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Pizza and 2-structures
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Abstract. Let H be a Coxeter hyperplane arrangement in n-dimensional Euclidean
space. Assume that the negative of the identity map belongs to the associated Coxeter
group W. Furthermore assume that the arrangement is not of type An

1 . Let K be a
measurable subset of the Euclidean space with finite volume which is stable by the
Coxeter group W and let a be a point such that K contains the convex hull of the
orbit of the point a under the group W. In a previous article the authors proved the
generalized pizza theorem: that the alternating sum over the chambers T of H of the
volumes of the intersections T ∩ (K + a) is zero. In this paper we give a dissection
proof of this result. In fact, we lift the identity to an abstract dissection group to
obtain a similar identity that replaces the volume by any valuation that is invariant
under affine isometries. This includes the cases of all intrinsic volumes. Apart from
basic geometry, the main ingredient is a previous theorem of the authors where we
relate the alternating sum of the values of certain valuations over the chambers of a
Coxeter arrangement to similar alternating sums for simpler subarrangements called
2-structures, introduced by Herb to study discrete series characters of real reduced
groups.

Résumé. Soit H un arrangement d’hyperplans de Coxeter dans un espace euclidien V
de dimension n. On suppose que H n’est pas de type An

1 et que l’isométrie x 7→ −x
sur V appartient à son groupe de Coxeter W. Soit K un sous-ensemble mesurable de
mesure finie de V qui est stable par W, et soit a un point de V tel que K contienne
l’enveloppe convexe de l’orbite de a sous W. Dans un article précédent, nous avons
prouvé le “théorème de la pizza généralisé”, qui dit que la somme alternée sur les
chambres T de H du volume de T ∩ (K + a) est nulle. Dans cet article, nous donnons
une preuve géométrique par dissection de ce résultat. Plus précisément, nous relevons
l’identité ci-dessus dans un groupe de dissection abstrait, ce qui implique des iden-
tités similaires lorsque le volume est remplacé par n’importe quelle valuation (mesure
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finiment additive) invariante par isométries affines. Ceci inclut en particulier le cas
des volumes intrinsèques sur les ensembles convexes compacts. Les ingrédients prin-
cipaux de la preuve sont de la géométrie élémentaire et un théorème précédent des
auteurs qui calcule la somme alternée des valeurs d’une valuation sur les chambres
d’un arrangement de Coxeter en fonction de sommes alternées similaires associées
à des sous-arrangements plus simples appelés 2-structures, introduits à l’origine par
Herb pour étudier les caractères des séries discrètes des groupes réductifs réels.

Keywords: Coxeter arrangements, 2-structures, dissections, Pizza Theorem, reflection
groups, intrinsic volumes, pseudo-root systems, Bolyai-Gerwien theorem

1 Introduction

The 2-dimensional pizza theorem is the following result: Given a disc in the plane,
choose a point on this disc and cut the disc by 2k equally spaced lines passing through
the point, where k ≥ 2. The alternating sum of the areas of the resulting slices is then
equal to zero. This was first proved by Goldberg [8]. Frederickson [7] gave a dissection
proof based on dissection proofs of Carter-Wagon in the case k = 2 (see [4]) and of Allen
Schwenk (unpublished) in the cases k = 3, 4. Frederickson deduced dissection proofs of
a similar sharing result for the pizza crust and of the so-called calzone theorem, which
is the analogue of the pizza theorem for a ball in R3 that is cut by one horizontal plane
and by 2k equally-spaced vertical planes all meeting at one point in the ball.

To generalize the pizza problem, consider a finite central hyperplane arrangement H
in Rn and fix a base chamber of this arrangement. Each chamber T has a sign (−1)T

determined by the parity of the number of hyperplanes separating it from the base
chamber. If K is a measurable subset of Rn of finite volume, what can we say about the
pizza quantity ∑T(−1)T Vol(T ∩ K), where the sum runs over all the chambers T of H?
The original pizza theorem is the case where n = 2, H has the type of the dihedral
arrangement I2(2k) and K is a disc containing the origin. The calzone theorem is the
case where n = 3, H has the type of the product arrangement I2(2k)× A1 and K is a ball
containing the origin.

The following generalization of the pizza and the calzone was proved in [6, Corol-
lary 6.9] by analytic means. We also recently learned that Brailov had proved indepen-
dently the same theorem for a ball and an arrangement of type Bn in [3], by somewhat
similar methods.

Theorem 1.1 (Ehrenborg, Morel and Readdy). Let H be a Coxeter arrangement with Coxeter
group W that contains the negative of the identity map, denoted by − id. Assume that H is not
of type An

1 . Let K be a set of finite measure that is stable by the group W. Then for every point
a ∈ Rn such that K contains the convex hull of {w(a) : w ∈ W}, we have

∑
T
(−1)T Vol(T ∩ (K + a)) = 0.
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The proof of this result uses an expression for ∑T(−1)T Vol(T ∩ (K + a)) as an al-
ternating sum of pizza quantities over subarrangements of H of the form {e⊥1 , . . . , e⊥n }
with (e1, . . . , en) an orthonormal basis of Rn, in other words, subarrangements that have
type An

1 .
In the paper [5], we study a different sum ∑T(−1)Tν(T), where ν is a valuation de-

fined on closed convex polyhedral cones of Rn that takes integer values. Under the
same condition that H is a Coxeter arrangement, we rewrite this quantity as an alter-
nating sum of similar quantities for certain subarrangements of H that are products of
rank 1 and rank 2 arrangements [5, Theorem 3.2.1], and then deduce an expression for
it. These subarrangements, called 2-structures, were introduced by Herb [11] to study
characters of discrete series of real reductive groups. In fact, the identity of [5, Theo-
rem 3.2.1] is valid for any valuation and its proof uses only basic properties of Coxeter
systems and closed convex polyhedral cones.

In this paper we use the setting of 2-structures and [5, Corollary 3.2.4] (recalled in
Theorem 2.5) to obtain a dissection proof of the higher-dimensional pizza theorem of [6,
Corollary 6.9] that is independent of the results and methods of [6] (and of [3]):

Theorem 1.2 (Abstract pizza theorem; see Theorem 3.4.). With the notation and hypotheses
of Theorem 1.1, we have

∑
T
(−1)T[T ∩ (K + a)] = ∑

T
(−1)T[T ∩ (K + a)] = 0,

where the brackets denote classes in the abstract dissection group of Definition 3.1.

As we take into account lower-dimensional sets when defining our abstract dissection
group, this result implies generalizations of the higher-dimensional pizza theorem to all
the intrinsic volumes (if K is convex). The idea of the proof of Theorem 1.2 is the fol-
lowing: by expanding the expression using 2-structures, we can reduce to a sum where
each term is a similar expression for an arrangement that is a product of arrangements
of types A1 and I2(2k). We then adapt the dissection proof of Frederickson to an ar-
rangement of type I2(2m)×H′. We also explain how to keep track of lower-dimensional
regions of the dissection. If our product arrangement contains at least one dihedral fac-
tor, then its contribution is zero, and we immediately get a dissection proof of the result.
However, if all the product arrangements that appear are of type An

1 , then their indi-
vidual contributions are not zero. We need one extra step in the proof to show that the
contributions cancel. This step uses a slight refinement of the Bolyai-Gerwien theorem
presented in Section 4. An interesting point to note is that the shape of the pizza plays
absolutely no role in this proof, as long as it has the same symmetries as the arrange-
ment and contains the convex hull of {w(a) : w ∈ W}. In particular, we no longer need
to assume that it is measurable and of finite volume.

Let us mention some interesting questions that remain open:
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(1) The paper [6] proves the pizza theorem for more general arrangements (the con-
dition is that the arrangement H is a Coxeter arrangement and that its number
of hyperplanes is greater than the dimension n and has the same parity as that
dimension), but only in the case of the ball; see [6, Corollary 7.6]. Is it possible to
give a dissection proof of this result?

(2) Mabry and Deiermann [16] show that the two-dimensional pizza theorem does not
hold for a dihedral arrangement having an odd number of lines. More precisely,
they determine the sign of the quantity ∑T(−1)T Vol(T ∩ K), where K is a disc
containing the origin, and show that it vanishes if and only if the center of K lies
on one of the lines. Their methods are analytic. As far as we know, there exists
no dissection proof of this result either. The higher-dimensional case where H is
a Coxeter arrangement and the number of its hyperplanes does not have the same
parity as n also remains wide open.

2 Review of 2-structures and of the basic identity

Let V be a finite-dimensional real vector space with an inner product (·, ·). For every
α ∈ V, we denote by Hα the hyperplane α⊥ and by sα the orthogonal reflection in the
hyperplane Hα.

We say that a subset Φ of V is a normalized pseudo-root system if:

(a) Φ is a finite set of unit vectors;

(b) for all α, β ∈ Φ, we have sβ(α) ∈ Φ (in particular, taking α = β, we get that
−α ∈ Φ).

Elements of Φ are called pseudo-roots. The rank of Φ is the dimension of its span.
We call such objects pseudo-root systems to distinguish them from the root systems

that appear in representation theory. If Φ′ is a root system then Φ = {α/∥α∥ : α ∈ Φ′} is
a normalized pseudo-root system. Not every normalized pseudo-root system arises in
this manner; see for instance the pseudo-root systems of type H3 and H4.

We say that a normalized pseudo-root system Φ is irreducible if, whenever Φ = Φ1 ⊔
Φ2 with Φ1 and Φ2 orthogonal, we have either Φ1 = ∅ or Φ2 = ∅. Every normalized
pseudo-root system can be written uniquely as a disjoint union of irreducible normalized
pseudo-root systems. Irreducible normalized pseudo-root systems are classified: they
are in one of the infinite families An (n ≥ 1), Bn/Cn (n ≥ 2), 1 Dn (n ≥ 4), I2(m)
(m ≥ 3) or one of the exceptional types E6, E7, E8, F4, H3 or H4, with types I2(3) and
A2 isomorphic, as well as types I2(4) and B2. (See [10, Chapter 5] or Table 1 in [1,
Appendix A].)

1The pseudo-root systems of types Bn and Cn are identical after normalizing the lengths of the roots.
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We say that a subset Φ+ ⊂ Φ is a positive system if there exists a total ordering < on
the R-vector space V such that Φ+ = {α ∈ Φ : α > 0} (see [13, Section 1.3]). The Coxeter
group of Φ is the group of isometries W of V generated by the reflections sα for α ∈ Φ.
This group preserves Φ by definition of a normalized pseudo-root system, and it acts
simply transitively on the set of positive systems by [13, Section 1.4]. In particular, the
Coxeter group W is finite.

Let E be a finite set of unit vectors of V such that E ∩ (−E) = ∅. The corresponding
hyperplane arrangement is the set of hyperplanes H = {He : e ∈ E}. A chamber of H is
a connected component of V − ⋃

e∈E He; we denote by T (H) the set of chambers of H.
Fix a chamber T0 to be the base chamber. For a chamber T ∈ T (H) we denote by S(T, T0)
the set of e ∈ E such that the two chambers T and T0 are on different sides of the
hyperplane He, and define the sign of T to be (−1)T = (−1)|S(T,T0)|.

We say that H is a Coxeter arrangement if it is stable by the orthogonal reflections in
each of its hyperplanes. In that case, the set Φ = E ∪ (−E) is a normalized pseudo-
root system. We call its Coxeter group the Coxeter group of the arrangement. The map
sending a positive system Φ+ ⊂ Φ to the set {v ∈ V : ∀α ∈ Φ+ (v, α) > 0} is a bijection
from the positive systems in Φ to the chambers of H. See for example [2, Chapitre V
§ 4 No. 8 Proposition 9 p. 99] and the discussion following it. Conversely, if Φ ⊂ V
is a normalized pseudo-root system with Coxeter group W and Φ+ ⊂ Φ is a positive
system, then H = {Hα : α ∈ Φ+} is a Coxeter hyperplane arrangement, and in that case
we always take the base chamber T0 to be the chamber corresponding to Φ+.

Let us define product arrangements. Let V1 and V2 be two finite-dimensional real
vector spaces equipped with inner products, and suppose that we are given hyperplane
arrangements H1 and H2 on V1 and V2 respectively. We consider the product space
V1 × V2, where the factors are orthogonal. The product arrangement H1 ×H2 is then the
arrangement on V1 × V2 with hyperplanes H × V2 for H ∈ H1 and V1 × H′ for H′ ∈ H2.
If H1 is the empty arrangement, then we write V1 ×H2 instead of the confusing ∅×H2.
Similarly, if H2 is the empty arrangement, we write H1 ×V2. If the arrangements H1 and
H2 arise from normalized pseudo-root systems Φ1 ⊂ V1 and Φ2 ⊂ V2, then their product
H1 ×H2 arises from the normalized pseudo-root system Φ1 ×{0} ∪ {0}×Φ2 ⊂ V1 ×V2.
We also denote this pseudo-root system by Φ1 × Φ2.

The notion of 2-structures was introduced by Herb for root systems to study the
characters of discrete series representations; see for example the review article [11]. The
definition we give here is Definition B.2.1 of [5]. It has been slightly adapted to work for
pseudo-root systems.

Definition 2.1. Let Φ be a normalized pseudo-root system with Coxeter group W. A
2-structure for Φ is a subset φ of Φ satisfying the following properties:

(a) The subset φ is a disjoint union φ = φ1 ⊔ φ2 ⊔ · · · ⊔ φr, where the φi are pairwise
orthogonal subsets of φ and each of them is an irreducible pseudo-root system of
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type A1, B2 or I2(2k) for k ≥ 3.

(b) Let φ+ = φ ∩ Φ+. If w ∈ W is such that w(φ+) = φ+ then det(w) = 1.

We denote by T (Φ) the set of 2-structures for Φ.

Proposition 2.2. Let Φ be a normalized pseudo-root system with Coxeter group W.

(i) The group W acts transitively on the set of 2-structures T (Φ).

(ii) The pseudo-root system Φ and its 2-structures have the same rank if and only if there exists
w ∈ W whose restriction to Span(Φ) is equal to − idSpan(Φ).

To each 2-structure φ ⊂ Φ, we can associate a sign ϵ(φ) = ϵ(φ, Φ+) (see the start of
Section 5 and Lemma 5.1 of [12] and Definition B.2.8 of [5]).

We next introduce the abstract pizza quantity. Let H be a central hyperplane ar-
rangement on V. Let CH(V) be the set of closed convex polyhedral cones in V that are
intersections of closed half-spaces bounded by hyperplanes H where H ∈ H, and let
KH(V) be the quotient of the free abelian group

⊕
K∈CH(V) Z[K] on CH(V) by the rela-

tion [K] + [K′] = [K ∪ K′] + [K ∩ K′] for all K, K′ ∈ CH(V) such that K ∪ K′ ∈ CH(V). For
K ∈ CH(V), we still denote the image of K in KH(V) by [K].

Definition 2.3. Suppose that we have fixed a base chamber of H. The abstract pizza
quantity of H is

P(H) = ∑
T∈T (H)

(−1)T[T] ∈ KH(V).

Remark 2.4. By Lemma 3.2.3 of [5], we have

P(H) = ∑
T∈T (H)

(−1)T[T].

We use this alternative definition of P(H) in our proofs.

The following result is Corollary 3.2.4 of [5]. It shows how to evaluate the pizza
quantity for a Coxeter arrangement in terms of the associated 2-structures.

Theorem 2.5. Let Φ ⊂ V be a normalized pseudo-root system. Choose a positive system Φ+ ⊂
Φ and let H be the hyperplane arrangement (Hα)α∈Φ+ on V with base chamber corresponding
to the positive system Φ+. For every 2-structure φ ∈ T (Φ), we write φ+ = φ ∩ Φ+ and we
denote by Hφ the hyperplane arrangement (Hα)α∈φ+ with base chamber corresponding to φ+.
Then we have

P(H) = ∑
φ∈T (Φ)

ϵ(φ)P(Hφ).

If φ ∈ T (Φ) then the closures of the chambers of Hφ are elements of CH(V), so
P(Hφ) makes sense as an element of KH(V).
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3 A dissection proof of the higher-dimensional pizza the-
orem

Definition 3.1. Let C(V) be a non-empty family of subsets of V that is stable by finite
intersections and affine isometries and such that, if C ∈ C(V) and D is a closed affine
half-space of V, then C ∩ D ∈ C(V). Furthermore, we assume that C(V) is closed with
respect to Cartesian products, that is, if Ci ∈ C(Vi) for i = 0, 1 then C0 ×C1 ∈ C(V0 ×V1).
For example, we could take C(V) to be the family of all convex subsets of V, or of all
closed (or compact) convex subsets, or of all convex polyhedra.

We denote by K(V) the quotient of the free abelian group
⊕

C∈C(V) Z[C] on C(V) by
the three relations: (i) [∅] = 0; (ii) [C ∪ C′] + [C ∩ C′] = [C] + [C′] for all C, C′ ∈ C(V)
such that C ∪ C′ ∈ C(V); and (iii) [g(C)] = [C], for every C ∈ C(V) and every affine
isometry g of V. For C ∈ C(V), we still denote the image of C in K(V) by [C].

A valuation on C(V) with values in an abelian group A is a function C(V) −→ A that
can be extended to a morphism of groups K(V) −→ A.

Remark 3.2. Define B(V) to be the relative Boolean algebra generated by C(V), that
is, the smallest collection of subsets of V that contains C(V) and is closed under finite
unions, finite intersections and set differences. Groemer’s Integral Theorem states that a
valuation on C(V) can be extended to a valuation on the Boolean algebra B(V); see [9]
and also [15, Chapter 2]. Applying this to the valuation C 7−→ [C] with values in
K(V), we see that we can make sense of [C] for any C ∈ B(V). For instance, we have
[C1 ∪ C2] = [C1] + [C2]− [C1 ∩ C2] and [C1 − C2] = [C1]− [C1 ∩ C2]. Moreover if C(V) is
the set of all convex polyhedra in V, then B(V) contains all polyhedra (convex or not),
and also half-open polyhedra.

Next we have the following straightforward lemma, whose proof we omit, which
states that the class symbol is well-behaved with respect to Cartesian products.

Lemma 3.3. The two class identities [C0] = [D0] and [C1] = [D1] in K(V0) and K(V1) respec-
tively imply that [C0 × C1] = [D0 × D1] in K(V0)× K(V1).

Let H be a central hyperplane arrangement on V with fixed base chamber. If K ∈
C(V), we have a morphism of groups eK : KH(V) −→ K(V) induced by the map
CH(V) −→ C(V), C 7−→ C ∩ K.

We denote by P(H, K) the image of P(H) by this morphism eK; in other words, we
have

P(H, K) = ∑
T∈T (H)

(−1)T[T ∩ K] = ∑
T∈T (H)

(−1)T[T ∩ K],

where Remark 2.4 implies the second equality.
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We state the main theorem of this paper. First for u, v ∈ V define the half-open line
segment (u, v] by {(1 − λ)u + λv : 0 < λ ≤ 1}. Our main result is the following:

Theorem 3.4 (The Abstract Pizza Theorem). Let H be a Coxeter hyperplane arrangement
with Coxeter group W in an n-dimensional space V such that − idV ∈ W. Let K ∈ C(V)
and a ∈ V. Suppose that K is stable by the group W and contains the convex hull of the set
{w(a) : w ∈ W}.

1. If H is not of type An
1 , we have P(H, K + a) = 0 in K(V).

2. If H has type An
1 , Φ is the normalized pseudo-root system corresponding to H and Φ+ =

{e1, . . . , en} where Φ+ ⊂ Φ is the positive system corresponding to the base chamber of H,
then the following identity holds:

P(H, K + a) =

[
n

∏
i=1

(0, 2(a, ei)ei]

]
. (3.1)

Here we are using Remark 3.2 to make sense of the right-hand side of equation (3.1).
The conditions on K are satisfied if for example K is convex, contained in C(V), stable

by W and 0 ∈ K + a. Indeed, the last condition implies that −a ∈ K; as − idV ∈ W by
assumption, this in turns implies that a ∈ K, hence that K contains the convex hull of the
set {w(a) : w ∈ W}.

We will give the proof of Theorem 3.4 at the end of the section. This proof does not
use Corollary 6.9 of [6], so we obtain a new proof of that result.

Let V0, . . . , Vn denote the intrinsic volumes on V (see [18, Section 4.2]).

Lemma 3.5. Let (v1, . . . , vk) be an orthogonal family of vectors in V. Then Vi((0, v1]× · · · ×
(0, vk]) = 0 for 0 ≤ i ≤ k − 1.

Corollary 3.6. We keep the notation and hypotheses of Theorem 3.4. If H is not of type An
1 , we

have
∑

T∈T (H)

(−1)TVi(T ∩ (K + a)) = 0 (3.2)

for every 0 ≤ i ≤ n, where K is assumed to be convex if i ̸= n. If H has type An
1 and K is convex

then equation (3.2) holds for 0 ≤ i ≤ n − 1.

Remark 3.7. Theorem 3.4 immediately implies generalizations to our higher-dimensional
case of the “thin crust” and “thick crust” results of Confection 3 and Leftovers 1 of [16]
for an even number of cuts.

We obtain the “thin crust” result by evaluating the (n − 1)st intrinsic volume on
P(H, K + a). Note that this result holds for a pizza of any (convex) shape and even in
the case where we only make n cuts, where n is the dimension.
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To generalize the “thick crust” result, consider two sets K ⊂ L stable by W and
in C(V). If a ∈ V is such that K contains the convex hull of the set {w(a) : w ∈ W}, then

P(H, (L − K) + a) = P(H, L + a)− P(H, K + a) = 0,

so in particular
∑

T∈T (H)

(−1)T Vol(T ∩ ((L − K) + a)) = 0.

The case where K and L are balls with the same center is the “thick crust” result.

We now state some lemmas that will be used in the proof of Theorem 3.4.

Lemma 3.8. Let Hi be a hyperplane arrangement on Vi for i = 0, 1. Assume furthermore that
H1 = {He}e∈E1 has type Ar

1 and dim(V1) = r. Let E1 = {e1, . . . , er} be the index set of H1. Let
H and V be the Cartesian products H0 ×H1 and V0 ×V1 respectively. Then for every K ∈ C(V)
that is stable under the orthogonal reflections in the hyperplanes V0 × He1 , . . . , V0 × Her and for
every a ∈ V1, if L = K + a, we have the identity

P(H, L) = P (H0 × V1, L ∩ (V0 × (0, 2(a, e1)e1]× · · · × (0, 2(a, er)er])) ,

where H0 × V1 is the product of H0 and the empty hyperplane arrangement on V1.

Lemma 3.9. Suppose that we have V = V(1)
1 × · · · ×V(r)

1 ×V(1)
2 × · · · ×V(s)

2 , where the factors
of the product are pairwise orthogonal, and that H is a product H(1)

1 × · · · ×H(r)
1 ×H(1)

2 × · · · ×
H(s)

2 , where each H(j)
i is a hyperplane arrangement on V(j)

i . Suppose further that:

(a) If 1 ≤ j ≤ r then V(j)
1 is 1-dimensional, and we have a unit vector e(j) in V(j)

1 yielding the

hyperplane arrangement H(j)
1 = {0}.

(b) If 1 ≤ j ≤ s then V(j)
2 is 2-dimensional, and the arrangement H(j)

2 is of type I2(2m(j)) for
some m(j) ≥ 2.

Let a ∈ V and K ∈ C(V). Suppose that K is stable by the Coxeter group W and contains the
convex hull of the set {w(a) : w ∈ W}. Then the following two statements hold:

(i) If s ≥ 1 we have P(H, K + a) = 0 in K(V).

(ii) If s = 0 we have in K(V) the identity

P(H, K + a) =
[
(0, 2(a, e(1))e(1)]× · · · × (0, 2(a, e(r))e(r)]

]
.
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Proof of Theorem 3.4. Statement (ii) is exactly Lemma 3.9(ii). We now prove statement (i),
so we assume that H is not of type An

1 . By Theorem 2.5, we have

P(H, K + a) = ∑
φ∈T (Φ)

ϵ(φ)P(Hφ, K + a).

By definition, any 2-structure for Φ is of type Ar
1 × ∏k≥2 I2(2k)sk with ∑k≥2 sk finite and,

as W acts transitively on the set of 2-structures (Proposition 2.2(i)), the integers r and sk,
for k ≥ 2, do not depend on the 2-structure but only on Φ. Also, by Proposition 2.2(ii),
we have dim V = r + ∑k≥2 2sk, so we are in the situation of Lemma 3.9. Suppose that
∑k≥2 sk ≥ 1. Then by Lemma 3.9(i) we have P(Hφ, K + a) = 0 for every φ ∈ T (Φ)
and hence P(H, K + a) = 0. Assume now that ∑k≥2 sk = 0, that is, sk = 0 for every k.
Statement (ii) of the same lemma implies that

P(H, K + a) = ∑
φ∈T (Φ)

ϵ(φ)

[
∏

e∈φ∩Φ+

(0, 2(a, e)e]

]
. (3.3)

This is an alternating sum of classes of half-open rectangular parallelotopes in V. So we
can apply Theorem 4.1 to prove that P(H, K+ a) = 0 in K(V). We know that Vi(P(H, K+
a)) = 0 if 0 ≤ i ≤ n − 1 by Lemma 3.5, so it remains to prove that Vn(P(H, K + a)) = 0,
that is, that the alternating sum of the volumes of the parallelotopes ∏e∈φ∩Φ+(0, 2(a, e)e]
is equal to zero. This follows from Corollary 6.9 of the paper [6]. However we can now
give a direct proof (that does not use analysis) using the method of that corollary. Let
f : V −→ R be the function defined by

f (a) = ∑
φ∈T (Φ)

ϵ(φ) ∏
e∈φ∩Φ+

2(a, e).

Note that f is a polynomial homogeneous of degree n on V. Furthermore equation (3.3)
implies that Vol(P(H, K + a)) = f (a) for every convex subset K of V of finite volume
that is stable by W and every a ∈ V such that 0 ∈ K + a. The polynomial f satisfies
f (w(a)) = det(w) f (a) for every w ∈ W and every a ∈ V (this is easy to see; see for
example Corollary 2.3 of [6]), so it vanishes on every hyperplane of H. But if f ̸= 0, then
the vanishing set of f must be of degree at most n, which contradicts the fact that, as
H is not of type An

1 , we have |H| > n. Hence we must have f = 0, and this gives the
desired result.

4 The Bolyai-Gerwien theorem for parallelotopes

The classical Bolyai-Gerwien theorem states that two polygons are scissors congruent if
and only if they have the same area. There is also a well-known generalization in higher
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dimensions that applies to parallelotopes; it follows from the characterization of transla-
tional scissors congruences in arbitrary dimensions, and was proved independently by
Jessen-Sah and Sah, see the beginning of Section 7 of [14] or Theorem 1.1 in Chapter 4
of [17]. In this section, we state a slight refinement of this generalization, Theorem 4.1,
that keeps track of lower-dimensional faces; in other words, we do not want ignore the
boundaries.

As in the previous sections, let V be an n-dimensional real vector space with an
inner product (·, ·). If (v1, . . . , vr) is a linearly independent list of elements of V, we
define the parallelotope P(v1, . . . , vr) = {∑r

i=1 aivi : 0 ≤ ai ≤ 1}. We denote by P(V)
the set of all convex polytopes in V (including lower-dimensional ones) and by Z(V)
the subfamily of polytopes that are translates of parallelotopes of the form P(v1, . . . , vr).
The set P(V) satisfies the conditions of Definition 3.1, so we can define an abelian group
KP (V) as in that definition. We denote by KZ (V) the subgroup of KP (V) generated by
the classes [P] for P ∈ Z(V). Remark 3.2 implies that, if Pext(V) is the relative Boolean
algebra generated by P(V), then we can define the class [P] in KP (V) of any element P
in Pext(V). We denote by Zext(V) the set of elements P of Pext(V) such that [P] ∈ KP (V)
is in the subgroup KZ (V). For example, the set Zext(V) contains Z(V), and it also
contains all half-open parallelotopes.

Let V0, . . . , Vn be the intrinsic volumes on V; see [18, Section 4.2]. These are valuations
on the set of all compact convex subsets of V, and in particular on P(V), so they induce
morphisms of groups from KP (V) to R, that we still denote by V0, . . . , Vn. Note that V0
is the Euler-Poincaré characteristic with compact support, so the image of KP (V) is Z.

The main result of this section is the following isomorphism.

Theorem 4.1. The morphism (V0, V1, . . . , Vn) : KZ (V) −→ Z × Rn is an isomorphism. In
particular, if P, P′ ∈ Zext(V) are such that Vi(P) = Vi(P′) for every 0 ≤ i ≤ n, then [P] = [P′]
in KZ (V).
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