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Abstract. The enumeration of linear λ-terms has attracted quite some attention re-
cently, partly due to their link to combinatorial maps. In 2019, Zeilberger and Reed
conjectured that 3-connected planar linear normal λ-terms have the same counting
formula as bipartite planar maps. In this article, we settle this conjecture by giving
a direct bijection. We also explore its enumerative consequences. With a similar ap-
proach, we give a new and direct bijection between planar linear normal λ-terms and
planar maps, whose restriction to 2-connected λ-terms leads to loopless planar maps.

Résumé. L’énumération des λ-termes linéaires a récemment attiré un intérêt grâce à
leur lien avec les cartes combinatoires. En 2019, Zeilberger et Reed ont conjecturé que
les λ-termes linéaires planaires normaux 3-connexes sont comptés par la même for-
mule que les cartes planaires bipartites. Dans cet article, nous provons cette conjecture
grâce à une bijection directe. Nous explorons aussi ses conséquences énumératives.
Avec la même approche, nous présentons une nouvelle bijection entre les λ-termes
linéaires planaires normaux et les cartes planaires, qui est directe et dont la restriction
aux λ-termes 2-connexes donne les cartes planaires sans boucle.
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As a well-known model of computation, λ-calculus has been well studied in logic
and related fields. However, its enumerative aspect only attracted attention relatively
recently. One of the most well-studied family is that of linear λ-terms, partly due to
its connections with combinatorial maps. Such connections were pioneered by Bodini,
Gardy and Jacquot in [2], where a simple bijection from linear λ-terms to cubic maps
was given. This bijection has led to the study of asymptotic properties and statistics
distribution of related λ-terms (see, e.g., [1, 2, 3]), and connections to other objects [7].

Independently, Zeilberger and Giorgetti found in [15] a bijection between planar linear
normal λ-terms and planar maps, which is not a simple restriction of the one in [2].
Moreover, when restricted to λ-terms that are also unitless, i.e., without closed sub-term,
this bijection leads to bridgeless planar maps. The unitless condition here is equivalent
to the 2-connectedness of the syntactic diagram of the λ-term. Such connections lead
naturally to the consideration of higher connectivity conditions on λ-terms. In a talk at
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CLA 2019 [16], Zeilberger and Reed considered a possible interpretation of connectivity
in logic. Based on experiments, they proposed the following conjecture.

Conjecture 0.1 ([16]). Planar 3-connected linear normal λ-terms with n + 2 variables are
counted by the same formula as bipartite planar maps with n edges given in [13]:

2n

(n + 1)(n + 2)

(
2n + 1

n

)
.

In a talk at CLA 2020 [11], Grygiel and Yu tried to relate these 3-connected λ-terms
to β(0, 1)-trees, which are in bijection with bicubic planar maps [6] and thus with bipar-
tite planar maps [13], and succeeded in a few special cases. The key of their work is a
characterization of skeletons of such λ-terms (Proposition 2.3).

In this article, based on the characterization given by Grygiel and Yu in [11], we prove
Conjecture 0.1 by giving a bijection between 3-connected planar linear normal λ-terms
and bipartite planar maps via the so-called degree trees defined in [8].

Theorem 0.2. For n ≥ 2, there is a bijection between 3-connected planar linear normal λ-terms
with n variables and bipartite planar maps with n− 2 edges.

Using this new bijection, we study the refined enumeration of such λ-terms under
several statistics, and also their asymptotic distribution, which are all done by translating
known results on bipartite planar maps.

With a similar approach, we also give a new and direct bijection between planar
linear normal λ-terms and planar maps, whose restriction to 2-connected λ-terms leads
to loopless planar maps.

Theorem 0.3. There is a direct bijection between planar linear normal λ-terms with n variables
and planar maps with n− 1 edges. Furthermore, it sends those λ-terms that are also 2-connected
to loopless planar maps.

For the second bijection, we define a family of node-labeled trees called v-trees, which
can be seen as description trees (see [6]) of planar maps under a seemingly new recursive
decomposition. We then give direct bijections from v-trees to both planar maps and
planar linear normal λ-terms, thus linking the two families.

The rest of the article is organized as follows. In Section 1, we define the objects that
we study. Then we characterize in Section 2 the skeletons of planar linear normal λ-terms
with different connectivity conditions, which is then used in Section 3 to give a bijection
from 3-connected planar linear normal λ-terms to degree trees, which are in bijection
with bipartite maps. In Section 4, we define v-trees and relate them bijectively to planar
linear normal λ-terms, and a direct bijection to planar maps is given in Section 5.

Due to space limit, some results and proofs are omitted in this extended abstract.
Readers are referred to the full version [10] for all details.
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1 Preliminaries

In mathematical logic, λ-terms can be defined recursively using three constructions:

• Atoms, which are variables x, y, . . .;

• Application t u with two λ-terms t and u;

• Abstraction λx.t with t a λ-term and x a variable. We say that every atom with the
variable x in t is bound by the abstraction, if not yet bound.

In the following, we consider λ-terms up to α-renaming, i.e., changing the name of
a variable in an abstraction and all atoms it binds. A λ-term t is closed if all atoms
are bound, and it is linear if it is closed and each abstraction binds exactly one atom.
Computation on λ-terms is done using β-reduction: we replace a sub-term of the form
(λx.u)v in a λ-term by u[x ← v], where the sub-term u has all its atoms of x replaced by
a copy of v. A λ-term is β-normal (or simply normal) if no β-reduction is possible. Given
a λ-term t, its skeleton Sk(t) is a plane unary-binary tree defined recursively as follows.

• If t is an atom, then Sk(t) is a leaf;

• If t = u v, then Sk(t) is rooted at a binary node, with Sk(u) its left sub-tree, and
Sk(v) its right sub-tree;

• If t = λx.u, then Sk(t) is rooted at a unary node, with Sk(u) its only sub-tree.

We identify atoms and abstractions in t with their corresponding leaves and unary nodes
in Sk(t). Many properties of t can be read off from Sk(t). For instance, t is normal if
no binary node of Sk(t) has a unary node as its left child. The size of a skeleton is its
number of leaves, which is also the number of atoms in the original λ-term.

The skeleton Sk(t) of a λ-term t still misses the binding relations between atoms and
abstractions. The syntactic diagram (or simply diagram) of a λ-term t, denoted by Diag(t),
is obtained from its skeleton Sk(t) by replacing each leaf by an edge from its parent to
the unary node of abstraction that binds its atom. It is clear that two different λ-terms
never share the same diagram. Given a leaf of Sk(t), we draw the corresponding edge
starting from the parent of the leaf, traveling counter-clockwise and entering the unary
node from its right. If such a drawing can be done without intersection, then the λ-term
t is planar. Figure 1 gives an example of a planar λ-term, with its skeleton and syntactic
diagram. We note that this λ-term is also normal.

As diagrams are graphs, we may transfer notions in graph theory to λ-terms. If the
diagram of a λ-term t is 2-edge-connected (or simply 2-connected), i.e., the removal of any
edge does not disconnect the diagram, then we say that t is 2-connected. Similarly, a
λ-term t is 3-edge-connected (or simply 3-connected) if the removal of any two edges in
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t = λu.λv.u(λw.λx.λz.(v(w(x(λy.y))))z(λk.k))

Sk(t) Diag(t)

Figure 1: Example of a normal planar λ-term, its skeleton and syntactic diagram.

Diag(t) does not disconnect Diag(t), except possibly the two edges adjacent to the root
of Sk(t) when t starts with an abstraction binding one atom.

In this article, we consider planar linear λ-terms. For planarity, given the skeleton
of such a λ-terms, we take a clockwise contour walk starting from the root, in which
we read off the unary nodes and leaves on first visit. By planarity, we must obtain a
well-parenthesized word with each abstraction paired up with the atom it binds. As the
binding of atoms is given by planarity, we may identify planar linear λ-terms with their
skeletons. By abuse of notation, given a skeleton S of some planar linear λ-term t, we
denote by Diag(S) the diagram Diag(t) of t.

In the following, we relate previously defined λ-terms to planar maps. A planar map is
an embedding of a graph on the plane defined up to orientation-preserving continuous
deformations, such that its edges only intersect at vertices. The connected components
of the complement of the embedding are called the faces. The face that extends to infinity
is called the outer face. Furthermore, we only consider rooted planar maps here, which
means that we mark a special corner on the outer face, called the root corner. The edge
next to the root corner in the clockwise order is called the root edge, and the vertex of
the corner is called the root vertex. We also consider the empty map, which consists of a
single vertex. A planar map is bipartite if we can color its vertices with black and white
such that each edge links a black and a white vertex. The root vertex is colored black by
convention.
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2 Characterization of planar linear normal λ-terms with
connectivity conditions

We may classify planar linear λ-terms by the connectivity of their diagrams. We denote
by C(1)n the set of planar linear normal λ-terms of size n. Similarly, we denote by C(2)n

(resp. C(3)n ) the terms that are 2-connected (resp. 3-connected) in C(1)n . We take C(1) =⋃
n≥1 C

(1)
n , and we define C(2) and C(3) similarly. It is clear that C(3) ⊂ C(2) ⊂ C(1).

Due to the correspondence between planar linear λ-terms and their skeletons, in
the following we will focus on skeletons instead of λ-terms. We denote by S (1)n (resp.
S (2)n and S (3)n ) the set of skeletons of terms in C(1)n (resp. C(2)n and C(3)n ). We also take
S (1) = ⋃

n≥1 S
(1)
n , and we define S (2) and S (3) similarly. It is clear that S (3) ⊂ S (2) ⊂ S (1).

We start by characterizing skeletons of planar linear λ-terms. Given a unary-binary
tree S and a node u in S, we denote by Su the sub-tree induced by u, by leaf(S) the
number of leaves in S, and by unary(S) the number of unary nodes in S.

Proposition 2.1. A unary-binary tree S is in S (1) if and only if

• (Linearity) leaf(S) = unary(S);

• (Normality) No binary node in S has a unary node as its left child;

• (Connectedness) For every binary node and leaf u in S, we have leaf(Su)− unary(Su)
greater than or equal to the number of consecutive unary nodes above u.

Furthermore, a unary-binary tree S ∈ S (1) is also in S (2) if and only if

• (2-connectedness) For every binary node and leaf u in S, we have leaf(Su)− unary(Su)
strictly larger than the number of consecutive unary nodes above u.

For skeletons of λ-terms in C(3), we start with an observation from [11].

Proposition 2.2 (See [11]). Let S ∈ S (3) and u its first binary node. The left child of u is a leaf.

Proof. Let v be the left child of u. If v is not a leaf, then by planarity, the leaves of Sv are
connected to an initial segment of the unary nodes above u. Cutting {u, v} and the edge
below the said initial segment disconnects Diag(S), contradicting 3-connectedness.

We define the reduced skeleton of a skeleton S in S (3) to be the unary-binary tree
obtained from S by removing the first binary node, its left child (which is a leaf by
Proposition 2.2), and the nodes above it. By (Linearity) on S, we can reconstruct S from
the reduced skeleton of t. We denote by RSn the set of reduced skeletons of skeletons
in S (3)n , and RS = ∪n≥3RSn. The following characterization of reduced skeletons was
first discovered and stated without proof in [11]. Readers are referred to the full version
[10] for its proof.
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Proposition 2.3. A unary-binary tree S is in RS if and only if

• (Normality) No binary node in S has a unary node as its left child;

• (3-connectedness) For every binary node u in S, let v be its right child, then leaf(Sv)−
unary(Sv) is strictly larger than the number of consecutive unary nodes above u.

3 Bijection from λ-terms in C(3) to degree trees

A degree tree, as defined in [8], is a pair (T, ℓ) where T is a plane tree and ℓ a labeling on
the nodes of T such that

• If u is a leaf, then ℓ(u) = 0;

• For u with children v1, v2, . . . , vk from left to right, let s(u) = k + ∑k
i=1 ℓ(vi), then

s(u)− ℓ(v1) ≤ ℓ(u) ≤ s(u).

The size of a degree tree (T, ℓ) is the number of edges in T. We denote by Tn the set of
degree trees of size n. Given a degree tree (T, ℓ), we define its edge labeling ℓΛ as follows:
for each internal node u, we put a label s(u) − ℓ(u) on its leftmost descending edge,
and 0 on all other edges. It is clear that we can recover (T, ℓ) from T and ℓΛ. Later, we
will use both ℓ and ℓΛ. We now define a bijection φ from reduced skeletons to degree
trees.

Definition 3.1. Given S ∈ RS , we perform the following:

1. Remove all leaves from S, and add a new unary root above the old root. Then
smooth out all unary nodes and put the number of smoothed-out nodes at each
edge. We obtain a binary tree S′ with an edge labeling ℓ′Λ.

2. Perform the classical bijection (switching left and right) from binary tree S′ to plane
tree T′: given a node u, its right child in S′ is turned into its leftmost child in T′,
and its left child in S′ into its sibling immediately to its right. The edge labels of ℓ′Λ,
which are all on rightmost descending edges in S′, are transformed into an edge
labeling ℓΛ with only non-zero values on the leftmost descending edges of nodes.

We define φ(S) to be (T′, ℓ), where ℓ is the node labeling corresponding to ℓΛ constructed
above. See Figure 2 for an example of the bijection φ.

Proposition 3.2. A unary-binary tree S is in RSn if and only if φ(S) is in Tn−2.
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Figure 2: Example of the bijection φ from reduced skeletons in RS to degree trees
(zeros in ℓΛ are omitted).

Given the bijection from RS to degree trees, which are also in bijection with bipartite
planar maps, we can transfer enumeration results from maps to λ-terms via degree trees.
Some statistics are also transferred alongside.

We first define several statistics on reduced skeletons. Given S ∈ RSn, we define
its excess ex(S) = leaf(S)− unary(S), and we denote by Applv(S) the number of binary
nodes of S whose right child is a leaf, Appla(S) the number of binary nodes of S whose
right child is also a binary node, and uck(S) the number of maximal chains of unary
nodes of length k. In the language of λ-terms, ex(S) is the number of abstractions at the
beginning of the original term minus one (from the leaf in Proposition 2.2 deleted in the
reduced skeleton), Applv(S) the number of applications of terms to a variable, Appla(S)
the number of applications of terms to another application, and uck(S) the number of
maximal consecutive abstractions of length k, except the one at the root.

Now we introduce some statistics on degree trees. Given (T, ℓ) a degree tree, we
denote by lnode(T, ℓ) the number of leaves in T, by znode(T, ℓ) the number of internal
nodes whose leftmost descending edge has label 0, by rlabel(T, ℓ) the label of the root in
(T, ℓ), and by edgek(T, ℓ) the number of edges with label k ≥ 1. The following transfer
of statistics is clear from Definition 3.1.
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Proposition 3.3. Given S ∈ RSn, let (T, ℓ) = φ(S). Then we have

Applv(S) = lnode(T, ℓ), Appla(S) = znode(T, ℓ),
ex(S) = rlabel(T, ℓ), uck(S) = edgek(T, ℓ).

The statistics mentioned in Proposition 3.3 are also transferred to bipartite planar
maps. More precisely, let Bn be the set of bipartite planar maps with n edges. For
M ∈ Bn, we denote by white(M) (resp. black(M)) the number of white (resp. black)
vertices in M, and outdeg(M) the half-degree of the outer face. For k ≥ 1, we denote by
facek(M) the number of inner faces of degree 2k. We have the following result from [8].

Proposition 3.4 (See Proposition 3.3 and 3.6, and Remark 1 in [8]). There is a bijection µ

from Tn to Bn. Moreover, for (T, ℓ) ∈ Tn, let M = µ(T, ℓ), and we have

lnode(T, ℓ) = white(M), znode(T, ℓ) = black(M),
rlabel(T, ℓ) = outdeg(M), edgek(T, ℓ) = facek(M).

We obtain Theorem 0.2 using the bijections from RSn to Tn−2 and from Tn−2 to Bn−2.

Proof of Theorem 0.2. Consider µ ◦ φ with φ from Definition 3.1 and µ from Proposi-
tion 3.4. It is a bijection from RSn to Bn−2 according to Propositions 3.2 and 3.4.

Combining Propositions 3.3 and 3.4, we have the following transfer of statistics from
reduced skeletons of λ-terms in C(3) to planar bipartite maps.

Theorem 3.5. Let S ∈ RSn and M = µ(φ(S)) ∈ Bn−2. Then we have

Applv(S) = white(M), Appla(S) = black(M),
ex(S) = outdeg(M), uck(S) = facek(M).

A consequence of Theorem 3.5 is that the generating function of RS refined by all
related statistics can be written using that of bipartite maps refined by corresponding
statistics. For instance, the enumeration of RS refined by ex and uck for all k is given
by the generating function of bipartite maps refined by face degrees, which was found
implicitly in [4], then written explicitly in [5].

Furthermore, we can also use Theorem 3.5 to transfer known results on the distri-
bution of various statistics on bipartite planar maps to λ-terms in S (3). As an example,
in [12], Liskovets studied the asymptotic vertex degree distribution of many families of
planar maps, including Eulerian planar maps, which are duals of bipartite planar maps.
Transferring the results in [12] toRS using Theorem 3.5, we have the following corollary.

Corollary 3.6. Let Xn be the number of abstractions at the beginning of a λ-term chosen uni-
formly randomly from C(3)n . Then, for k ≥ 2, when n→ ∞, we have

P[Xn = k]→ k− 1
3

(
2k− 2
k− 1

)(
3

16

)k−1

.
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Figure 3: Example of the bijection ψ from skeletons in S (1) to v-trees.

4 Bijection from λ-terms in C(1) and C(2) to v-trees

In the following, we consider skeletons in S (1) and S (2). We start by defining a transfor-
mation ψ from these skeletons to some trees with labels on their nodes.

Definition 4.1. Given S ∈ S (1), We define ψ(S) to be (T, ℓ) obtained as follows:

1. We label each binary node u by leaf(Sv)− unary(Sv), where v is the right child of
u, and remove all leaves and unary nodes. We now obtain a binary tree S′ with
node labeling ℓ′.

2. We perform the classical bijection (switching left and right) from binary tree S′ to
plane tree T as in the second step of the definition of φ in Definition 3.1. We keep
the labels of ℓ′ on S′ in ℓ on T.

For the reverse direction, we simply reverse all the operations above, then insert unary
nodes from bottom to top according to labels, but only to the right branch of binary nodes,
in accordance with (Normality).

We now characterize the labeled plane trees obtained by ψ. A node-labeled tree (T, ℓ)
is a v-tree if the following conditions hold:

• Leaves of T are labeled by 0 or 1;

• Every non-root node u with children v1, . . . , vk satisfies 0 ≤ ℓ(u) ≤ 1 + ∑k
i=1 ℓ(vi);
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• For the root r with children v1, . . . , vk, we have ℓ(r) = 1 + ∑k
i=1 ℓ(vi).

The size of a v-tree is the number of its edges. We denote by Vn the set of v-trees of size
n, and we take V =

⋃
n≥1 Vn. Moreover, we denote by V+n the set of v-trees without label 0

of size n, and we take V+ =
⋃

n≥1 V+n . We have the following characterization of ψ(S (1)n ).

Proposition 4.2. A unary-binary tree S is in S (1)n if and only if T = ψ(S) is a v-tree of size
n− 1. In other words, ψ is a bijection from S (1)n to Vn−1.

The bijection ψ specializes naturally to skeletons in S (2).

Proposition 4.3. A unary-binary tree S is in S (2)n if and only if T = ψ(S) is a v-tree of size
n− 1 without label 0. In other words, ψ is a bijection from S (2)n to V+n−1.

Proof. Suppose that u is a non-root non-unary node in S, with k consecutive unary nodes
above it leading to a binary node v. By (Normality), u is in the right sub-tree of v in
S, meaning that ℓ(v) = leaf(Su)− unary(Su)− k. We thus conclude the proof by seeing
that u satisfies (2-connectedness) if and only if ℓ(u) > 0.

Remark 1. We note that, unlike degree trees, the definition of v-tree does not distinguish
left and right. Therefore, in the definition of ψ, there is no need to switch left and right
in the second step. However, we keep the current definition for consistency with φ.

5 Bijection from planar maps to v-trees

We denote by Mn the set of planar maps with n edges, and by M the set of all planar
maps. For M a planar map, we denote by outv(M) the number of vertices of M adjacent
to the outer face. We now define a direct bijection ρ using an exploration procedure of
planar maps, in the vein of [8, 9].

Given a planar map M, we put the label outv(M) on its root vertex, and then start
a contour walk in the clockwise direction from the root corner. Suppose that we are at
a corner c and is about to walk along a new edge e starting from v to w. We find the
corner c1 of v on the other side of e and the next corner c2 in clockwise direction of v
that is adjacent to the outer face. We put the label outv(U)− 1 on w, where U is the part
of M between c and c2. There are two cases, as illustrated on the left part of Figure 4:

1. If c1 = c2, then e is a bridge, and we do nothing.

2. If c1 ̸= c2, then e separates the outer face with an inner face. In this case, we detach
the part of M between c1 and c2 while duplicating the vertex v.
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Figure 4: Definition and example of the direct bijection ρ′.

After the whole walk, we obtain a planar map with labels on its vertices, denoted by
ρ(M). The right part of Figure 4 gives an example of the construction of ρ(M). It is
in fact always a tree rooted at the original root corner of M, as every inner face will be
eventually “opened up” in the second case above.

Theorem 5.1. For all n ≥ 0, the transformation ρ is a bijection from the setMn of planar maps
with n edges to the set Vn of v-trees with n edges. Furthermore, for M ∈ Mn, the label of the
root of ρ(M) is outv(M).

Proof of Theorem 0.3. As we may identify λ-terms in C(1) with their skeletons in S (1), the
bijection is given by ψ ◦ ρ. The first part is a consequence of Proposition 4.2 and Theo-
rem 5.1. For the second part, we notice that a label 0 is only produced when opening up
a loop in the construction of ρ(M). We thus conclude by Proposition 4.3.

Remark 2. Zeilberger and Giorgetti has given a bijection between planar maps and pla-
nar linear normal λ-terms in [15], using the Tutte decomposition [13]. Furthermore,
Zeilberger also showed in [14] that the same bijection sends terms that are also unit-
less to bridgeless planar maps, which are the duals of loopless planar maps. We have
checked that our bijection is different from the one in [15], even after taking the dual.
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