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The algebra of extended peaks

Darij Grinberg*1 and Ekaterina A. Vassilieva†2

Abstract. Building up on our previous works regarding q-deformed P-partitions, we
introduce a new family of subalgebras for the ring of quasisymmetric functions. Each
of these subalgebras admits as a basis a q-analogue to Gessel’s fundamental quasisym-
metric functions where q is equal to a complex root of unity. Interestingly, the basis
elements are indexed by sets corresponding to an intermediary statistic between peak
and descent sets of permutations that we call extended peak.

Résumé. En nous appuyant sur nos travaux précédents concernant les P-partitions
q-déformées, nous introduisons une nouvelle famille de sous-algèbres pour l’anneau
des fonctions quasi-symétriques. Chacune de ces sous-algèbres admet comme base un
q-analogue aux fonctions quasisymétriques fondamentales de Gessel où q est égal à
une racine complexe de l’unité. Il est notable que les éléments de base sont indexés
par des ensembles correspondant à une statistique intermédiaire entre les ensembles
de pics et de descentes des permutations que nous appelons pic étendu.
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1 Introduction

In [4], we show that a q-deformation of the generating functions for P-partitions leads to
a unified framework between classical and enriched P-partitions. In particular, we intro-
duce our q-fundamental quasisymmetric functions that interpolate between I. Gessel’s
fundamental ([1], q = 0) and J. Stembridge’s peak ([8], q = 1) quasisymmetric functions.
When q is not a root of unity, q-fundamentals are a basis of QSym, the ring of quasisym-
metric functions, and are indexed by descent sets of permutations. If q = 1, they span
the subalgebra of QSym named the algebra of peaks. The relevant basis elements are
those indexed by peak sets. As it turns out, using other complex roots of unity for q, we
are able to build new intermediate subalgebras between the algebra of peaks and QSym,
the basis of which are q-fundamentals indexed by a new permutation statistic that lies
between peak and descent sets. We call this statistic the extended peak set and the cor-
responding subalgebras of quasisymmetric functions the algebra of extended peaks. We
begin with the required definitions and results from [4]. Then we introduce and prove
the new results regarding the algebra of extended peaks.
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1.1 Permutation statistics

Let P be the set of positive integers. For m, n ∈ P, write [m, n] = {m, m + 1, . . . , n} and
simply [n] = {1, 2, . . . , n}. We denote Sn the symmetric group on [n]. Given π ∈ Sn,
define its descent set

Des(π) = {1 ≤ i ≤ n − 1|π(i) > π(i + 1)} ⊂ [n − 1]

and its peak set

Peak(π) = {2 ≤ i ≤ n − 1|π(i − 1) < π(i) > π(i + 1)}.

The peak set of a permutation is said to be peak-lacunar, i.e. it neither contains 1 nor
contains two consecutive integers.

1.2 Enriched P-partitions and q-deformed generating functions

We recall the main definitions regarding weighted posets, enriched P-partitions and their
q-deformed generating functions. The reader is referred to [1, 3, 4, 7, 8] for more details.

Definition 1 (Labelled weighted poset, [3]). A labelled weighted poset is a triple P =
([n],<P, ϵ) where ([n],<P) is a labelled poset, i.e., an arbitrary partial order <P on the set [n]
and ϵ : [n] −→ P is a map (called the weight function).

Each node of a labelled weighted poset is marked with its label and weight (Figure 1).

2, ϵ(2) = 5

3, ϵ(3) = 2 1, ϵ(1) = 1 4, ϵ(4) = 2

5, ϵ(5) = 2

Figure 1: A 5-vertex labelled weighted poset. Arrows show the covering relations.

Definition 2 (Enriched P-partition, [8]). Let P± be the set of positive and negative integers
totally ordered by −1 < 1 < −2 < 2 < −3 < 3 < . . . . We embed P into P± and let −P ⊆ P±

be the set of all −n for n ∈ P. Given a labelled weighted poset P = ([n],<P, ϵ), an enriched
P-partition is a map f : [n] −→ P± that satisfies the two following conditions:

(i) If i <P j and i < j, then f (i) < f (j) or f (i) = f (j) ∈ P.

(ii) If i <P j and i > j, then f (i) < f (j) or f (i) = f (j) ∈ −P.
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We let LP±(P) denote the set of enriched P-partitions.

Definition 3 (q-Deformed generating function, [4]). Consider the set of indeterminates X =
{x1, x2, x3, . . .}, the ring C [[X]] of formal power series on X where C is the set of complex
numbers, and let q ∈ C be an additional parameter. Given a labelled weighted poset ([n],<P, ϵ),
define its generating function Γ(q)([n],<P, ϵ) ∈ C [[X]] as

Γ(q)([n],<P, ϵ) = ∑
f∈L

P± ([n],<P,ϵ)
∏

1≤i≤n
q[ f (i)<0]xϵ(i)

| f (i)|,

where [ f (i) < 0] = 1 if f (i) < 0 and 0 otherwise.

1.3 Enriched q-monomial and q-fundamental quasisymmetric functions

We state without proofs the required definitions and propositions from [4]. The main
building block of this previous work is the q-deformed generating function for enriched
P-partitions on labelled weighted chains that we call universal quasisymmetric functions.

Definition 4 (Universal quasisymmetric functions). Given a composition, i.e. a sequence of
positive integers α = (α1, α2, . . . , αn) with n entries, and a permutation π = π1 . . . πn of Sn, we
let Pπ,α = ([n],<π, α) be the labelled weighted poset on the set [n], where the order relation <π

is such that πi <π πj if and only if i < j and where α is the weight function sending the vertex
labelled πi to αi (see Figure 2). Define the q-universal quasisymmetric function

U(q)
π,α = Γ(q)([n],<π, α).

π1, α1 π2, α2 · · · · · · · · · πn, αn

Figure 2: The labelled weighted poset Pπ,α.

Universal quasisymmetric functions belong to the subalgebra of C [[X]] called the ring
of quasisymmetric functions (QSym), i.e. for any strictly increasing sequence of indices
i1 < i2 < · · · < ip the coefficient of xk1

1 xk2
2 · · · xkp

p is equal to the coefficient of xk1
i1

xk2
i2
· · · xkp

ip
.

They are directly connected to classical bases of QSym, as Lπ = U(0)
π,[1n]

(resp. Kπ =

U(1)
π,[1n]

) is the Gessel’s fundamental ([1]) (resp. Stembridge’s peak, [8]) quasisymmetric
function indexed by π. (As usual, 1n denotes n consecutive 1’s: 1, 1, . . . , 1.) Moreover,
if we let idn = 1 2 . . . n and idn = n n − 1 . . . 1, then U0

idn,α
= Mα is the monomial ([1]),

U(0)
idn,α = Eα the essential ([5]) and U(1)

idn,α = ηα the enriched monomial ([6, 3]) quasisymmetric
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functions indexed by α. Moreover universal quasisymmetric functions satisfy the explicit
expression

U(q)
π,α = ∑

i1≤i2≤···≤in;
j∈Peak(π)⇒ij−1<ij+1

q|{j∈Des(π)|ij=ij+1}|(q + 1)|{i1,i2,...,in}|xα1
i1

xα2
i2

. . . xαn
in . (1.1)

As universal quasisymmetric functions are the generating functions of some P-partitions
on labelled chains, they admit the closed form product rule of Proposition 1.

Proposition 1 (Product rule). Let q ∈ C, let π and σ be two permutations in Sn and Sm,
and let α = (α1, . . . , αn) and β = (β1, . . . , βm) be two compositions with n and m entries. The
product of two q-universal quasisymmetric functions is given by

U(q)
π,αU(q)

σ,β = ∑
(τ,γ)∈(π,α) (σ,β)

U(q)
τ,γ. (1.2)

Here (π, α) (σ, β) denote the coshuffle of (π, α) and (σ, β), i.e. the set of pairs (τ, γ) where
τ ∈ Sn+m is a shuffle of π and n + σ = (n + σ1, . . . , n + σm), and γ is a composition with
n + m entries, obtained by shuffling the entries of α and β using the same shuffle used to build τ.

Remark 1 (Coproduct). Let n ≥ 0 be an integer, π ∈ Sn and α be a composition with n entries.
The coproduct ∆ : QSym → QSym⊗QSym of the Hopf algebra QSym (see [2, §5.1]) acts on
the universal quasisymmetric functions as follows:

∆(U(q)
π,α) =

n

∑
i=0

U(q)
std(π1π2...πi),(α1,α2,...,αi)

⊗ U(q)
std(πi+1πi+2...πn),(αi+1,αi+2,...,αn)

.

Here, if γ is a sequence of non-repeating integers, std(γ) is the permutation whose values are in
the same relative order as the entries of γ.

Our work relies on two significant specialisations of universal quasisymmetric func-
tions called enriched q-monomial and q-fundamental quasisymmetric functions.

Definition 5 (Enriched q-monomial quasisymmetric functions). Let q ∈ C and α be a
composition with n entries. The enriched q-monomial indexed by α is defined as

η
(q)
α = U(q)

idn,α = ∑
i1≤i2≤···≤in

(q + 1)|{i1,i2,...,in}|xα1
i1

xα2
i2

. . . xαn
in .

As compositions α = (α1, . . . , αn) such that α1 + · · ·+ αn = s are in bijection with subsets of
[s − 1], we also use the equivalent expression for I ⊆ [s − 1].

η
(q)
s,I = ∑

i1≤···≤is
j∈I⇒ij=ij+1

(q + 1)|{i1,...,is}|xi1 . . . xis .
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As an immediate consequence of Definition 5, η
(0)
α (resp. η

(1)
α ) is Hoffman’s essential

([5]) (resp. enriched monomial, [3]) quasisymmetric function indexed by the composition
α. Except the degenerate case q = −1, q-enriched monomials are a basis of QSym.

Proposition 2. Let q ∈ C \ {−1}. The family
(

η
(q)
s,I

)
s≥0,I⊆[s−1]

is a basis of QSym.

Definition 6 (q-Fundamental quasisymmetric functions). Let π be a permutation in Sn and
q ∈ C. Define the q-fundamental quasisymmetric function indexed by π as

L(q)
π = U(q)

π,[1n]
.

According to Equation (1.1), L(q)
π depends only on the descent set of π. As a result, q-funda-

mentals are naturally indexed by sets and we may denote them (L(q)
n,I )I⊆[n−1].

The specialisations of L(q)
π to q = 0 and q = 1 are respectively the Gessel’s fundamen-

tal [1] and Stembridge’s peak [8] quasisymmetric functions indexed by permutation π.
The expression of q-fundamentals in the basis of enriched q-monomials is of particular
importance.

Proposition 3. Let I ⊆ [n − 1] and q ∈ C. Let also Peak(I) = I \ (I − 1) \ {1}. The
q-fundamental quasisymmetric functions may be expressed in the enriched q-monomial basis as

L(q)
n,I = ∑

J⊆I
K⊆Peak(I)

J∩K=∅

(−q)|K|(q − 1)|J|η(q)
n,J∪(K−1)∪K. (1.3)

Unlike q-monomials, q-fundamentals are not always a basis of QSym.

Proposition 4. (L(q)
n,I )n≥0,I⊆[n−1] is a basis of QSym if and only if q ∈ C is not a root of unity.

2 Extended peaks

According to Proposition 4, q-fundamental quasisymmetric functions are very similar
to classical ones when q is not a root of unity and are naturally indexed by descent
sets. When q = 1, they reduce to peak quasisymmetric functions, are indexed by peak
sets and span a very significant subalgebra of QSym. Understanding what subalgebra
they span and how to index them when q is another root of unity appears as a natural
question. We begin with the introduction of the appropriate sets.
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2.1 Extended peak sets

We use the following subsets with constraints on consecutive elements.

Definition 7 (Extended peak set). Let n and p be two positive integers. We say that I ⊆
[n − 1] is a p-extended peak set if I ∪ {0} doesn’t contain more than p consecutive elements
(as a result, [1, p] ⊈ I). We write I ⊆p [n − 1] for this statement.

Example 1. Set n = 9. One has {4, 8} ⊆1 [8], {1, 4, 5, 8} ⊆2 [8], {1, 2, 4, 5, 6, 8} ⊆3 [8].
However {1, 2, 4, 5, 8} ⊈2 [8] as the subsequence [1, 2] containing 1 has size 2 > p − 1 = 1.

Remark 2 (Permutation statistics). Extended peak sets look like an intermediary statistic be-
tween peak and descent sets. Any peak set is a 1-extended peak set, and any descent set on
permutations of n elements is a p-extended peak set for p ≥ n. Moreover, given a permutation π

in Sn and an integer p ≥ 1, we can define Peakp(π) as

Peakp(π) = {i ∈ Des(π)|i ≤ p − 1 or ∃ 1 ≤ j ≤ p such that i − j /∈ Des(π)}.

On the one hand, Peak(π) = Peak1(π) ⊆ Peakp(π) ⊆ Des(π). On the other hand,
Peakp(π) ⊆p [n − 1]. For instance let π = 54163287. We have Peak1(π) = Peak(π) =
{4, 7} ⊆ Peak2(π) = {1, 4, 5, 7} ⊆ Peak3(π) = {1, 2, 4, 5, 7} = Des(π).

We count the number of extended peak sets.

Proposition 5. Let n, p ∈ P. Define s(p)
n to be the number of p-extended peak sets on n elements.

Extend the definition with s(p)
0 = 0 for all positive p. One has

s(p)
n =

{
2n−1 if n ≤ p,

∑
p
k=0 s(p)

n−k−1 = ∑
p+1
k=1 s(p)

n−k if n > p.
(2.1)

Proof. The result is immediate for n ≤ p. For n > p, there is a bijection between p-
extended peak sets on n elements and the union of p-extended peak sets on n − 1 − k
elements for k ∈ [0, p]. Indeed, given a set I ⊆p [n − 1], define k ≤ p as the integer such
that [n − k, n − 1] is the maximum sequence of consecutive integers in I containing n − 1.
If n − 1 /∈ I we define k = 0 and assume [n, n − 1] = ∅. We map I to the unique element
J ⊆p [n − k − 2] such that I = J ∪ [n − k, n − 1]. This mapping is clearly one-to-one and
the result follows.

2.2 Extended peak quasisymmetric functions

We proceed with the definition of the relevant subfamilies of q-fundamentals.
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Definition 8 (Extended-peak quasisymmetric functions). Let n, p ∈ P, and let ρp denote
the root of unity ρp = e−iπ(p−1)/(p+1). Thus, ρ1 = 1, ρ2 = e−iπ/3, ρ3 = e−iπ/2, . . . . Note that
−ρp is a primitive p + 1-th root of unity, i.e., (−ρp)p+1 = 1 but (−ρp)j ̸= 1 for 1 ≤ j < p + 1.
Given a subset I ⊆ [n − 1], we define the p-extended peak quasisymmetric function indexed by I

Lp
n,I = L(ρp)

n,I . (2.2)

Define P p ⊆ QSym to be the subalgebra of QSym spanned by (Lp
n,I)n≥0,I⊆[n−1], and let P p

n ⊆
QSymn be its subspace composed of quasisymmetric functions of degree n (that is, the vector
space spanned by (Lp

n,I)I⊆[n−1]). We call P p the algebra of p-extended peaks.

We remark that P p is actually a Hopf subalgebra of QSym (by Remark 1).
Definition 8 gives extended peak functions over all subsets. However, we know

from Proposition 4 that they do not span QSym. As a result, for all p ∈ P, the fam-
ily (Lp

n,I)n≥0,I⊆[n−1] is not linearly independent and some indices are redundant. We
characterise these set indices. First, for n, p ∈ P, if a set I is not a p-extended peak set,
then Lp

n,I may be expressed in terms of other p-extended peak quasisymmetric functions.

Theorem 1 (Extended peak functions over sets that are not p-extended peaks). Let n, p ∈
P with n ≥ p + 1. Let i be an integer such that 0 ≤ i ≤ n − 1 − p, and J ⊆ [n − 1] be a subset
that satisfies [i+ 1, i+ p+ 1]∩ J = ∅ and i ∈ J ∪{0}. Then, the set [i+ 1, i+ p]∪ J ⊈p [n− 1]
as it contains either a sequence of p+ 1 consecutive elements or the sequence [1, p]. Notice further
that any set that is not a p-extended peak set may be written as such. We have the equality

∑
I⊆[i+1,i+p]

(−1)|I|Lp
n,I∪J = 0.

Secondly, we can compute explicitly the dimension of P p
n for n, p ∈ P.

Theorem 2 (Subspaces dimension). Let n, p ∈ P be two positive integers. The dimension of
P p

n is equal to s(p)
n , the number of p-extended peak sets on n elements:

dimP p
n = s(p)

n .

We postpone the proofs of Theorems 1 and 2 respectively to Sections 3.1 and 3.2.
Combining them we characterise the subalgebra P p.

Theorem 3 (Basis for algebra of extended peaks). Let p ∈ P. The family (Lp
n,I)n≥0,I⊆p[n−1]

is a basis of the subalgebra P p of QSym.

Proof. Fix p ∈ P. As p-extended peak quasisymmetric functions are special cases of
q-fundamentals, the stability by multiplication is actually a direct consequence of Equa-
tion (1.2). Then Theorem 1 shows that only p-extended peak quasisymmetric functions
indexed by p-extended peak sets may be linearly independent. Finally, Theorem 2 shows
that for all n ∈ P the dimension of the finite vector space containing homogeneous qua-
sisymmetric functions of degree n is exactly the number of p-extended peak sets on n
elements.
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3 Proofs of Theorems 1 and 2

3.1 Extended peak functions indexed by generic sets

In order to show Theorem 1, compute

∑
I⊆[i+1,i+p]

(−1)|I|L(q)
I∪J

using Equation (1.3) for integers i, n, p and set J satisfying the conditions of the theorem.
Note that for I ⊆ [i + 1, i + p], i + 1 /∈ Peak(I ∪ J) (either i + 1 = 1 or i ∈ J) and that
Peak(I ∪ J) ∩ J = Peak(J) irrelevant of the choice of I (as i + p + 1 /∈ J). As a result, we
can decompose in Equation (1.3) any subset or peak lacunar subset (i.e. 1-extended peak
subset) of I ∪ J as a (peak lacunar) subset of I and a (peak lacunar) subset of J. Namely,

∑
I⊆[i+1,i+p]

(−1)|I|L(q)
I∪J

= ∑
U′⊆J

V′⊆Peak(J)
U′∩V′=∅

(−q)|V
′|(q − 1)|U

′| ∑
I⊆[i+1,i+p]

(−1)|I| ∑
U⊆I

V⊆Peak(I)\{i+1}
U∩V=∅

(−q)|V|(q − 1)|U|η
(q)
U′∪V′−1∪V′∪U∪V−1∪V .

Next, invert summation indices in the last sums.

∑
I⊆[i+1,i+p]

(−1)|I|L(q)
I∪J

= ∑
U′⊆J

V′⊆Peak(J)
U′∩V′=∅

(−q)|V
′|(q − 1)|U

′| ∑
U⊆[i,i+p]

V⊆1[i+1,i+p]
U∩V=∅

U∩V−1=∅

(−q)|V|(q − 1)|U|η
(q)
U′∪V′−1∪V′∪U∪V−1∪V ∑

U∪V⊆I⊆[i+1,i+p]\V−1
(−1)|I|.

The last sum is obviously 0 except when U ∪ V = [i + 1, i + p] \ V − 1. As a result,

∑
I⊆[i+1,i+p]

(−1)|I|L(q)
I∪J

= ∑
U′⊆J

V′⊆Peak(J)
U′∩V′=∅

(−q)|V
′|(q − 1)|U

′|η
(q)
U′∪V′−1∪V′∪[i,i+p] ∑

V⊆1[i+1,i+p]
(−q)|V|(q − 1)p−2|V|(−1)p−|V|.

The summands in the sum over all 1-extended peak sets V ⊆1 [i + 1, i + p] depend only
on the cardinality of V. It easy to show (left to the reader) that

|{V ⊆1 [i + 1, i + p], |V| = v}| =
(

p − v
v

)
.
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Subsequently,

∑
I⊆[i+1,i+p]

(−1)|I|L(q)
I∪J

= (−1)p ∑
U′⊆J

V′⊆Peak(J)
U′∩V′=∅

(−q)|V
′|(q − 1)|U

′|η
(q)
U′∪V′−1∪V′∪[i+1,i+p]

p

∑
v=0

(−1)v
(

p − v
v

)
(−q)v(q − 1)p−2v.

We use the following lemma.

Lemma 1 ([9]). Let n ∈ P and x, y ∈ C, one has

n

∑
k=0

(−1)k
(

n − k
k

)
(xy)k(x + y)n−2k =

n

∑
j=0

xn−jyj.

Denote for n ∈ P, c ∈ C, [n]c = (1 − cn)/(1 − c). As a direct consequence of Lemma 1,

∑
I⊆[i+1,i+p]

(−1)|I|L(q)
I∪J = ∑

U′⊆J
V′⊆Peak(J)
U′∩V′=∅

(−q)|V
′|(q − 1)|U

′|η
(q)
U′∪V′−1∪V′∪[i+1,i+p]

p

∑
t=0

(−q)p−t,

= [p + 1]−q ∑
U′⊆J

V′⊆Peak(J)
U′∩V′=∅

(−q)|V
′|(q − 1)|U

′|η
(q)
U′∪V′−1∪V′∪[i+1,i+p].

End the proof with

[p + 1]−ρp =
1 − (−ρp)p+1

1 + ρp
= 0.

3.2 Finite subspaces dimension

For n ∈ P and q ∈ C, denote B(q)
n the transition matrix between (L(q)

n,I )I⊆[n−1] and

(η
(q)
n,J )J⊆[n−1] with coefficients given by Equation (1.3). Columns and rows are indexed

by subsets I of [n − 1] sorted in reverse lexicographic order. A subset I is before subset
J iff the word obtained by writing the elements of I in decreasing order is before the
word obtained from J for the lexicographic order. The column indexed by the subset I
corresponds to L(q)

n,I and the row indexed by J to η
(q)
n,J (as a direct consequence B(q)

n is the

transpose of the similar matrix defined in [4]). For n = 0, assume B(q)
0 to be the empty

matrix.
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Example 2. For n = 4, the transition matrix B(q)
4 between (L(q)

I )I⊆[3] and (η
(q)
J )J⊆[3] is given

by

B(q)
4 =

∅ {1} {2} {2, 1} {3} {3, 1} {3, 2} {3, 2, 1}
∅ 1 1 1 1 1 1 1 1
{1} 0 q − 1 0 q − 1 0 q − 1 0 q − 1
{2} 0 0 q − 1 q − 1 0 0 q − 1 q − 1
{2, 1} 0 0 −q (q − 1)2 0 0 −q (q − 1)2

{3} 0 0 0 0 q − 1 q − 1 q − 1 q − 1
{3, 1} 0 0 0 0 0 (q − 1)2 0 (q − 1)2

{3, 2} 0 0 0 0 −q −q (q − 1)2 (q − 1)2

{3, 2, 1} 0 0 0 0 0 −q(q − 1) −q(q − 1) (q − 1)3

Our goal is to compute the dimension of the kernel of B(q)
n to get the dimension of

the vector subspace P p
n as

dimP p
n = rank(B(q)

n ) = 2n−1 − dim ker B(q)
n .

We show the following proposition.

Proposition 6. Let n, p ∈ P be two positive integers. We have

dim ker B(ρp)
n =

{
∑

p+1
k=1 dim ker B(ρp)

n−k + [n > p + 1]2n−p−2 for n > p,
0 for n ≤ p.

Proof. The second case is a direct consequence of the fact that the matrix B(ρp)
n is invertible

for n ≤ p (see [4]). To show the general recurrence, assume that n > p. As in [4], notice
that the matrix B(q)

n is block upper triangular. For each k ∈ [n], let A(q)
k denote the transi-

tion matrix from (L(q)
n,I )I⊆[n−1], max(I)=k−1 to (η

(q)
n,J )J⊆[n−1], max(J)=k−1 (where max∅ := 0);

this actually does not depend on n. Note that A(q)
k is a 2k−2 × 2k−2-matrix if k ≥ 2,

whereas A(q)
1 is a 1 × 1-matrix. We have

B(q)
n =



A(q)
1 ∗ ∗ . . . ∗
0 A(q)

2 ∗ . . . ∗
0 0 A(q)

3 . . . ∗
0 0 0 . . . ∗
0 0 0 0 A(q)

n


.

We have the following lemma:
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Lemma 2. The matrices
(

B(q)
n

)
n

and
(

A(q)
n

)
n

satisfy the following recurrence relations (for
n ≥ 1 and n ≥ 2, respectively):

B(q)
n =

(
B(q)

n−1 B(q)
n−1

0 A(q)
n

)
, A(q)

n =

(
(q − 1)B(q)

n−2 (q − 1)B(q)
n−2

−qB(q)
n−2 (q − 1)A(q)

n−1

)
.

Consider for n ≥ 2 and coefficients α, β ∈ C the kernel of the matrix αA(q)
n+1 + βB(q)

n .
Let X be a 2n−1 vector and denote X1 and X2 the two vectors of size 2n−2 such that

X =

(
X1

X2

)
. We compute

(
αA(q)

n+1 + βB(q)
n

)
X = 0 ⇔

{
((q − 1)α + β)B(q)

n−1(X1 + X2) = 0

−qαB(q)
n−1X1 + ((q − 1)α + β)A(q)

n X2 = 0
(3.1)

Two cases arise from the previous equation. Either ((q − 1)α + β) ̸= 0 and

(
αA(q)

n+1 + βB(q)
n

)
X = 0 ⇔

B(q)
n−1(X1 + X2) = 0(
((q − 1)α + β)A(q)

n + qαB(q)
n−1

)
X2 = 0

(3.2)

or ((q − 1)α + β) = 0 and(
αA(q)

n+1 + βB(q)
n

)
X = 0 ⇔ qαB(q)

n−1X1 = 0 (3.3)

Consider the sequence of coefficients(
α
(q)
0 β

(q)
0

)
= (0 1)(

α
(q)
n+1 β

(q)
n+1

)
=
(

α
(q)
n β

(q)
n

)(q − 1 q
1 0

)
, for n ≥ 0.

Solving the recurrence we have for integer n ≥ 1(
α
(q)
n β

(q)
n

)
= (0 1)

(
q − 1 q

1 0

)n

= (−1)n(0 1)
(
[n + 1]−q −q[n]−q
−[n]−q q[n − 1]−q

)
= (−1)n(−[n]−q q[n − 1]−q),

where for integer i and complex number c recall that [i]c = (1 − ci)/(1 − c). Finally
notice that for integer n ≥ 1

α
(q)
n (q − 1) + β

(q)
n = (−1)n

(
[n]−q − q(−q)n−1

)
= (−1)n[n + 1]−q.
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Get back to the case q = ρp for some positive integer p ∈ P. As a direct consequence of
the definition of ρp in Definition 8, we have

[p + 1]−ρp = 0;

[n]−ρp ̸= 0, 1 ≤ n ≤ p.

As a result, if q = ρp, one may iterate the recurrence in Equation (3.1) p times with the
case of Equation (3.2) and one more time to go to the case of Equation (3.3). Recall that

β
(ρp)
p+1 = ρp[p]−ρp ̸= 0 to conclude the proof.

Noticing that for n > p + 1, 2n−1 = 2n−2 + 2n−3 + · · ·+ 2n−p−1 + 2 · 2n−p−2 we can

deduce the rank of B(ρp)
n using Proposition 6. We get

rank
(

B(ρp)
n

)
= 2n−1 − dim ker B(ρp)

n =

∑
p+1
k=1 rank

(
B(ρp)

n−k

)
for n > p,

2n−1 for 1 ≤ n ≤ p.
(3.4)

We conclude that the sequence of subspace dimensions (P p
n )n follows the same recur-

rence with the same initial conditions as the sequence of the numbers of p-extended
peak sets (sp

n)n. Theorem 2 follows.
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