} and ([n]d ) for the collection of d-
element subsets of [n]. For subsets with a small number of elements, we use juxtaposition
to denote the subset they form, e.g., if a, b ∈ λ, then we write ab for {a, b}. Given an
abelian group A and a field F, we denote by AF = A⊗Z F. We write 1 = (1, 1, . . . , 1)
viewed either in Zm or Rm. The symmetric group on [n] is denoted by Sn.

2 Background

2.1 Regular matroid subdivisions

Given positive integers d ≤ n, a (d, n)–matroid is a nonempty subset Q ⊂ ([n]d ) satisfying
the basis-exchange axiom: given distinct λ1, λ2 ∈ Q and a ∈ λ1 \ λ2, there is b ∈ λ2 such
that λ1 \ a ∪ b ∈ Q. Denote by ϵ1, . . . , ϵn the standard basis of Rn, and ϵλ the indicator
vector of λ ⊂ [n]. The polytope of Q, written ∆(Q), is the convex hull of the vectors
ϵλ ∈ Rn for λ ∈ Q; in fact, these are the vertices of ∆(Q). The hypersimplex ∆(d, n) is the
polytope of the uniform matroid ([n]d ), and its vertices are naturally labeled by ([n]d ).

Given w ∈ R([n]d )/⟨1⟩, denote by Q(w) the regular subdivision of ∆(d, n) induced
by w. The subdivision Q(w) is matroidal if each polytope in Q(w) is the polytope of

a matroid. The set of w ∈ R([n]d )/⟨1⟩ such that Q(w) is matroidal is called the (d, n)-
Dressian, denoted Dr(d, n). There is a fan structure on Dr(d, n), where two vectors w and
w′ lie in the relative interior of the same cone if and only if Q(w) = Q(w′); this is called
the secondary fan structure of Dr(d, n), which we denote by Smat(d, n).

The tight span of Q(w), denoted by TS(w), is a polyhedral complex dual to Q(w)
that has a k-dimensional (bounded) cell for each (n− k − 1)–dimensional cell of Q(w)
meeting the relative interior of ∆(d, n) [10]. The dual graph of Q(w), denoted by Γ(w),
is the 1–skeleton of TS(w), i.e., it has a vertex for each maximal cell of Q(w), and two
vertices share an edge if and only if their corresponding polytopes share a facet.

2.2 Thin Schubert cells of the Grassmannian

As a set, the Grassmannian Gr(d, n) consists of the d-dimensional linear subspaces of
Cn. It is given the structure of a d(n− d)–dimensional projective variety via the Plücker

embedding ι : Gr(d, n) ↪→ P([n]d )−1: concretely, if V is the row-span of a full-rank d× n
matrix A, then ι(V) is the homogeneous vector of maximal minors of A. The compo-
nents of ι(V) are called the Plücker coordinates of V; these are only well-defined up to a
simultaneous scaling by a nonzero complex number.
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Given V ∈ Gr(d, n), its matroid is the set of λ ∈ ([n]d ) such that the λ-th Plücker
coordinate of V is nonzero. Given a C-realizable (d, n)–matroid Q, its thin Schubert cell is
the locally-closed subscheme Gr(Q) of Gr(d, n) consisting of those V whose matroid is
Q. Alternatively, it is the scheme-theoretic intersection Gr(Q) = Gr(d, n) ∩ (C∗)Q, thus
we frequently view Gr(Q) as a closed subscheme of (C∗)Q. The thin Schubert cell of the
uniform matroid ([n]d ) is denoted by Gr◦(d, n), i.e., it is the open subvariety defined by
the nonvanishing of all Plücker coordinates. The decomposition of the Grassmannian
into thin Schubert cells refines the decomposition by Schubert cells, see [17, §1.1] for a
nice discussion on this.

2.3 Initial Degenerations

Let M, N be a pair of rank m dual lattices, and let ⟨u, v⟩ be the natural pairing for u ∈ M
and v ∈ N. Write xu ∈ C[M] to denote the monomial corresponding to u ∈ M. Given
f = ∑ cuxu ∈ C[M] and w ∈ NR, the w-initial form is

inw( f ) = ∑
⟨u,w⟩

is minimal

cuxu.

Denote by T = N ⊗ C∗ ∼= (C∗)m, let I ⊂ C[M] be an ideal, and X = V(I) ⊂ T its
vanishing locus. The w-initial ideal of I is inw I = ⟨inw( f ) : f ∈ I⟩. The tropicalization of X
is Trop(X) = {w ∈ NR : inw I ̸= ⟨1⟩}; it is the underlying set of a N-rational polyhedral
fan. Given w ∈ Trop(X), the w-initial degeneration of X is inw(X) = V(inw I).

In this work we study initial degenerations of Gr◦(d, n). We abbreviate Trop Gr◦(d, n)
by TGr◦(d, n). By [11, 22], if w ∈ TGr◦(d, n), then Q(w) is matroidal, and by [1], there is
a subfan Strop(3, 8) of Smat(3, 8) whose support is TGr◦(3, 8). The fan Strop(3, 8) coarsen
the Gröbner fan structure on TGr◦(3, 8), see [4, §2.3].

2.4 Inverse Limits

The face order on the set of (d, n)–matroids is the relation Q1 ≼ Q2 whenever ∆(Q1) is
a face of ∆(Q2). When Q1 ≼ Q2, the coordinate projection (C∗)Q2 → (C∗)Q1 induces a
morphism Gr(Q2) → Gr(Q1) by [18, Proposition I.6]. Given w ∈ TGr◦(d, n), the cells
of Q(w) and the morphisms induced by the face relations form a finite inverse system,
and we denote the corresponding inverse limit by Gr(w). In fact, the inverse limit of the
subdiagram induced by the tight span is isomorphic to Gr(w).

Theorem 2.1. [3] Given w ∈ TGr◦(d, n), there exists a closed immersion inw Gr◦(d, n) ↪→
Gr(w). If Gr(w) is smooth, irreducible, and of dimension d(n− d), then this closed immersion
is an isomorphism.
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Figure 2.1: The Möbius-Kantor arrangement Qmk

3 A reducible initial degeneration

By Mnëv’s universality theorem (see [18, 19]), every singularity type appears in a thin
Schubert cell of a rank-3 matroid. However, it is known that the thin Schubert cells of
(2, n), (3, 6), and (3, 7)–matroids are smooth and irreducible. We show in [4] that the thin
Schubert cells of (3, 8)–matroids are smooth, and exhibit a matroid whose thin Schubert
cell has 2 connected components. We use this matroid to find an initial degeneration of
Gr◦(3, 8) that is reducible. We sketch these constructions here.

Let Qmk be the (3, 8)–matroid whose nonbases are given by the colinearities in Fig-
ure 2.1. This appears throughout the literature as the Möbius-Kantor or MacLane matroid.
Since Qmk is connected, we have that Gr(Qmk) ∼= X(Qmk)× H as a consequence of the
Gelfand-MacPherson correspondence. Up to a projective transformation, the normal
vectors to a hyperplane arrangement realizing Qmk can be brought to the columns of the
matrix 1 0 0 1 0 1 1 1

0 1 0 1 1 a 1 a
0 0 1 1 1 0 1− a 1

 (3.1)

where a ∈ C is one of the two solutions to x2 − x + 1 = 0. In fact,

X(Qmk) ∼= Spec
(

C[a]/⟨a2 − a + 1⟩
)

,

and so Gr(Qmk) is smooth has 2 connected components.

Proposition 3.1. If Q is a C-realizable (3, 8)–matroid, then Gr(Q) is smooth. Additionally, if Q
is not isomorphic to Qmk, then Gr(Q) is irreducible.

Given distinct i, j, k ∈ [8], define matroids

Qijk = {λ ∈ ([8]3 ) : |ijk ∩ λ| ≥ 2} Q′ijk = {λ ∈ ([8]3 ) : |ijk ∩ λ| = 2}.



6 Corey, Luber

Denote by wmk ∈ R([8]3 ) the vector (wmk)λ = 3− rank(λ) for λ ∈ ([8]3 ). The tight span
TS(wmk) is a star-graph whose central node corresponds to Qmk and the 8 leaves corre-
spond to Qijk for ijk ∈ ([n]3 ) \Qmk. From this, one may show that

Gr(wmk) ∼= Gr(Qmk)×∏ijk Gr(Q′ijk) ∏
ijk

Gr(Qijk) ∼= X(Qmk)× (C∗)15.

and so Gr(wmk) is smooth, 15 dimensional, and has 2 connected components. Denote
by Cmk the closed cone of Trop Gr◦(3, 8) containing wmk in its relative interior. This
discussion yields the following theorem.

Theorem 3.2. For any cone C of Strop(3, 8) in the S8–orbit of Cmk and w in the relative interior
of C, the initial degeneration inw Gr◦(3, 8) is smooth and has 2 connected components.

Remark 3.3. The subdivision Q(wmk) is the only matroidal subdivision of ∆(3, 8) that
contains ∆(Qmk) as a cell.

4 Decomposing tight spans: leaves, branches, and fins

In light of Theorem 2.1, we focus on inverse limits to deduce information about initial
degenerations. In most cases, it is convenient to decompose an inverse system into
subsystems, and compute the limit in pieces. As we are taking these limits over diagrams
coming from tight spans, this amounts to considering subcomplexes of the polytopal
complex TS(w). We describe these pieces for a general polytopal complex Σ.

A leaf of Σ is a leaf-vertex of the 1-skeleton of Σ. A leaf-pair (v, e) is a leaf v, along with
its adjacent edge e. Let ΣL be the subcomplex of the tight span obtained by removing
all leaf-pairs from TS(w). Observe that ΣL ⊂ Σ may still have leaves. The process of
iteratively removing leaf-pairs must terminate, and the result is the subcomplex ΣBr ⊂ Σ,
which is nonempty provided Σ is not a tree. A maximal connected subgraph of Σ \ ΣBr

is called a branch of Σ. Any vertex in a branch is called a branch vertex and any edge
contained in a branch, or connecting a branch to the rest of Σ, is called a branch edge.

Let F be a closed 2-dimensional cell of Σ with k ≥ 3 vertices. We say that F is a fin if
its intersection with Σ \ F is a path of edge-length ℓ with 1 ≤ ℓ ≤ k− 2 (see Figure 5.1).
We call this the connecting path of F. Denote by V(F) and E(F) the vertices and edges of
F. We say v ∈ V(F), respectively e ∈ E(F), is exposed if v /∈ Σ \ F, respectively e /∈ Σ \ F.
Denote by

Evert(F) = {v ∈ V(F) : v is exposed} Eedge = {e ∈ E(F) : e is exposed}.

Given a collection of fins F denote by Σ(F) ⊂ Σ the subcomplex obtained by removing,
for each F ∈ F, the relatively open cell F◦ and the exposed vertices and edges of F.
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5 Evaluating inverse limits

5.1 Matrix coordinates for thin Schubert cells

In this section, we give a presentation of the coordinate ring of a thin Schubert cell using
matrix coordinates. Let Q be a (d, n)–matroid; without loss of generality, suppose [d] ∈ Q

(see [3, 4] for the more general treatment). Define C[xij] := C[xij : i ∈ [d], j ∈ [n− d]]
and consider the C[xij]–valued matrix

A =


1 0 . . . 0 x11 . . . x1,n−d
0 1 . . . 0 x21 . . . x2,n−d
...

... . . .
...

... . . .
...

0 0 . . . 1 xd1 . . . xd,n−d

 (5.1)

Define
BQ = C[xij : [d]△{i, d + j} ∈ Q]

where [d]△{i, d + j} denotes the symmetric difference, and define the projection ring
homomorphism

πQ : C[xij]→ C[xij]/⟨xij : [d]△{i, d + j} ∈ ([n]d ) \Q⟩ ∼= BQ.

Denote by coli A the i-th column of A, and given λ = {λ1 < · · · < λd} ⊂ [n] define
the d × d submatrix Aλ = [colλ1 A · · · colλd A]. Define the ideal IQ and multiplicative
semigroup SQ by

IQ = ⟨πQ(det Aλ) : λ ∈ ([n]d ) \Q⟩, SQ = ⟨πQ(det Aλ) : λ ∈ Q⟩semigp.

The coordinate ring of Gr(Q) is isomorphic to S−1
Q BQ/IQ.

5.2 Coordinate rings and subcomplexes

Let w ∈ TGr◦(d, n). For a face C of TS(w), denote by ∆C the cell of Q(w) corresponding
to C. In particular, if v is a vertex, then ∆v is a maximal cell of TS(w). A connected
subcomplex Σ ⊂ TS(w) is vertex-intersecting if⋂

v∈V(Σ)

∆v ̸= ∅.

where V(Σ) denotes the vertex set of Σ. In other words, the matroids of the maximal
cells in Q(w) corresponding to V(Σ) share a common basis. The subcomplex Σ is vertex-
connecting if, for each vertex x of ∆(d, n), the subcomplex of Σ consisting of those cells C
such that x ∈ ∆C is empty or connected.
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Let Σ ⊂ TS(w) be a vertex-intersecting connected subcomplex. Given a vertex v ∈
TS(w), denote by Qv the matroid of the polytope ∆v. Then we have a basis common to
all matroids Qv with v ∈ V(Σ). Without loss of generality, suppose that this basis is [d].
Define a polynomial subring BΣ of C[xij] by

BΣ = C
[
xij : [d]△{i, d + j} ∈ Qv for some v ∈ V(Σ)

]
Next, define the ideal and multiplicative semigroup

IΣ = ∑
v∈V(Σ)

IQv · BΣ and SΣ = ⟨SQv : v ∈ V(Σ)⟩semigp;

note that we may view each SQv as a subset of BΣ under the inclusion BQv ⊂ BΣ. Finally,
set

RΣ = (SΣ)
−1BΣ/IΣ (5.2)

Proposition 5.1. If Σ is vertex-intersecting and vertex-connecting, then the coordinate ring of
the inverse limit lim←−Σ

Gr is isomorphic to RΣ.

5.3 A combinatorial sieve of diagrams

In this section we discuss the approach used to prove Theorems 1.1 and 1.2 from the
introduction.

Theorem 5.2. Let w ∈ TGr◦(d, n).

1. The inverse limit Gr(w) is smooth of dimension 15.
2. If w is not in the interior of a cone in the S8 orbit of Cmk, then Gr(w) is irreducible.
3. The closed immersion inw Gr◦(3, 8) ↪→ Gr(w) is an isomorphism.

The secondary fan structure of the tropical Grassmannian TGr◦(3, 8) is computed in
[1]. A combinatorial type is a S8–orbit cone in Strop(3, 8), and we label a combinatorial
type by a vector lying in the relative interior of a cone representative. There are 57344
combinatorial types of cones in Strop(3, 8). Fix a combinatorial type w and set Σ = TS(w).
Consider the following conditions, ordered by increasing complexity:

1. The tight span TS(w) is vertex-intersecting.
2. The dual graph Γ(w) is a tree.
3. The subcomplex ΣL ⊂ TS(w) is vertex-intersecting.
4. The subcomplex ΣBr ⊂ TS(w) is vertex-intersecting.
5. The subcomplex of ΣL obtained by removing all fins of ΣL whose connecting path

had length 1 is vertex-intersecting.
6. The subcomplex of ΣL obtained by removing all fins of ΣL is a tree.
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While these conditions are not mutually exclusive, we can still use them to separate the
combinatorial types into 6 sets: set Gi consists of those combinatorial types satisfying
condition i but not j for j < i. This sorting is done using OSCAR, and we see that

|G1| = 13641, |G2| = 215, |G3| = 28227, |G4| = 483, |G5| = 14389, |G6| = 389.

In [4, §6], we prove Theorem 5.2 by employing a different strategy for each set Gi. Sets
G2,G3,G4,G5 all follow a similar strategy, with G5 requiring the most general technique.
For this set, we verify Theorem 5.2 using the following proposition.

Proposition 5.3. Let F be a collection of fins of ΣL. If each fin F ∈ F is B-maximal and
lim←−ΣL(F)

Gr is smooth and irreducible then Gr(w) is smooth and irreducible. Furthermore, the
dimension of Gr(w) can be computed using Proposition 6.15 of [4].

The definition of B-maximality is technical, so we refer the reader to the full paper [4,
§4.4]. In the following example we demonstrate how one can compute the inverse limit
obtained from a matroid subdivision using Proposition 5.3.

Example 5.4. Let eijk for {i < j < k} ∈ ([8]3 ) denote the standard basis of R([8]3 ) and let

w =e124 + e125 + 2e126 + 2e134 + 3e137 + e145 + e146 + 2e147 + e148 + e156 + 2e235 + 2e237+

e245 + e246 + e256 + 2e257 + e258 + 3e347 + 2e357 + 2e367 + 2e368 + 2e378 + 2e456 + 3e678.

The tight span Σ = TS(w) of Q(w) is given in Figure 5.1. The edges given by (v2, v3),
(v3, v14) and (v12, v13) are leaves. Furthermore the face F = ⟨v8, v11, v12⟩ of Σ is a fin (see
Section 4). Note that F is the unique fin of Σ with connecting path of edge-length 1; let
F = {F}. By considering the matroids of the vertices in ΣL(F) one readily verifies that
this complex is vertex-intersecting, so w ∈ G5.

Observe that the pentagonal and hexagonal cells of ΣL are indeed fins by the general
definition in Section 4. However, we have that F is B-maximal (a fact we defer to the full
paper). Hence, it suffices to show that lim←−ΣL(F)

Gr is smooth and irreducible to apply
Proposition 5.3.

Denote by Qi the matroid corresponding to the vertex vi of Γ(w). When vi and vj
share an edge, the matroid of the edge is denoted by Qi,j. Direct computation tells us the
dimensions of the thin Schubert cells corresponding to the vertices and edges of TS(w)
are given by

dim Gr(Qi) = 7 for 1 ≤ i ≤ 14 dim Gr(Qi,j) = 6 for (vi, vj) ∈ E(Γ(w))

Moreover, we have dim Gr(QF) = 5 for F = ⟨v8, v11, v12⟩ of ΣL. Finally, we employ the
technique described in Section 5.2 to determine RΣL(F). We compute

BΣL(F) = C[x11, x12, x13, x14, x15, x21, x22, x23, x24, x25, x31, x32, x34, x35].
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Figure 5.1: Tight span of Q(w)

The ideal is

IΣL(F) = ⟨x13x25 − x23x15, x11x32x25 + x31x22x15, x11x32x23 + x31x22x13⟩,

and the semigroup SΣL(F) contains all monomials of BΣL(F). Let f1, f2, f3 denote the
generators of IΣL(F). The relations fi ≡ 0 mod IΣL(F) (for i = 1, 2) yield

x13 ≡
x23x15

x25
and x32 ≡ −

x31x22x15

x25x11
mod IΣL(F).

After these substitutions, the last relation disappears, and so the coordinate ring of
lim←−Σ(F)

Gr is isomorphic to a Laurent polynomial ring in 12 variables (after possibly in-
verting a finite number of elements). So we have that lim←−ΣL(F)

Gr is smooth, irreducible
and of dimension 12. By B-maximality of F, we have that Gr(w) is smooth and irreducible
by Proposition 5.3. One may use Equation 6.5 in [4] to verify that dim Gr(w) = 15. Hence,
by Theorem 2.1, inw Gr◦(3, 8) is smooth and irreducible.

6 The Chow quotient of the Grassmannian

Recall that X(d, n) is the moduli space n hyperplanes in Pd−1 in linear general position
up to projective transformation. The normalization of the Chow quotient of Gr(d, n) by
the diagonal torus H ⊂ PGL(n), which we denote by X(d, n), is a compactification of
X(d, n). In this section, we sketch the proof of Theorem 1.3, that X(3, 8) is the log canon-
ical compactification of X(3, 8), which fully resolves [16, Conjecture 1.6]. For details, see
[4, §7].

We follow an approach outlined by Hacking, Keel, and Tevelev in their construction
of the log canonical compactification of moduli spaces of marked del Pezzo surfaces [8].
The first key fact we need is that X(d, n) is the closure of X(d, n) in the toric variety
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of the fan Strop(3, 8)/L, where L is the lineality space of Strop(3, 8), see [14, 13]. By [8,
Theorems 3.1, 9.1], to show that the log-canonical divisor of X(3, 8) ⊂ X(3, 8) is ample,
it suffices to prove the following.

• The moduli space X(3, 8) is schön.
• The fan Strop(3, 8)/L is convexly disjoint in the sense of [8, Definition 1.15].

Schönness of X(3, 8) follows from Theorem 1.1 and the fact that inw Gr◦(3, 8) ∼=
inwX(3, 8)× H (where w is the image of w under the projection R([8]3 )/⟨1⟩ → R([8]3 )/L).
For the second point, we show that the secondary fan structure on the Dressian (see
[11]) Dr(3, 8)/L is convexly disjoint (we do this for a general (d, n)), which shows that
the subfan Strop(3, 8)/L is convexly disjoint.
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