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The isomorphism problem for cominuscule
Schubert varieties
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Abstract. Cominuscule flag varieties generalize Grassmannians to other Lie types.
Schubert varieties in cominuscule flag varieties are indexed by posets of roots labeled
long/short. These labeled posets generalize Young diagrams. We prove that Schubert
varieties in potentially different cominuscule flag varieties are isomorphic as varieties
if and only if their corresponding labeled posets are isomorphic, generalizing the clas-
sification of Grassmannian Schubert varieties using Young diagrams by the last two
authors. Our proof is type-independent.
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1 Introduction

Cominuscule flag varieties correspond to algebraic varieties that admit the structure of a
compact Hermitian symmetric space and have been studied extensively due their shared
properties with Grassmannians [1, 3, 14, 22, 8, 19, 4, 20, 5, 18, 6]. These varieties come
in four infinite families and two exceptional types and are determined by a pair (D, γ)
of a Dynkin diagram D of a reductive Lie group and a cominuscule simple root γ. See
Table 1 for a classification of cominuscule flag varieties. Let X denote the cominuscule
flag variety corresponding to (D, γ) and R denote the root system of the Dynkin diagram
D. Set PX := {α ∈ R : α ≥ γ} with the partial order α ≤ β if β − α is a non-negative
sum of simple roots, and give PX a labeling of long/short roots. By [7, Theorem 2.4],
Schubert varieties in X are indexed by lower order ideals in PX, generalizing the fact
that Schubert varieties in a Grassmannian are indexed by Young diagrams.

Our main result Theorem 1 is a combinatorial criterion for distinguishing isomor-
phism classes of Schubert varieties coming from cominuscule flag varieties.
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Table 1: The labeled poset PX for a cominuscule flag variety X. Each element in PX

is drawn as a box, and boxes decorated with an “s” correspond to short roots. The
partial order on boxes is given by α ≤ β if and only if α is weakly north-west of β. This
table is a modification of [6, Table 1].

Grassmannian Gr(m, n) of type An−1

1 2 m n − 2 n − 1

m

{
︸ ︷︷ ︸

n−m

Odd quadric Q2n−1 ⊂ P2n

1 2 n − 1 n

s︸ ︷︷ ︸
2n−1

Lagrangian Grassmannian LG(n, 2n)

1 2 n − 1 n

s s s s s
s s s s

s s s
s s

s

 n

Max. orthog. Grassmannian OG(n, 2n)

1 2
n − 2

n − 1

n n − 1

Even quadric Q2n−2 ⊂ P2n−1

1 2
n − 2

n − 1

n︸ ︷︷ ︸
2n−4

Cayley Plane E6/P6

1

2

3 4 5 6

Freudenthal variety E7/P7

1

2

3 4 5 6 7
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Theorem 1. Let Xλ ⊆ X and Yµ ⊆ Y be cominuscule Schubert varieties indexed by lower order
ideals λ ⊆ PX and µ ⊆ PY, respectively. Then Xλ and Yµ are algebraically isomorphic if and
only if λ and µ are isomorphic as labeled posets.

For illustrative examples of Theorem 1, see Section 2.
Since Grassmannians are cominuscule flag varieties, Theorem 1 extends the work

of T, arigradschi and Xu in [21], where they prove two Grassmannian Schubert varieties
are isomorphic if and only if their Young diagrams are the same or the transpose of
each other. Other related works include Richmond and Slofstra’s characterization of the
isomorphism classes of Schubert varieties coming from complete flag varieties in [17]
using Cartan equivalence. However, they also note that Cartan equivalence is neither
necessary nor sufficient to distinguish Schubert varieties in partial flag varieties. A class
of smooth Schubert varieties in type A partial flag varieties are classified by Develin,
Martin, and Reiner in [9]. Yet many Schubert varieties are singular, with the first example
being the Schubert divisor in the Grassmannian Gr(2, 4).

We discuss preliminaries in Section 3, and then in Section 4, we prove Theorem 1
and illustrate it with examples. Our proof is type-independent and employs several new
techniques.

2 Examples of Theorem 1

For the following examples, recall that cominuscule Schubert varieties are indexed by
lower order ideals in PX. Examples of PX are illustrated in Table 1, where each element
in PX is drawn as a box, and boxes decorated with an “s” correspond to short roots. The
partial order on boxes is given by α ≤ β if and only if α is weakly north-west of β. In
particular, lower order ideals are given by subsets of boxes that are closed under moving
to the north and west.

Example 2. As illustrated below, transposing a Young diagram does not change the
poset structure. Therefore, two Grassmannian Schubert varieties are isomorphic if their
indexing Young diagrams are the transpose of each other. Geometrically, this is related
to the isomorphism Gr(m, m + k) ∼= Gr(k, m + k).

∼=

Example 3. Using Table 1, it is not hard to see that if a Grassmannian Schubert variety is
isomorphic to a non-type A cominuscule Schubert variety, then they are both isomorphic
to a projective space. Indeed, in order to fit inside a PX of another type, the lower order
ideal is forced to be a chain.
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As a special case, we also see that any Schubert curve in any cominuscule flag variety
is isomorphic to P1. In fact, any Schubert curve in any flag variety is isomorphic to
P1, which follows from the more general statements that Schubert varieties are rational
normal projective varieties and that P1 is the only rational normal projective curve.

Example 4. The Schubert divisor in Q3 is not isomorphic to P2, because the labeling of
their posets does not match:

s ̸∼= .

We can also see it geometrically, as the Schubert divisor in Q3 is singular.

Example 5. The quadric Q3 embeds in LG(n, 2n) (n ≥ 3) as a Schubert variety, as illus-
trated by

s s s
s s

s .

Example 6. The quadric Q10 embeds in E7/P7 as a Schubert variety, as illustrated by

.

Example 7. There are two non-isomorphic 6-dimensional Schubert varieties in E6/P6,
given by the two order ideals illustrated below.

̸∼=

Example 8. While PLG(n,2n) and POG(n+1,2n+2) are isomorphic as posets, this isomor-
phism does not preserve the labeling of long/short roots (see illustration below). As a
result, LG(n, 2n) and OG(n + 1, 2n + 2) do not contain isomorphic Schubert varieties of
dimension greater than one.

s s s
s s

s ̸∼=

3 Preliminaries

Let G be a complex reductive linear algebraic group. We fix subgroups T ⊂ B ⊂ G,
where T is a maximal torus and B is a Borel subgroup. With this setup, T ⊂ G determines
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a root system R of G, with corresponding Weyl group W := N(T)/T, and B determines
a set of simple roots ∆ ⊆ R. The set of roots decomposes into positive and negative roots
R = R+ ⊔ R−, with R+ being non-negative sums of simple roots. The Weyl group W is
generated by the set of simple reflections

S := {sα : α ∈ ∆}.

To each subset I ⊆ S one can associate a Weyl subgroup WI := ⟨s : s ∈ I⟩ ⊆
W, a parabolic subgroup PI = BWI B ⊆ G and the corresponding (partial) flag variety
X = G/PI . Schubert varieties in X are indexed by W I , the set of minimal length coset
representatives of W/WI . Explicitly, for w ∈ W I , the Schubert variety

Xw := BwPI/PI

has dimension the Coxeter length of w, denoted ℓ(w). Moreover, for any u ∈ W I , we
have Xu ⊆ Xw if and only if u ≤ w in Bruhat order.

From now on, X is a cominuscule flag variety. In other words, I = S \ {sγ}, where γ

is a cominuscule simple root, i.e., γ appears with coefficient 1 in the highest root of R.
Cominuscule roots are illustrated by filled-in circles in Table 1.

Recall that
PX := {α ∈ R : α ≥ γ}

inherits the usual partial order on roots, i.e., α ≤ β if β − α is a non-negative sum of
simple roots, and in addition, we give PX a labeling of long/short roots.

In [15], Proctor proves that W I is a distributive lattice under the induced Bruhat
partial order from W. Birkhoff’s representation theorem implies there is a bijection
between W I and the set of lower order ideals in PX. In particular, the join-irreducible
elements of W I are identified with principal lower order ideals of PX and hence with PX
itself. Explicitly, to each w ∈ W I we associate its inversion set

λ(w) := {α ∈ R+ : w.α < 0}, (3.1)

viewed as a sub-poset of PX. It is well known that ℓ(w) = |λ(w)|. Moreover, the
following proposition was proved in [7, Theorem 2.4 and Corollary 2.6]:

Proposition 9 (Buch–Samuel). For any w ∈ W I , the inversion set λ(w) is a lower order ideal
in PX. Moreover:

1. The map w 7→ λ(w) is a bijection between W I and the set of lower order ideals in PX.

2. For any u ∈ W I , we have u ≤ w in Bruhat order if and only if λ(u) ⊆ λ(w).

3. If α ∈ λ(w) and λ(w) \ {α} is a lower order ideal, then wsα ∈ W I and λ(wsα) =
λ(w) \ {α}, where sα ∈ W is the reflection corresponding to α.
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Notation 10. Given a lower order ideal λ ⊆ PX, we will write wλ for the element of W I

corresponding to λ in Proposition 9. We also use Xλ := Xwλ
to denote the corresponding

Schubert variety.

In Section 4.2, we will use a map δ : PX → ∆ defined in [6] as follows.

Definition 11. For α ∈ PX, let λα be the principal lower order ideal generated by α. Let
δ(α) = −wλα

.α ∈ R+. Then sδ(α) = wλα
sαw−1

λα
has length 1 [6, Section 4.1]. Therefore,

δ(α) ∈ ∆.

The following lemma is a restatement of [7, Corollary 2.10]. See also [6, Section 4.1].

Lemma 12 (Buch–Samuel). Let λ ⊆ PX be a lower order ideal and β1, β2, . . . , βℓ be the boxes
it contains written in an increasing order. Then sδ(βℓ)

· · · sδ(β2)sδ(β1)
is a reduced decomposition

of wλ. Moreover, every reduced decomposition of wλ can be obtained in this way.

4 Proof of Theorem 1

In this section, we prove each direction of Theorem 1 separately.

4.1 Forward direction: the isomorphism class of Xλ determines the
labeled poset λ

Let iλ : Xλ ↪→ X denote the embedding of a Schubert subvariety into a cominuscule flag
variety X = G/PI . The definition of the labeled poset λ depends on the root system
of the reductive group G and hence on the embedding iλ : Xλ ↪→ X. The goal of this
section is to show that λ (as a labeled poset) can be constructed using only the variety
structure of Xλ and is therefore intrinsic to the isomorphism class of Xλ. We prove the
following proposition which states the “forward" direction of Theorem 1.

Proposition 13. Let Xλ ⊆ X and Yµ ⊆ Y be cominuscule Schubert varieties indexed by lower
order ideals λ ⊆ PX and µ ⊆ PY, respectively. If Xλ and Yµ are algebraically isomorphic, then
λ and µ are isomorphic as labeled posets.

Our primary tools come from the intersection theory of algebraic varieties (see [10]
for more details). Let Pic(Xλ) and A∗(Xλ) denote the Picard and Chow groups of Xλ. It
is well known that these groups are algebraic invariants of Xλ. Recall that the k-th Chow
group Ak(Z) of a scheme Z is the free abelian group on the k-dimensional subvarieties of
Z modulo rational equivalence. When Z is a normal variety, the Picard group Pic(Z) can
be identified with the subgroup of Adim(Z)−1(Z) generated by classes of locally principal
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divisors (note that all Schubert varieties are normal). Our aim is to construct the labeled
poset λ from the intersection class map or intersection product [10, Definition 2.3]:

Pic(Xλ)× A∗(Xλ) → A∗(Xλ).

If (σ, τ) ∈ Pic(Xλ)× A∗(Xλ), we denote the image of the intersection product by σ · τ.
Next, we consider the effective cone of a scheme:

Definition 14. Let Z be a scheme. The effective cone in the Chow group A∗(Z) is the
semigroup in A∗(Z) generated by the classes of closed subvarieties of Z.

Since the flag variety X is cominuscule, there is a unique Schubert variety of codi-
mension 1 in X, called the Schubert divisor. Its class, denoted D, is the unique effective
generator of the Picard group Pic(X) ⊆ A∗(X). Recall that iλ : Xλ ↪→ X is a closed
embedding of varieties. Lemma 15 below follows from [13, Proposition 6] (see also [2,
Proposition 2.2.8 part (ii)]).

Lemma 15. For any non-empty lower order ideal λ ⊆ PX, the map i∗λ : Pic(X) → Pic(Xλ) is
an isomorphism.

Since D is effective and generates Pic(X), Lemma 15 implies that i∗λD the unique
effective generator of Pic(Xλ). Recall from Proposition 9 that we have lower order ideals
µ ⊆ λ if and only if wµ ≤ wλ in Bruhat order. Hence, we have µ ⊆ λ if and only if Xµ ⊆
Xλ. We write [Xµ] for the class of Xµ in A∗(Xλ) and in A∗(X), in an abuse of notation.
It is well known that the classes {[Xµ]}µ⊆λ form an integral basis of A∗(Xλ). Lemma 16
below is a special case of [11, Corollary of Thereom 1] and allows us to identify Schubert
classes (the effective cone) in A∗(Xλ) without referring to the embedding iλ : Xλ ↪→ X
or using the B-variety structure of Xλ.

Lemma 16 (Fulton–MacPherson–Sottile–Sturmfels). The Schubert classes [Xµ] such that
µ ⊆ λ are exactly the minimal elements in the extremal rays of the effective cone in A∗(Xλ).

We shall see later that the poset structure of λ can be recovered from the intersection
products i∗λD · [Xµ]. Let j : Xµ ↪→ Xλ be an inclusion of Schubert varieties, where µ ⊆ λ.
By the definition of intersection product,

i∗λD · [Xµ] = [j∗i∗λD] = [(iλ ◦ j)∗D] = D · [Xµ].

This implies that the product i∗λD · [Xµ] on Xλ can be computed on X. By [10, Example
19.1.11], A∗(X) can be identified with the homology group H∗(X). By [10, Proposition
19.1.2] we have that the intersection product D · [Xµ] can be identified with a cap prod-
uct. Since X is a smooth complex variety, the Poincaré duality further identifies the
intersection product with the cup product of cohomology classes corresponding to D
and [Xµ]. This cup product is given by the Chevalley formula [12, Lemma 8.1]. Us-
ing these identifications, we restate the Chevalley formula for cominuscule flag varieties
(and hence Schubert varieties):
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Lemma 17 (Fulton–Woodward). Let X be a cominuscule flag variety with corresponding comi-
nuscule simple root γ. For any lower order ideals µ ⊆ λ ⊆ PX, we have

i∗λD · [Xµ] = ∑
(γ, γ)

(α, α)
[Xµ\{α}],

the sum over all positive roots α such that µ \ {α} is a lower order ideal in PX. Here (·, ·) denotes
the usual inner product.

Observe that Lemma 17 reinterprets the Chevalley formula as a degree lowering
operator since intersection product with divisors is a map from Ak(Xλ) to Ak−1(Xλ).
This is opposite to the standard presentation of the Chevalley formula as a degree raising
operator in cohomology.

Example 18. By Lemma 17, the following calculations hold for X = LG(3, 6). We refer
to Table 1 for the poset PX.

D ·
[

X s s

]
= 2

[
X s

]
+

[
X s s

]
, D ·

[
X s

]
=

[
X s

]
, D ·

[
X s

]
= 2

[
X

]
.

Note that a coefficient 2 occurs whenever the removed box (root) is short.

Proof of Proposition 13. Lemma 15 allows us to identify the unique effective generator
i∗λD of Pic(Xλ), and Lemma 16 allows us to identify Schubert classes in A∗(Xλ), or
equivalently, their indexing set: the set of lower order ideals in PX that are contained
in λ. The Bruhat order on this set is recovered from Lemma 17, and its sub-poset of
join-irreducible elements recovers the poset λ as discussed in Section 3. Finally, note
that if µ is a join-irreducible diagram contained in λ with (unique) maximal box α, then

i∗λD · [Xµ] =
(γ, γ)

(α, α)
[Xµ\{α}].

Since γ is always long, the coefficient (γ, γ)/(α, α) is not 1 if and only if α is short.
Hence, the labeling of the boxes in λ is also determined.

4.2 Converse direction: the labeled poset λ determines the isomor-
phism class of Xλ

Let X = G/PI be a cominuscule flag variety and λ ⊆ PX be a lower order ideal. In
this section, we prove that the poset λ and its labeling of long/short roots determine
the isomorphism class of Xλ. More precisely, we prove the following proposition, which
states the “converse" direction of Theorem 1.
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Proposition 19. Let Xλ ⊆ X and Yµ ⊆ Y be cominuscule Schubert varieties indexed by lower
order ideals λ ⊆ PX and µ ⊆ PY, respectively. If λ and µ are isomorphic as labeled posets, then
Xλ and Yµ are algebraically isomorphic.

Our strategy is to embed Xλ in a “minimal" flag variety X′ determined by the labeled
poset λ.

Recall that S is the set of simple reflections defined in Section 3.

Definition 20. The support of λ is defined as

S(λ) := {s ∈ S : s ≤ wλ}.

Equivalently, S(λ) is the set of simple reflections appearing in any reduced decomposi-
tion of wλ.

Every reduced decomposition of wλ, and in particular, S(λ), can be read out from
the poset λ [6, Section 4]. The variety X′ is constructed using S(λ) as follows. Let G′ be
the reductive subgroup of PS(λ) with Weyl group W ′ := WS(λ) and P′ := G′ ∩ PI be the
reductive subgroup of G′ corresponding to I′ := I ∩ S(λ). Set X′ := G′/P′. Note that
wλ ∈ W ′ I′ .

Lemma 21 below is a restatement of [16, Lemma 4.8].

Lemma 21 (Richmond–Slofstra). The inclusion X′ ↪→ X induces an isomorphism X′
wλ

→ Xλ.

Let Y be another cominuscule flag variety and µ ⊆ PY be a lower order ideal. Next,
we show that a labeled poset isomorphism between λ and µ induces an isomorphism
between X′ and Y′, which restricts to an isomorphism between Xλ and Yµ. We shall see
that X′ and Y′ are cominuscule and that this isomorphism is given by an isomorphism
of their Dynkin diagrams.

In the following, let DX be the Dynkin diagram of X with vertex set ∆X.

Definition 22. The diagram Dλ
X is defined to be the full subgraph of DX with vertex set

∆λ
X := {α ∈ ∆X : sα ∈ S(λ)}.

Definition 23. Let a Dynkin chain in PX be a chain π ⊆ PX such that:

1. the set π is a lower order ideal;

2. the lengths of roots in π are weakly decreasing.

The lower order ideal P∆
X ⊆ PX is defined to be the union of all Dynkin chains in PX.

In fact, Dynkin chains in PX correspond to paths in DX starting from the cominuscule
root γ. Examples of P∆

X are illustrated in Figure 1.
The proof of Lemma 24 and Corollary 25 below are left to the reader.
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Figure 1: We highlight P∆
X ⊂ PX with a bold border and label its boxes by the images

of δ.

X PX DX

LG(4, 8)
4 3s 2s 1s

s s
s 1234

E6/P1

1 3 4 2
5
6 1

2

3 4 5 6

Lemma 24. The restriction δ : P∆
X → ∆X is a bijection.

Corollary 25. Let λ ⊆ PX be a lower order ideal. Then δ(λ∩P∆
X) = ∆λ

X, and Dλ
X is a connected

Dynkin diagram.

Remark 26. Corollary 25 implies that X′ is the cominuscule flag variety given by (Dλ
X, γ).

The last ingredient is Proposition 27, a purely combinatorial result. Geometrically,
it implies that the “minimal” cominuscule flag varieties for Schubert varieties with iso-
morphic labeled posets are isomorphic.

Proposition 27. Let λ ⊆ PX and µ ⊆ PY be lower order ideals. Then every labeled poset
isomorphism between λ and µ induces a graph isomorphism between Dλ

X and Dµ
Y that identifies

reduced decompositions of wλ and wµ.

Proof of Proposition 19. Let γX and γY denote the cominuscule simple roots correspond-
ing to the cominuscule flag varieties X and Y. Let X′ and Y′ denote the cominuscule flag
varieties given by the pairs (Dλ

X, γX) and (Dµ
Y, γY). Proposition 27 implies the cominus-

cule flag varieties X′ and Y′ are isomorphic. By Lemma 21, this isomorphism restricts to
an isomorphism between Xλ and Yµ, upon identifying them with Schubert varieties in
X′ and Y′, respectively.

We illustrate the above process with Example 28 and Example 29 below.

Example 28.

PQ6 = ∼= = POG(4,8),

therefore, Q6 ∼= OG(4, 8). This isomorphism comes from a symmetry of the D4 Dynkin
diagram:
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∼= .

Example 29. Let X = E6/P6 and λ be the lower order ideal depicted on the left below.
Then S(λ) = {s1, s3, s4, s5, s6}, where si is the simple reflection corresponding to the sim-
ple root labeled by i. Therefore, the pair (Dλ

X, γ) is as depicted on the right, isomorphic
to that of P5, showing Xλ

∼= X′ ∼= P5.

X = E6/P6 X′

1

2

3 4 5 6 1 3 4 5 6

∼=
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