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Abstract. We introduce an algorithm to compute the degrees of 321-avoiding unspe-
cialized Grothendieck polynomials. Our result provides an algorithm to compute the
Castelnuovo–Mumford regularity of 321-avoiding Kazhdan–Lusztig ideals. This ex-
tends the work of an earlier paper of Rajchgot, the author, and Weigandt (2022) which
gives a formula in the case of Grassmannian Kazhdan–Lusztig ideals.
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1 Introduction

A. Woo and A. Yong [10] introduced Kazhdan–Lusztig varieties to study singularities of
Schubert varieties. Kazhdan–Lusztig varieties are generalized determinantal varieties
which include Matrix Schubert varieties [4] as special cases. Another well-studied class
of these Kazhdan–Lusztig varieties is the ladder determinantal varieties, introduced by
S. S. Abhyankar [1].

The Castelnuovo–Mumford regularity of a graded module is an invariant used to mea-
sure its complexity. In general, this regularity may be computed using the minimal free
resolution of the module. Using the fact that Kazhdan–Lusztig varieties are Cohen–
Macaulay, one may instead compute their regularities combinatorially in terms of de-
grees of unspecialized Grothendieck polynomials.

Our main results Theorems 2.8 and 3.3 extend the work of [8] to provide an algorithm
which computes the Castelnuovo–Mumford regularity for Kazhdan–Lusztig varieties
indexed by a pair of 321-avoiding permutations. These results continue the work of
J. Rajchgot, the author, and A. Weigandt [8] which provides a combinatorial formula to
compute the regularity for Kazhdan–Lusztig varieties indexed by a pair of grassmannian
permutations. This is an extended abstract of [9].

Due to a correspondence with matrix Schubert varieties in this case, this result in [8]
may be recovered using the results of O. Pechenik–D. Speyer–A. Weigandt [7]. The work
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in [7] uses different techniques to compute the regularity of arbitrary matrix Schubert
varieties. Our paper extends the techniques used in [8] to compute the regularities of
certain Kazhdan–Lusztig varieties which are not isomorphic to matrix Schubert varieties.
That is, the results of this abstract cannot, in general, be recovered using [7].

2 Combinatorial Background

In this section we define the underlying combinatorial objects used for our algorithm.

2.1 Pipe complexes

Let Sn denote the symmetric group on n letters. The Rothe diagram of u ∈ Sn is the
subset

D(u) = {(i, j) ∈ [n]× [n] | ui > j and u−1
j > i}.

We illustrate D(u) as cells remaining in the n× n grid after placing points in cells (i, ui)
for each i ∈ [n] and drawing a line through cells which appear weakly south or weakly
east of each (i, ui). Let `(u) := #D(u) denote the Coxeter length of u.

Example 2.1. Below are D(v) and D(w) for v = 46128935(10)7 and w = 412368597(10).

Here `(w) = #D(w) = 7.

Define an algebra over Z generated by {eu | u ∈ Sn} with multiplication such that

euesi =

{
eusi if `(usi) > `(u)
eu otherwise.

Here si is the simple transposition permuting elements i and i + 1.
Label the boxes of D(u) along rows so that kth westmost box in row i is assigned the

label i + k− 1. Given P ⊆ D(u) let word(P) in D(u) be the sequence formed by reading
the labels of P in D(u), moving east to west across rows, starting with the northmost
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row and progressing south. Define I(u) := word(D(u)) in D(u). The Demazure product
of word(P), denoted δ(P), is the permutation determined by

esi1
· · · esik

= eδ(P),

where word(P) = (i1, i2, . . . , ik).
Take v ≥ w ∈ Sn, where ≥ denotes Bruhat order on Sn. Define

Pipes(v, w) = {P ⊆ D(v) |word(P) = (i1, i2, . . . , i`(w)) in D(v) and δ(P) = w}.

Similarly, let
Pipes(v, w) = {P ⊆ D(v) | δ(P) = w}.

We illustrate P ⊆ D(v) by marking (i, j) ∈ D(v) with a + whenever (i, j) ∈ P. Lastly, let
DNE(v, w) ⊆ D(v) be the boxes corresponding to the earliest subsequence of word(D(v))
that forms I(w). Since v ≥ w, DNE(v, w) exists.

Example 2.2. The left two diagrams are D(v) and D(w) for w, v as in Example 2.1 with
I(v) and I(w) labeled. This gives I(v) = (3, 2, 1, 5, 7, 6, 8) in D(v). The third diagram is
DNE(v, w) ∈ Pipes(v, w) ⊆ Pipes(v, w) and the fourth is another P ∈ Pipes(v, w).

1 2 3
2 3 4 5

5 6 7
6 7 8

9

1 2 3

5
6 7

8

+++
+

+ +
+

+
+++

+
+

+
+

As defined by Woo–Yong [11], the unspecialized Grothendieck polynomial is

Gv,w(t) = ∑
P∈Pipes(v,w)

(−1)#P−`(w) ∏
(i,j)∈P

tij. (2.1)

By setting v = w0 ∈ Sn and specializing variables tij, these unspecialized Grothendieck
polynomials recover the double Grothendieck polynomials of [6]. Note that we follow the
conventions of [8] for Gv,w(t), which differ from those in [11].

2.2 Skew Excited Young Diagrams

A permutation u ∈ Sn is 321-avoiding if there does not exist a 321 pattern in u, i.e.,
indices i < j < k such that uk < uj < ui. For example, u = 17258346 is not 321-avoiding;
we underlined the positions of a 321 pattern. Let S321−av

n := {u ∈ Sn | u is 321-avoiding}.
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For this subsection assume v ≥ w where v, w ∈ S321−av
n . Let

φv : {P ⊆ D(v)} → {S ⊂ [n]× [n]}

be the map which deletes empty rows and columns of D(v) from P ⊂ D(v). The shape
Rv := φv(D(v)) is a skew Young diagram, i.e., λ/µ for some partitions µ ⊆ λ. Our
conventions for drawing Young diagrams reflect the diagrams in English notation across
the y-axis. Define Dtop(v, w) := φv(DNE(v, w)).

We visualize D ⊆ Rv by marking (i, j) ∈ [n] × [n] with a + when (i, j) ∈ D. In
general, we call a collection of +’s inside Rv a diagram in Rv.

Example 2.3. For v, w as in Example 2.2, the left picture is Rv, the middle is Dtop(v, w),
and the rightmost diagram is φv(P) for the rightmost P in Example 2.2.

+++
+
++
+

+++
+

+ +
+ +

An excited move of a diagram D in Rv is the operation on a 2× 2 subsquare of D
such that

+ 7→ +
. (2.2)

For this move to occur, the subsquare must be contained inRv. We let SEYD(v, w) denote
the set of D ⊆ Rv which can be computed through sequential applications of excited
moves to Dtop(v, w). We call D ∈ SEYD(v, w) a skew excited Young diagram.

We also may apply K-theoretic excited moves to diagrams in Rv

+ 7→ +
+

, (2.3)

again, where all cells pictured are contained in Rv. Write SEYD(v, w) for the set of
diagrams which can be obtained by sequential applications of excited and K-theoretic
excited moves on Dtop(v, w) inRv. We say D ∈ SEYD(v, w) is a K-theoretic skew excited
Young diagram. Let #D denote the number of pluses in D. We say D ∈ SEYD(v, w)
define to be maximal if D′ ∈ SEYD(v, w) implies #D′ ≤ #D.

Example 2.4. Continuing Example 2.3, the left two diagrams are in SEYD(v, w). The
right two diagrams are both maximal diagrams in SEYD(v, w).

+++

+ +
+ +

+++
+
+

+ +

+++
+
++

+ +

+++
+

+ +
+ +
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Using [3] and the fact that v, w ∈ S321−av
n we obtain the following:

Proposition 2.5. For v ≥ w where v, w ∈ S321−av
n , the map φv restricted to Pipes(v, w) gives a

bijection
φ̃v : Pipes(v, w)→ SEYD(v, w) (2.4)

such that for P ∈ Pipes(v, w), #P = #φ̃v(P).

Combining Proposition 2.5 with Equation (2.4) produces the following result.

Corollary 2.6. Suppose v, w ∈ Sn. Then

deg(Gv,w(t)) = max{#D |D ∈ SEYD(v, w)}.

Example 2.7. Since the rightmost diagram in Example 2.4 is maximal, deg(Gv,w(t)) = 8
by Corollary 2.6.

In Section 4.1 we give an algorithm to compute statistics ∆v,w(q) from Dtop(v, w) for
certain q ∈ Z>0. Using Corollary 2.6, we prove the following.

Theorem 2.8. Suppose v ≥ w, where v, w ∈ S321−av
n . Then if Dtop(v, w) =

⋃
q∈[s] Cq where Cq

are the connected components of Dtop(v, w),

deg(Gv,w(t)) = #D(w) + ∑
q∈[s]

∆v,w(q).

A proof sketch for Theorem 2.8 appears in Section 4.2.

3 Castelnuovo–Mumford Regularity of Kazhdan–Lusztig
varieties

In this section, we define Castelnuovo–Mumford regularity and Kazhdan–Lusztig vari-
eties. We then recall results of [8] which provide combinatorial interpretations of the
Castelnuovo–Mumford regularity of Kazhdan–Lusztig varieties.

3.1 Castelnuovo–Mumford Regularity

Let S = C[x1, . . . , xn] be a polynomial ring with the standard grading and let I ⊆ S be a
homogeneous ideal. The Hilbert series of S/I is a formal power series

H(S/I; t) = ∑
k∈Z

dimC((S/I)k)tk =
K(S/I; t)
(1− t)n .
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The numerator of the Hilbert series K(S/I; t) ∈ C[t±1] is the K-polynomial of S/I. A
minimal free resolution of S/I is the complex

0→
⊕

j

S(−j)βl,j(S/I) →
⊕

j

S(−j)βl−1,j(S/I) → · · · →
⊕

j

S(−j)β0,j(S/I) → S/I → 0,

where l ≤ n and S(−j) is the free S-module shifted by j in degree. The Castelnuovo-
Mumford regularity of S/I, written reg(S/I), is the statistic

reg(S/I) := max{j− i | βi,j(S/I) 6= 0}.

In cases where S/I is Cohen-Macaulay,

reg(S/I) = deg K(S/I; t)− htS I, (3.1)

where htS I denotes the height of the ideal I. For more context, consult [2, Lemma 2.5].

3.2 Kazhdan–Lusztig varieties

For v ∈ Sn, define M(v) = (mij) to be the matrix such that for i, j ∈ [n],

mij =


1 if j = vi,
zij if (i, j) ∈ D(v),
0 otherwise.

Let C[zv] := C[zij | (i, j) ∈ D(v)]. For v ≥ w ∈ Sn the Kazhdan–Lusztig ideal Jv,w ⊆
C[zv] is defined by

Jv,w = 〈rw(i, j) + 1−minors in M(v)
[i],[j] | (i, j) ∈ D(w)〉,

where MI,J denote the submatrix of M with row indices in I and column indices in J for
I, J ⊆ [n]. As noted in [8] when v ∈ S321−av

n , Jv,w is homogeneous with respect to the
standard grading.

Let B+, B− ⊂ GLn(C) denote the Borel and opposite Borel subgroups, respectively.
As defined in [10], the Kazhdan–Lusztig variety is the intersection of the Schubert va-
riety B−\B−wB+ ⊆ B−\GLn(C) with the opposite Schubert cell B−\B−vB−. The coor-
dinate ring of this Kazhdan–Lusztig variety is precisely C[zv]/Jv,w. Through this fact,
C[zv]/Jv,w is Cohen-Macaulay. Again we follow the conventions used in [8] rather than
those in [10]. For additional context concerning Kazhdan–Lusztig varieties, see the sur-
vey [12].

Reformulating [11, Theorem 4.5] for the case v, w ∈ S321−av
n ,
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Lemma 3.1. [8, Lemma 6.3] Let v, w ∈ S321−av
n where w ≤ v. Then

K(C[zv]/Jv,w; t) = ∑
P∈Pipes(v,w)

(−1)#P−`(w)(1− t)#P.

We apply this Lemma along with Equation (3.1) for the following proposition.

Proposition 3.2. [8, Proposition 6.4] Let v, w ∈ S321−av
v where w ≤ v. Then,

deg K(C[zv]/Jv,w; t) = degGv,w(t).

Furthermore, the Castelnuovo-Mumford regularity of C[zv]/Jv,w is given by

reg(C[zv]/Jv,w) = degGv,w(t)− #D(w).

By combining Proposition 3.2 and Theorem 2.8, we obtain the following theorem.

Theorem 3.3. Suppose v ≥ w, where v, w ∈ S321−av
n . Then if Dtop(v, w) =

⋃
q∈[s] Cq where Cq

are the connected components of Dtop(v, w),

reg(C[zv]/Jv,w) = ∑
q∈[s]

∆v,w(q).

In [5] S. R. Ghorpade–C. Krattenthaler give an algorithm to compute a related in-
variant called the a-invariant of certain two-sided ladder determinantal varieties. Two-
sided ladder determinantal varieties are Kazhdan–Lusztig varieties indexed by par-
ticular v, w ∈ S321−av

n . In this setting, the a-invariant is easily computed from the
Castelnuovo–Mumford regularity. As we show in the full version of this abstract, Theo-
rem 3.3 may be applied to generalize [5, Lemma 14].

4 Construction and Recurrence for Theorem 2.8

Assume v ≥ w ∈ S321−av
n . In Section 4.1 we describe how to compute the statistics

∆v,w(q) used in Theorem 2.8. In Section 4.2 we sketch the proof of Theorem 2.8.

4.1 Construction for Theorem 2.8

We index Rv using matrix indexing, identifying the northwest most box in Rv with
(1, 1). Suppose Dtop(v, w) =

⋃
q∈[s] Cq where Cq are the connected components of

Dtop(v, w). Order Cq such that the indices increase when viewing components from
northwest to southeast.
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Example 4.1. Consider D = Dtop(v, w) below for some v, w ∈ S321−av
15 .

++
++ ++++
+ ++++

++
++

Then D has connected components C1 and C2, where C1 = {(1, 3), (1, 4), (2, 3), (2, 4),
(3, 3)} and C2 = {(2, 6), (2, 7), (2, 8), (2, 9), (3, 6), (3, 7), (3, 8), (3, 9), (4, 8), (4, 9), (5, 8),
(5, 9)}.

For q ∈ [s] in decreasing order, compute md(Cq) = {dq
k}k∈[`q] ⊆ Cq, such that md(Cq)

is the westmost then southmost diagonal of length `q that minimizes

#
(
[‖ψE(d

q
`q
)‖+ 1] ∩ {‖dq′

k′‖}q′>q,k′∈[`q′ ]

)
.

Here ‖b‖ := b(1) + b(2) for b = (b(1), b(2)) ∈ Dtop(v, w). Boxes in md(Cq) are ordered
increasingly northwest to southeast.

Set D(0)
zip(v, w) := Dtop(v, w). For q ∈ [s], we define D(q)

zip(v, w) iteratively by applying

exited moves to certain pluses in Cq ⊆ D(q−1)
zip (v, w). In D(q−1)

zip (v, w), set

S = {b ∈ Cq − md(Cq) weakly southwest of md(Cq)}.

To each in b ∈ S, working west to east and south to north, let b′ be the new position of b
after applying as many excited moves as possible to b. Let

D(q)
zip(v, w) := D(q−1)

zip (v, w)− S ∪ {b′ | b ∈ S}.

Define Dzip(v, w) := D(s)
zip(v, w). For b ∈ md(Cq), define trailv,w(b) such that

trailv,w(b) := max{k ∈ {0, 1, . . . , n} | b+ (k′,−k′), b+ (k′, 1− k′),
b+ (k′ − 1,−k′) ∈ Rv − Dzip(v, w) for each k′ ∈ [k]}.

We define the statistic
∆v,w(q) := ∑

k∈[`q]

trailv,w(d
q
k).

Example 4.2. We continue with v, w as in Example 4.1. Left to right, the diagrams
below are D(0)

zip(v, w), D(1)
zip(v, w), and D(2)

zip(v, w), respectively. In D(0)
zip(v, w), Diagv,w(C1)
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is bolded, and md(C1) is shaded. In D(1)
zip(v, w), Diagv,w(C2) is bolded, and md(C2) is

shaded.

++
+ ++++

++++
++
++

++
++ +++
+ + ++

+
+

++
+ ++++

+++
+ + ++

+ +
+

Using D(0)
zip(v, w) and Diagv,w(C1), we find ∆v,w(1) = (2 + 1). Similarly using D(1)

zip(v, w)
and Diagv,w(C2), we compute ∆v,w(2) = (2 + 2 + 1 + 1). Therefore, Theorem 2.8 deter-
mines

deg(Gv,w(t)) = #D(w) + ∆v,w(1) + ∆v,w(2) = 17 + 3 + 6 = 26.

By Corollary 2.6, there exists D ∈ SEYD(v, w) where #D = 26. We have drawn such
a diagram below. This is computed by applying trailv,w(d

q
k)-many K-theoretic excited

moves along the antidiagonals of dq
k ∈ md(Cq) for each k ∈ [`q], q ∈ [s]. The pluses that

result from these K-theoretic excited moves are drawn in blue.

++
+ ++++

+++
+ + ++

+ +
+

Theorem 3.3 gives reg(C[zv]/Jv,w) = ∆v,w(1) + ∆v,w(2) = 9. This corresponds precisely
with the number of blue pluses in the diagram above.

4.2 Proof Sketch for Theorem 2.8

In proving Theorem 2.8, we utilize a particular recurrence on Gv,w(t). Let (a, b) be
the northmost then eastmost plus in Dtop(v, w). Take (a′, b′) to be the northmost then
eastmost box in Rv. Set i = word(φ−1

v ({(a, b)})) and i′ = word(φ−1
v ({(a′, b′)})) in D(v).

Define vP = si′v, which gives RvP = Rv − {(a′, b′)}. Define wP := siw, wC := w, and
vC := vP.

To proceed, we first establish vP, wP ∈ S321−av
n . This follows from the definition of

(a, b) and (a′, b′) as northeast most choices along with the graphical definition of 321-
avoiding. That is, u ∈ S321−av

n if and only if Ru is a skew Young diagram.

Example 4.3. Below we have Dtop(v, w) on the left and Dtop(vC, wC) on the right for
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particular v, w ∈ S321−av
15 . In this case, (a, b) 6= (a′, b′).

+++
+ ++

++
+
+

+++
+ ++

++
+
+

Below are Dtop(v′, w′), Dtop(v′C, w′C), and Dtop(v′P, w′P), listed from left to right, for par-
ticular v′, w′ ∈ S321−av

15 . In this case, (a, b) = (a′, b′).

+++
+ ++

++
+
+

+++ ++
+ ++

+
+

++
+ ++

++
+
+

We give a general correspondence of these K-theoretic skew excited Young diagrams.

Lemma 4.4. For v ≥ w and v, w ∈ S321−av
n , the following hold:

1. If (a, b) 6= (a′, b′),
SEYD(v, w) = SEYD(vC, wC).

2. If (a, b) = (a′, b′),

SEYD(v, w) = SEYD(vC, wC)
⊔{

D ∪ (a, b) |D ∈ SEYD(vC, wC) ∪ SEYD(vP, wP)
}

.

Combining Corollary 2.6 with Lemma 4.4, we obtain the following corrollary.

Corollary 4.5. For v ≥ w and v, w ∈ S321−av
n , the following hold:

1. if (a, b) 6= (a′, b′), deg(Gv,w(t)) = deg(GvC,wC(t)).

2. If (a, b) = (a′, b′), deg(Gv,w(t)) = max(deg(GvP,wP(t)), deg(GvC,wC(t))) + 1.

With this recurrence established, we now sketch the proof.
Proof sketch of Theorem 2.8:

We proceed by induction on `(v). For `(v) = 0, the statement is trivial since in this
case SEYD(v, w) = ∅. Suppose the statement holds for v such that `(v) = k − 1 for
k ≥ 1. Consider v such that `(v) = k. For brevity let d(u1, u2) = ∑q∈[s] ∆u1,u2(q) where
Dtop(u1, u2) has s components.

If (a, b) 6= (a′, b′), by Corollary 4.5, deg(Gv,w(t)) = deg(GvC,wC(t)). Using Lemma 4.4,
we determine Dzip(v, w) = Dzip(vC, wC), so d(v, w) = d(vC, wC). Thus the result follows
by the inductive assumption.
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Now assume (a, b) = (a′, b′). Then by Corollary 4.5,

deg(Gv,w(t)) = max(deg(GvP,wP(t)), deg(GvC,wC(t))) + 1.

Since #D(w) = #D(wC) and #D(w) = #D(wP) + 1, from the inductive assumption,

deg(Gv,w(t)) = #D(w) + max(d(vP, wP), d(vC, wC) + 1).

Thus it suffices to prove

d(v, w) = max(d(vP, wP), d(vC, wC) + 1). (4.1)

To establish Equation (4.1), we perform a careful case analysis on the position of
(a, b) ∈ Cq in relation to md(Cq). The following claim is useful in this examination.

Claim 4.6. Suppose (a, b) = (a′, b′) ∈ Cq where Cq is a connected component in Dtop(v, w).
Let Rq = {d ∈ Cq | d lies weakly southwest of (a, b)}. Then

1. Dtop(vP, wP) = Dtop(v, w)− (a, b), and

2. Dtop(vC, wC) = Dtop(v, w)− Rq ∪ R′q,

where R′q = {d+ (1,−1) | d ∈ Rq}.

With Equation (4.1) proven, Theorem 2.8 follows.
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