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Abstract. We study the dynamics of birational rowmotion over an arbitrary noncom-
mutative ring K. This generalizes the birational rowmotion map in the commutative
setting, which itself lifts the well-studied combinatorial rowmotion map on a finite
poset. When the underlying poset P is a rectangle (i.e., a product of two chains), this
operation has “twisted periodicity” and “reciprocity” properties, surprisingly similar
to the commutative setting. We briefly outline proofs of these results (details are on the
arXiv) and discuss extensions and variants. In particular, we conjecture similar results
for the case when P is a ∆- or ∇-shaped triangle or a trapezoid. We also conjecture
that the results remain valid when K is a semiring. We further prove some elementary
properties of birational rowmotion for general P, and (for the sake of exposition) dis-
cuss connections to the octahedron recurrence and Zamolodchikov periodicity (which
are not new, but deserve better circulation).

Keywords: birational rowmotion, birational combinatorics, toggles, dynamical alge-
braic combinatorics, rowmotion, Zamolodchikov periodicity, posets

1 Introduction

Let P be a finite poset, and J (P) be the set of order ideals of P. Combinatorial rowmotion
is an invertible map ρ : J (P) → J (P) which takes each ideal I ∈ J (P) to the order ideal
generated by the minimal elements of the complement of I in P. It can also be viewed
as a map on the antichains A(P) of a poset, via the well-known bijection J (P) → A (P)
that sends an order ideal to its set of maximal elements. Rowmotion in this sense was
studied in a sporadic sequence of papers by Brouwer and Schrijver [2], and Cameron
and Fon-der-Flaass [3], who realized it as a product of “toggling” involutions, one for
each element of the poset. Among the core results of these works were formulas for the
order of ρ for special types of posets, such as products of chains.

In 2012, Striker and Williams [18] defined a related notion of order-ideal promotion
π, which generalizes some cases of Schützenberger promotion on semistandard tableaux.
Both ρ and π live in the toggle group of P (the group of permutations of J (P) generated
by the “toggling” involutions), and are conjugate in it, which allows properties of π to
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be derived from properties of ρ and vice versa. Armstrong, Stump, and Thomas [1]
identified rowmotion for root posets with the Kreweras complementation map studied by
Lie theorists. This rekindled interest in ρ; a flurry of activity followed, opening up
what is now known as dynamical algebraic combinatorics. We refer to [18, 17, 10] for some
snapshots of progress in this field.

A major avenue of study have been “liftings” (i.e., generalizations) of ρ and π. The
map ρ has been lifted three times successively:

• first, to a piecewise-linear rowmotion ρP on the order polytope O(P) := { f : P → [0, 1] :
f is order-preserving} (see [4]),

• then by “detropicalization” to a birational rowmotion map R (also known as ρB)
defined on vertex-labelings of P by rational functions (in commuting variables), as
detailed by Einstein and Propp [4],

• and finally to noncommutative birational rowmotion, where the rational functions are
replaced by elements of an arbitrary ring.

A priori, there was no reason to expect periodicity at all for these lifted maps; indeed,
already ρP can have infinite order even if the poset P is rather “nice”. However, in [7, 6,
16], it was shown that for a few classes of posets (e.g., root posets and minuscule posets
associated with finite-dimensional Lie algebras and skeletal posets, built up inductively as
a special kind of series-parallel poset), the order of birational rowmotion R is finite and
surprisingly small — generally the same as for combinatorial rowmotion ρ. For the case
where P = [p]× [q] is a product of two chains, proofs of periodicity (i.e., finite order) of R
took significant effort [6, 15]. The result was extended to all minuscule posets by Okada
[16] in a type-by-type way (with some computer algebra), and the conceptual reasons for
the periodicity remain a mystery, although Garver, Patrias and Thomas [5] have found
an explanation for the periodicity of the (less general) ρP using quiver representations.
Periodicity of R for all root posets of coincidental types is still an open question [9, Conj.
4.40], as a proof for “trapezoid-shaped” posets [6, Conj. 75] has not been found.1

The noncommutative realm remained unexplored until recently. First results were
obtained by Joseph and Roby in [13, 14], but (as with any of the three levels of generality)
some of the good behavior of R is lost when allowing noncommutativity. Our initial
conjecture from 2014 was that the periodicity property of R on [p]× [q] remains true, up
to a (predictable and simple) “twist”. This resisted a number of different proof attempts
until we finally resolved it [8].

1To keep the story simple, we are limiting our discussion to ρ (as opposed to π) and to periodicity
(as opposed to other properties, such as homomesies). The promotion map π has also been lifted (along
with the entire toggle group) to the birational and even to the noncommutative realm [12, 13, 14]. Much
of the work has been focusing on the antichain variant of rowmotion, which however is equivalent to the
order-ideal variant ρ via the transfer map.
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By well-understood reductions, our proof perforce establishes periodicity of ρP and
ρ as well (for P = [p]× [q]). We feel that this proof is more elementary and simpler than
any that we have seen up until now at any level above the combinatorial. This abstract
summarizes the results of [8] and briefly outlines the main steps of their proofs, sets
them in context and adds some newer observations.

2 Definitions and examples

Throughout this work, P denotes a finite poset, and K denotes a ring (associative and
with 1, but not necessarily commutative). We use the notation x for the (multiplicative)
inverse x−1 of an element x ∈ K.

The simplest type of poset is a k-chain (for k ∈ N) – i.e., the set {1, 2, . . . , k} equipped
with its usual total order. We denote it by [k].

Our favorite poset will be the p× q-rectangle (for p, q ∈ N) – i.e., the Cartesian product
[p]× [q] with entrywise partial order. Its Hasse diagram looks like a rectangular grid.

We let P̂ denote the poset P with two new elements 0 and 1 adjoined to it, arranged
so that every p ∈ P̂ satisfies 0 ≤ p ≤ 1 in P̂.

A K-labelling (or, short, labelling) of P means a map f : P̂ → K. Its values f (p) are
called its labels at the “points” p ∈ P̂, and we draw it by overlaying these labels at the
respective points on the Hasse diagram of P̂. For example, if P is the 2 × 2-rectangle
[2]× [2], then the following pictures show P itself (Fig. 1), the extended poset P̂ (Fig. 2)
and a labelling of P (Fig. 3):

Fig. 1

(2, 2)

(2, 1) (1, 2)

(1, 1)

Fig. 2 1

(2, 2)

(2, 1) (1, 2)

(1, 1)

0

Fig. 3 f (1)

f (2, 2)

f (2, 1) f (1, 2)

f (1, 1)

f (0)

When u and v are two elements of P̂, we shall use the notation “u ⋖ v” (or, equiva-
lently, “v ⋗ u”) for the statement “u < v, and there is no w ∈ P̂ such that u < w < v”.

We are now ready to define the main actor of our play: the birational rowmotion
operation. While it is traditionally defined as a composition of toggles (see, e.g., [8,
Definition 3.16]), we instead here use a recursive equation (which is equivalent):
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Definition 1. Birational rowmotion is the partial map R : KP̂ 99K KP̂ that transforms each
labelling f of P into a new labelling R f whose values are

(R f ) (0) = f (0) , (R f ) (1) = f (1) , and

(R f ) (v) =

 ∑
u∈P̂;
u⋖v

f (u)

 · f (v) · ∑
u∈P̂;
u⋗v

(R f ) (u) for all v ∈ P.

Note that the formula for (R f ) (v) involves several inverses, which may or may not
exist. If they don’t, R f is undefined, which is why R is only a partial map. Also, this
formula is recursive: The value it assigns to (R f ) (v) depends on the values (R f ) (u) for
elements u ∈ P̂ satisfying u ⋗ v. Since the poset P̂ is finite, we can solve this recursion
“starting from the top of P” (using (R f ) (1) = f (1) to bootstrap the process). Making
this procedure explicit gives precisely the description of R as a composition of toggles
that is used as a definition of R in [8]. (See [8, Proposition 3.18] for details.)

The map R is what we called “noncommutative birational rowmotion” in Section 1 –
that is, the third (and ultimate) generalization of combinatorial rowmotion ρ. The second
generalization (commutative birational rowmotion) is obtained when K is a field. The
first generalization (piecewise-linear rowmotion ρP ) is recovered from the second by
tropicalization (i.e., by setting K to be a tropical semifield2). The original rowmotion
ρ on J (P) is the restriction of ρP to the vertices of the order polytope O (P) (which
are the indicator functions of order ideals of P). Therefore, any (positive) result about
noncommutative birational rowmotion automatically yields results about all lower levels
(commutative, piecewise-linear and combinatorial).

Partial maps can be composed; in particular, R can be composed with itself. As usual,
Rk shall mean the composition R ◦ R ◦ · · · ◦ R with k many R’s.

Example 1. Here are the first four iterations of R for P = [2]× [2], acting on an arbitrary
labelling f :

f b

z

x y

w

a

R f b

(x + y)zb

wx(x + y)zb wy(x + y)zb

azb

a

R2 f b

w (x + y) b

ayb axb

abz · x + y · b

a
2Of course, a tropical semifield is not a field. However, properties of R that hold for all fields will

automatically hold for all semifields (since they reduce to subtraction-free polynomial identities), and
thus we can allow K to be a semifield.
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R3 f b

awb

abz · x + y · ywb abz · x + y · xwb

ab · x + y · wb

a

R4 f b

abzab

abxab abyab

abwab

a
Here, some nontrivial algebra has been used to simplify some of the labels; e.g., the

abyab in R4 f was originally an ab · x + y · x + y · y (x + y) (x + y) ab.

3 The main theorems for rectangles

Example 1 illustrates two surprising phenomena that apply to all rectangular posets.
One is a “twisted periodicity”, saying that the initial labels of f reappear in R4 f framed
by ab on the left and ab on the right. (Note that this is not a conjugation, since (ab)−1 =
ba ̸= ab unless a and b commute.) For a generic poset P, nothing like this holds (instead,
the labels of Rk f get increasingly complicated as k grows, even if K is commutative), but
it turns out to be true whenever P is a rectangle:

Theorem 1 (Periodicity for the p × q-rectangle). Let p and q be two positive integers. Let
P = [p]× [q], and let f ∈ KP̂ be a K-labelling such that Rp+q f is well-defined. Set a = f (0)
and b = f (1). Then, a and b are invertible, and for any x ∈ P̂ we have(

Rp+q f
)
(x) = ab · f (x) · ab. (3.1)

This periodicity actually follows from the following “antipodal reciprocity” property,
which is the second phenomenon seen in Example 1. This property generalizes the azb
label in R f , the ayb and axb labels in R2 f , and the awb label in R3 f . In its general form,
it says that the inverse of any label in Rk f appears as a label in Rℓ f (for some ℓ ≥ k),
framed by a on the left and by b on the right. The ℓ depends on the position of the label;
the precise statement is as follows:

Theorem 2 (Reciprocity for the p × q-rectangle). Let p and q be two positive integers. Let
P = [p]× [q]. Fix ℓ ∈ N, and let f ∈ KP̂ be a K-labelling such that Rℓ f is well-defined. Set
a = f (0) and b = f (1). Let (i, j) ∈ P satisfy ℓ− i − j + 1 ≥ 0. Then,(

Rℓ f
)
(i, j) = a ·

(
Rℓ−i−j+1 f

)
(p + 1 − i, q + 1 − j) · b. (3.2)

We conjectured these two theorems in 2014, after proving them in the particular case
when K is commutative ([6, §4–§8]).
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4 Connections which do not lift

Strikingly, this noncommutative generalization has resisted all approaches that have pre-
viously succeeded in the commutative case. The determinantal computations involved
in the proof in [6] can be extended to the noncommutative setting using the quasideter-
minants of Gelfand and Retakh, but it seems impossible to make a rigorous proof out of
them (lacking, e.g., any useful notation of Zariski topology in this setting, it is not clear
what it means for a K-labelling to be “generic”). The Musiker–Roby proof of commu-
tative periodicity [15] (via a lattice-path formula for

(
Ri f

)
(v)) could not be generalized

either. Thus the noncommutative case remained an open problem.
At some point, Glick and Grinberg noticed that the Y-variables in the type-AA

Zamolodchikov periodicity theorem of Volkov [19] could be written as ratios of labels
under iterated birational rowmotion [17, § 4.4]; this allows the periodicity in one setting
to be derived from that in the other (with some work). However, for noncommutative K,
Zamolodchikov periodicity fails even in small examples such as r = r′ = 2 (no matter in
which of the 120 possible orders we multiply the factors), while noncommutative bira-
tional rowmotion continues to exhibit periodicity. This approach is therefore unavailable
in the noncommutative case as well.

Another recent proof of periodicity and reciprocity for commutative K (Johnson and
Liu, [11]) uses a connection to the octahedron recurrence; this connection, too, does not
seem to generalize readily to the noncommutative case (although a proper analysis of all
options has not been made yet), and anyway the proof in [11] uses determinants, which
are not available for general K.

5 Proof outline

We shall now outline the main steps of our proofs of Theorems 1 and 2. Full details are
available in [8], including justifications of all the inverses being taken (in the following,
we just assume they all exist) and proofs of all lemmas.

Step 1: Observe that Theorem 1 follows from Theorem 2. Indeed, assume that Theo-
rem 2 is proved. Now, to prove Theorem 1, assume WLOG that x ∈ P (as opposed
to x = 0 or x = 1, which cases are easy), and write x = (u, v). Now, apply The-
orem 2 first to (ℓ, i, j) = (p + q, u, v). Then, apply Theorem 2 again to (ℓ, i, j) =
(p + q − u − v + 1, p + 1 − u, q + 1 − v) in order to rewrite the right hand side.

It thus remains to prove Theorem 2.

Step 2: Introduce notations: Fix a K-labelling f of P = [p] × [q]. For any element
x = (i, j) ∈ P, we define its antipode x∼ ∈ P by x∼ := (p + 1 − i, q + 1 − j). For instance,
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(1, 1)∼ = (p, q). For any x ∈ P̂ and ℓ ∈ N, we write

xℓ :=
(

Rℓ f
)
(x) . (5.1)

Informally, we think of our subscripts as indicating the “time” of the label (i.e., number
of times R was applied to f ). For instance, in Example 1, we have (1, 2)2 =

(
R2 f

)
(1, 2) =

axb.
In this notation, Theorem 2 claims that

xℓ = a · x∼ℓ−i−j+1 · b (5.2)

for all x = (i, j) ∈ P and all ℓ ≥ i + j − 1. Clearly, it suffices to prove this for ℓ = i + j − 1.
For each v ∈ P and ℓ ∈ N, we define the two slack values3

Av
ℓ := vℓ · ∑

u⋖v
uℓ and

Av
ℓ := ∑

u⋗v
uℓ · vℓ.

Furthermore, when v ∈ {0, 1}, we set Av
ℓ := 1 and

Av
ℓ := 1 for all ℓ ∈ N. For in-

stance, in Example 1, we have A(2,2)
0 = z · y + x and

A(1,1)
0 = y + x · w and

A(1,1)
1 =

wy (x + y) zb + wx (x + y) zb · azb = w · a (after simplifications).
A path will mean a sequence (v0, v1, . . . , vk) of elements of P̂ satisfying v0 ⋗ v1 ⋗ · · ·⋗

vk. We will call it a path from v0 to vk. For instance, there are two paths from (2, 2) to
(1, 1), namely ((2, 2) , (1, 2) , (1, 1)) and ((2, 2) , (2, 1) , (1, 1)).

For any path p = (v0, v1, . . . , vk) and any ℓ ∈ N, we define the slack products

Ap
ℓ := Av0

ℓ Av1
ℓ · · · Avk

ℓ and

Ap
ℓ :=

Av0
ℓ

Av1
ℓ · · · Avk

ℓ

If u and v are elements of P̂, and if ℓ ∈ N, then we define the slack sums

Au→v
ℓ := ∑

p is a path from u to v
Ap
ℓ and

Au→v
ℓ := ∑

p is a path from u to v

Ap
ℓ .

For instance,

A(2,2)→(1,1)
ℓ = A((2,2),(1,2),(1,1))

ℓ + A((2,2),(2,1),(1,1))
ℓ = A(2,2)

ℓ A(1,2)
ℓ A(1,1)

ℓ + A(2,2)
ℓ A(2,1)

ℓ A(1,1)
ℓ .

The following formula connects the slack values at “time ℓ” with those at “time ℓ− 1”:

Proposition 1 (Transition equation in A-

A

-form). Let v ∈ P̂ and ℓ ≥ 1. Then,

Av
ℓ = Av

ℓ−1.

Proof. This is just the formula for (R f ) (v) in Definition 1, rewritten.

3In both sums, u ranges over elements of P̂.
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Step 3: The path formulas. The following formulas allow us to recover the labels uℓ

from the slack values Av
ℓ or

Av
ℓ :

Theorem 3 (path formulas for rectangle). Let ℓ ∈ N. Then, each u ∈ P satisfies

uℓ =

A1→u
ℓ · b =

A(p,q)→u
ℓ · b (5.3)

and
uℓ = Au→0

ℓ · a = Au→(1,1)
ℓ · a. (5.4)

Proof. Induction on u (downwards for (5.3), upwards for (5.4)).

Using (5.4) and (5.3) and Proposition 1, we can already prove that (1, 1)1 = a(p, q)0b,
which confirms (5.2) for x = (1, 1). The general case, however, requires more work.

u
u′

d
d′

Step 4: The conversion lemma. The following
lemma is at the core of our proof:4

Lemma 1 (Conversion lemma). Let u and u′ be
two elements of the northeastern edge of P satisfy-
ing u ⋗ u′ (that is, u = (k, q) and u′ = (k − 1, q)
for some k ∈ {2, 3, . . . , p}). Let d and d′ be two
elements of the southwestern edge of P satisfying
d ⋗ d′ (that is, d = (i, 1) and d′ = (i − 1, 1) for
some i ∈ {2, 3, . . . , p}). Then, for each ℓ ∈ N, we
have

Au→d
ℓ =

Au′→d′
ℓ . (5.5)

Note that both sides of this equality are
slack sums at “time ℓ” (i.e., defined purely in
terms of the labeling Rℓ f ). Thus, this lemma
does not involve birational rowmotion. Never-
theless, its proof is far from trivial. It involves “interpolating” between Au→d

ℓ and

Au′→d′
ℓ

through a “mixed slack sum”. The latter is a sum over “path-jump-paths”, which are like
paths but allow a “jump” in the middle. We refer to [8, §9] for the details.

Step 5: The southwestern edge. If ℓ ≥ 1, then (5.5) can be rewritten as Au→d
ℓ = Au′→d′

ℓ−1
(by Proposition 1). Applying this equality many times (“gliding down” the rectangle),
we see that each i ∈ [p] satisfies A(p, q)→(i, 1)

i−1 = A(p−i+1, q)→(1, 1)
0 . However, Proposition 1

yields

A(p, q)→(i, 1)
i = A(p, q)→(i, 1)

i−1 = A(p−i+1, q)→(1, 1)
0 . In view of (5.4) and (5.3), we can

readily use this to show that (i, 1)i = a · (p + 1 − i, q)0 · b. This proves (5.2) for x = (i, 1).

4The figure on the right illustrates this lemma (where the red path is one of the paths contributing to
the sum Au→d

ℓ , while the blue path contributes to

Au′→d′
ℓ ).
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In other words, (5.2) is proved for all x lying on the southwestern edge of P (speaking
in terms of the Hasse diagram). A symmetric argument applies when x lies on the
southeastern edge.

Step 6: Inducting up the poset. It remains to prove (5.2) for all x = (i, j) with i, j ≥ 2.
This is done by strong induction on i + 2j, which allows us to apply the induction
hypothesis to the four pairs

m := (i, j − 1) , u := (i + 1, j − 1) , s := (i, j − 2) , t := (i − 1, j − 1)

in lieu of x = (i, j) (to the extent that these pairs do belong to P). As a result, we obtain

mℓ = a · m∼
ℓ−k · b, sℓ−1 = a · s∼ℓ−k · b, (5.6)

tℓ−1 = a · t∼ℓ−k · b, mℓ−1 = a · m∼
ℓ−k−1 · b, (5.7)

uℓ = a · u∼
ℓ−k−1 · b (where k = i + j − 2) . (5.8)

On the other hand, the formula for (R f ) (v) in Definition 1 (applied once to v = m and
once to v = m∼) yields

mℓ = (sℓ−1 + tℓ−1) · mℓ−1 · uℓ + xℓ and (5.9)

m∼
ℓ−k =

(
u∼
ℓ−k−1 + x∼ℓ−k−1

)
· m∼

ℓ−k−1 · s∼ℓ−k + t∼ℓ−k. (5.10)

Taking reciprocals on both sides of (5.10), we obtain

m∼
ℓ−k =

(
s∼ℓ−k + t∼ℓ−k

)
· m∼

ℓ−k−1 · u∼
ℓ−k−1 + x∼ℓ−k−1. (5.11)

In view of the five equations (5.6)–(5.8), we see that (up to the a and b factors, which
cancel out) each label appearing in (5.9) is the inverse of the corresponding label in
(5.11), except for xℓ and x∼ℓ−k−1. Since the equations (5.9) and (5.11) can be uniquely
solved for xℓ and x∼ℓ−k−1, we conclude that xℓ must be a · x∼ℓ−k−1 · b. This completes the
induction step, proving (5.2) and with it Theorem 2. Recalling Step 1, we have thus
proved Theorem 1 too.

6 Other posets

The rectangles P = [p]× [q] may be the simplest family of posets for which noncommu-
tative birational rowmotion exhibits a (twisted) periodicity.5 In the commutative case,
the “skeletal posets” of [7] are even simpler, but their periodicity does not extend to the
noncommutative case. For example, if P is the 4-element “claw” poset , then R6 = id

5Apart from the chains [m], which are just m × 1-rectangles, and from the antichains, which are trivial
to analyze.
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for commutative K, but no periodicity holds for noncommutative K (not even “twisted”;
see [8, §13.4] for details). Experimentally, things look better for “Lie-theoretical” families
of posets, although nothing has been proven so far. The family of type-A positive root
posets, also known as triangles ∆ (p), may be within reach.

We can easily define these triangles as pieces of a p × p-rectangle. Indeed, let p be a
positive integer. Define two subsets ∆ (p) and ∇ (p) of the p × p-rectangle [p]× [p] by

∆ (p) = {(i, j) ∈ [p]× [p] | i + j > p + 1} ;
∇ (p) = {(i, j) ∈ [p]× [p] | i + j < p + 1} .

These two subsets ∆ (p) and ∇ (p) inherit partial orders from [p]× [p]. Now, we claim:

Conjecture 1 (Periodicity for ∆ (p) and ∇ (p)). Let p ≥ 2 be an integer. Assume that P is the
poset ∆ (p) or ∇ (p). Let f ∈ KP̂ be a K-labelling such that Rp f is well-defined. Let a = f (0)
and b = f (1). Let x ∈ P̂. Let x′ ∈ P̂ be defined as follows: If x = (i, j), then we set x′ := (j, i);
otherwise (i.e., if x = 0 or x = 1), we set x′ := x. Then,

(Rp f ) (x) = ab · f
(
x′
)
· ab.

Further posets P for which R is conjecturally periodic (with a twist) are “right-half
triangles” [8, §13.2] and trapezoids [8, §13.3].

7 General posets

As already mentioned, periodicity and reciprocity are features of certain classes of
posets, even though the complete identification of these classes is still unsolved even
at the piecewise-linear level6. Nevertheless, the (i, j) = (1, 1) case of Theorem 2 can be
generalized to arbitrary posets in the following form ([8, §14]):

Proposition 2. Let P be any finite poset. Let f ∈ KP̂ be a labeling of P such that R f is
well-defined and all labels (R f ) (u) are invertible. Let a = f (0) and b = f (1). Then,

b · ∑
u∈P̂;
u⋗0

(R f ) (u) · a = ∑
u∈P̂;
u⋖1

f (u) .

This adds to the (so far rather meager) list of properties of R that have been observed
for general posets P. (The rest of the list are results by Joseph and Roby [13, §5] that
connect R with birational antichain rowmotion and the birational toggle group.)

Note that Proposition 2 can be used to generalize the w-tuple periodicity [7, Propo-
sition 37] to the case of noncommutative K (again with a twist).

6See [10, Conjecture 5.7] for a sequence of posets V (n) for which ρP is conjectured to have finite order,
but R seems to have infinite order even when K is commutative.
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8 The semiring case

The definition of R is subtraction-free: It involves only addition, multiplication and divi-
sion in K. Thus, we can replace K by an arbitrary semiring (i.e., a “ring without additive
inverses”). It is thus natural to wonder:

Question 1. Do Theorems 1 and 2 still hold if K is only a semiring?

This question is subtler than it may seem. When K is commutative, the answer is
positive for general reasons: A polynomial identity true over all commutative rings is
automatically true over all commutative semirings. However, such automatic transfer
principles do not exist in the noncommutative realm. Case in point: If K is a ring, then
the identity a · a + b · b = b · a + b · a holds for all a, b ∈ K for which a+ b is invertible; but
this is no longer true if K is merely a semiring (David Speyer, MathOverflow #401273).
A negative answer to Question 1 would thus not be entirely unexpected.

The proofs of Theorems 1 and 2 sketched above rely on subtraction in Step 6, so they
cannot be applied to semirings unless min {p, q} ≤ 2 (in which case there is nothing to
subtract). We suspect that the smallest “interesting” case is [3]× [3] for Theorem 2 and
[3]× [4] for Theorem 1. Noncommutative semirings that cannot be embedded in rings
yet have many multiplicative inverses do exist7 , but automated computation inside them
is not straightforward, which complicates experimentation. We nevertheless believe that
progress can be made in this direction.
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