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Abstract. We extend the recently-introduced ascent-compatibility framework to arbitrary
Coxeter systems, yielding a uniform method for constructing modules of 0-Hecke al-
gebras. In type B, we apply this method to produce 0-Hecke modules whose type B
quasisymmetric characteristics are notable type B quasisymmetric functions. We also
construct a 0-Hecke module on the set of standard domino tableaux of a given shape;
the type B quasisymmetric characteristic of this module is a certain type B analogue
of a Schur function called a domino function. We then introduce an analogous function
defined on shifted domino tableaux and prove that this function expands positively in
the type B analogue of the peak functions. Finally, we introduce a type B variant of
the 0-Hecke–Clifford algebra and consider the modules of this algebra induced from
the simple type B 0-Hecke modules. We characterize the isomorphism classes of these
induced modules in terms of type B peak sets and prove that the type B quasisymmet-
ric characteristics of the restrictions of these induced modules are precisely the type B
peak functions.

1 Introduction

The 0-Hecke algebra HW(0) of a Coxeter system (W, S) is a certain deformation of the
group algebra of W. In type A, the Grothendieck group of finite-dimensional 0-Hecke
modules is isomorphic to the Hopf algebra QSym of quasisymmetric functions via the
quasisymmetric characteristic map [7]. There has been a great deal of recent work de-
voted to finding 0-Hecke modules whose quasisymmetric characteristics are certain no-
table quasisymmetric functions, thereby giving representation-theoretic interpretations
for those quasisymmetric functions, and studying their properties, e.g., [1], [2], [9], [11],
[13], [15]. Recently, a framework for producing such modules that relies on a sim-
ple ascent-compatibility condition was introduced in [14]; as far as we are aware, all of
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the notable families of quasisymmetric functions for which 0-Hecke modules have been
constructed can be obtained via the ascent-compatibility framework.

In this extended abstract, we summarize results from [6]. Our first main result ex-
tends the ascent-compatibility condition from type A to all Coxeter systems, thus provid-
ing a framework for constructing 0-Hecke modules for any Coxeter system. Most of our
attention is directed toward hyperoctahedral groups, where previous researchers have
already laid the groundwork to extend much of the story from type A. Indeed, Chow [5]
introduced the ring QSymB of type B quasisymmetric functions, and Huang [8] recently
defined a type B quasisymmetric characteristic map from the Grothendieck group of
finite-dimensional type B 0-Hecke modules to QSymB. We provide several applications
in which the ascent-compatibility framework readily produces type B 0-Hecke modules
whose quasisymmetric characteristics are interesting type B quasisymmetric functions,
thus providing a representation-theoretic interpretation of these functions.

Next, we define an action of the type B 0-Hecke algebra on standard domino tableaux
of partition shape, thus obtaining a family of type B 0-Hecke modules whose quasisym-
metric characteristics are the type B analogues of Schur functions defined in [10]. We
also consider the shifted domino tableaux that were introduced and used to provide
an expansion formula for products of Schur Q-functions in [4]. We define variants of
these tableaux whose associated generating functions are in QSymB, and we prove that
these type B analogues of the Schur Q-functions expand positively in Petersen’s type B
peak functions [12], with the expansion indexed by type B peak sets of standard shifted
domino tableaux.

Finally, we consider the 0-Hecke–Clifford algebra obtained by combining the 0-Hecke
algebra and the Clifford algebra. The representation theory of this algebra is governed
by the peak subalgebra of QSym [3], and type A ascent-compatibility was applied in
[14] to construct 0-Hecke–Clifford modules for important families of functions in the
peak algebra. We define a type B analogue of the 0-Hecke–Clifford algebra and show
that the isomorphism classes of the modules of this algebra induced from the simple
type B 0-Hecke modules are indexed by the type B peak sets. We further show that the
quasisymmetric characteristics of the restrictions of these modules to the type B 0-Hecke
algebra are precisely the type B peak functions [12], thus providing a representation-
theoretic interpretation of these functions.

2 Background

2.1 Quasisymmetric functions

A composition α = (α1, α2, . . . , αk) is a finite sequence of positive integers. The integers
αi are called the parts of α. If the parts of α sum to n, then we say α is a composition of
n. There is a natural bijection between compositions of n and subsets of [n− 1]: given a
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composition α = (α1, α2, . . . , αk) of n, its descent set Des(α) is the set {α1, α1 + α2, . . . , α1 +
α2 + · · ·+ αk−1}.

For I ⊆ [n− 1], the fundamental quasisymmetric function FI is defined by

FI = ∑
1≤i1≤i2≤···≤in
j∈I =⇒ ij<ij+1

xi1 xi2 · · · xin .

As α ranges over all compositions, the fundamental quasisymmetric functions FDes(α)
form a basis for the algebra QSym of quasisymmetric functions.

Example 2.1. If n = 4, then F{2,3} = ∑
1≤i1≤i2<i3<i4

xi1 xi2 xi3 xi4 .

A type B analogue of the fundamental quasisymmetric functions was introduced
by Chow [5]. These involve an additional variable x0. For I ⊆ [0, n − 1], the type B
fundamental quasisymmetric function FB

I is defined by

FB
I = ∑

0=i0≤i1≤···≤in
j∈I =⇒ ij<ij+1

xi1 xi2 · · · xin .

Note that the variable x0 appears in FB
I if and only if 0 /∈ I.

Example 2.2. If n = 4, then

FB
{2,3} = ∑

0≤i1≤i2<i3<i4

xi1 xi2 xi3 xi4 and FB
{0,3} = ∑

0<i1≤i2≤i3<i4

xi1 xi2 xi3 xi4 .

A subset P ⊆ [n− 1] is called a peak set if 1 /∈ I and I contains no two consecutive
integers. The compositions whose descent sets are peak sets are called peak compositions;
these are precisely the compositions whose parts are all greater than 1, except possibly
the last part. Given a peak set P ⊆ [n− 1], the peak function KP is defined as

KP = 2|P|+1 ∑
J⊆[n−1] : P ⊆ J4(J+1)

FJ ,

where J + 1 = {j + 1 : j ∈ J} and 4 denotes symmetric difference.
Petersen introduced type B analogues of the peak functions in [12]. A subset P ⊆

[n − 1] is called a type B peak set if P contains no two consecutive integers; note that a
type B peak set is permitted to contain 1. For each type B peak set P, there are two
type B peak functions K(0,P) and K(1,P) defined by

K(0,P) = 2|P| ∑
J⊆[0,n−1] : P ⊆ J4(J+1)

FB
J and K(1,P) = 2|P|+1 ∑

0∈J⊆[0,n−1] : P ⊆ J4(J+1)
FB

J ,

with the proviso that K(1,P) is defined only if 1 /∈ P. For I ⊆ [0, n− 1], let PeakB(I) =
{p ∈ I : p ≥ 1 and p− 1 6∈ I} and define

∆B(I) =

{
K(0,PeakB(I)) if 0 6∈ I

K(1,PeakB(I)) if 0 ∈ I.
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2.2 0-Hecke algebras and modules

Given symbols γ, δ and a nonnegative integer r, we write [γ | δ]r for the word γδ · · · of
length r that starts with γ and alternates between γ and δ. For example, [γ | δ]5 = γδγδγ.

Let (W, S) be a Coxeter system. Thus, W is generated by S, and each element of S is
an involution. For any distinct s, t ∈ S, we have the relation [s | t]mst = [t | s]mst , where
mst ∈ {2, 3, . . .} ∪ {∞} (the relation is not present if mst = ∞). The 0-Hecke algebra HW(0)
of the Coxeter system (W, S) is a certain deformation of the group algebra of W; it has a
generating set {πs : s ∈ S} satisfying the relations

π2
s = −πs and [πs | πt]mst = [πt | πs]mst .

The simple HW(0)-modules are all one-dimensional and indexed by subsets I of S. The
structure of a simple HW(0)-module SI is given by

πj(v) =

{
−v if j ∈ I
0 if j /∈ I,

where v is a basis element of SI .
We will mainly consider the 0-Hecke algebras where W is the symmetric group Sn or

the hyperoctahedral group Bn. These are referred to as, respectively, the type A 0-Hecke
algebra Hn(0) and the type B 0-Hecke algebra HB

n (0). The type A 0-Hecke algebra Hn(0)
is generated by {π1, . . . , πn−1} with relations

π2
i = −πi;

πiπj = πjπi if |i− j| ≥ 2;

πiπi+1πi = πi+1πiπi+1,

while the type B 0-Hecke algebra HB
n (0) is generated by {π0, π1, . . . , πn−1}with the same

relations as above for 1 ≤ i ≤ n− 1 and the additional relations

π2
0 = −π0;

π0πi = πiπ0; if i ≥ 2
π0π1π0π1 = π1π0π1π0.

For I ⊆ [n− 1], let us (slightly abusing notation) write SI for the simple Hn(0)-module
corresponding to the set {si : i ∈ I} of simple generators of An−1. Similarly, for I ⊆
[0, n− 1], write SB

I for the simple HB
n (0)-module corresponding to the set {si : i ∈ I} of

simple generators of Bn.
The quasisymmetric characteristic map is the Hopf algebra isomorphism ch from the

Grothendieck group of finite-dimensional type A 0-Hecke modules to QSym defined by
ch([SI ]) = FI [7]. Huang [8] defined a type B quasisymmetric characteristic map chB

from the Grothendieck group of finite-dimensional type B 0-Hecke modules to QSymB

by chB([SB
I ]) = FB

I .
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3 Ascent-compatibility and applications in type B

Let (W, S) be a Coxeter system. A simple generator s ∈ S is an ascent of an element
w ∈W if `(sw) > `(w); otherwise, s is a descent of w. The set of descents of w is denoted
Des(w). Fix X ⊆ W, and let NX be the complex vector space with basis X. For s ∈ S,
define a linear operator πs : NX → NX by

πs(x) =


−x if s ∈ Des(x)
0 if s /∈ Des(x) and sx /∈ X
sx if s /∈ Des(x) and sx ∈ X

for all x ∈ X. We say X is ascent-compatible if for all v, w ∈ X and all s, t ∈ S such that s is
an ascent of v, t is an ascent of w, and v−1sv = w−1tw, we have that sv ∈ X if and only
if tw ∈ X.

Theorem 3.1. Let (W, S) be a Coxeter system. If X is an ascent-compatible subset of W, then
the operators {πs : s ∈ S} define an action of the 0-Hecke algebra of W on NX.

The type A version of Theorem 3.1 was proved in [14].

Example 3.2. Consider the type A Coxeter group S3, which has two simple generators
s1, s2. Let

X = {(1, 2, 3), (2, 1, 3), (2, 3, 1), (1, 3, 2)} ⊆ S3

where the elements of X are written in one-line notation. This set X is not ascent-
compatible, because (1, 2, 3)−1s1(1, 2, 3) and (2, 3, 1)−1s2(2, 3, 1) are equal, but s1(1, 2, 3) =
(2, 1, 3) ∈ X whereas s2(2, 3, 1) = (3, 2, 1) /∈ X.

On the other hand, the set

X′ = {(2, 3, 1), (3, 1, 2), (1, 3, 2)} ⊆ S3

is ascent-compatible.

We now provide a family of ascent-compatible sets across all Coxeter groups. Given a
Coxeter system (W, S), the left weak order ≤L is the partial order on W defined by x ≤L y
if there is a reduced word for y that contains a reduced word for x as a suffix. If x ≤L y,
then the interval between x and y in the left weak order is the set [x, y]L = {z ∈W : x ≤L
z ≤L y}. A set X ⊆ W is called convex (in the left weak order) if for all x, y ∈ X with
x ≤L y, we have [x, y]L ⊆ X.

Theorem 3.3. Let (W, S) be a Coxeter system, and let X ⊆ W. If X is convex in the left weak
order and has a unique maximal element under the left weak order, then X is ascent-compatible.
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In type A, Theorem 3.3 generalizes the result that intervals in left weak order on Sn
are ascent-compatible [14]. The corresponding 0-Hecke modules were studied in [9] and
shown to be very useful for interpreting and relating many previously-studied families
of 0-Hecke modules in type A.

For 0-Hecke algebras for which a quasisymmetric characteristic map is defined, one
can obtain a formula for the characteristic of [NX]. In particular, in types A and B, we
have the following (the type A version of this theorem appeared in [14]).

Theorem 3.4. Let X be an ascent-compatible subset of Sn and Y an ascent-compatible subset of
Bn. Then

ch([NX]) = ∑
x∈X

FDes(x) and chB([NY]) = ∑
y∈Y

FB
Des(y).

Example 3.5. Let NX′ be the 0-Hecke module defined on the set X′ from Example 3.2.
Then

ch([NX′ ]) = F{1} + 2F{2}.

Given a function expressed as sums of type A or type B fundamental quasisymmet-
ric functions associated to descents of Coxeter group elements, Theorems 3.1 and 3.4
yield a method for finding a 0-Hecke module whose quasisymmetric characteristic is
that function. Specifically, it suffices to determine that the set of Coxeter group elements
indexing the expansion is ascent-compatible. There has been significant interest in find-
ing 0-Hecke modules for many such functions in type A, and the type A version of these
theorems was used in [14] to give a common interpretation of these modules.

Motivated by a type B analogue of Schur positivity, Mayorova and Vassilieva [10]
studied several interesting subsets of Bn and functions associated to them. For X ⊆ Bn,
let

Q(X) = ∑
x∈X

FB
Des(x−1).

Note that realizing Q(X) as the characteristic of an HB
n (0)-module via Theorems 3.1

and 3.4 follows from ascent-compatibility of the set X−1 = {x−1 : x ∈ X}.
We view Bn as the group of permutations σ of {±1, . . . ,±n} satisfying σ(−i) =

−σ(i) for all i. Two sets X ⊆ Bn whose corresponding functions Q(X) were studied in
[10] are the left descent classes and the left-unimodal permutations. The left descent class
associated to I ⊆ [0, n− 1] is the set DB

I = {σ ∈ Bn : Des(π) = I}, and the left-unimodal
permutations are the elements of LB =

⋃n
i=1 LB

i , where LB
i is the set of all σ ∈ Bn such

that σ−1(1) > · · · > σ−1(i) < · · · < σ−1(n).

Theorem 3.6. The sets (DB
I )
−1 and (LB

i )
−1 are ascent-compatible. Therefore, both C(DB

I )
−1

and C(LB
i )
−1 are HB

n (0)-modules, and we have

chB(C(DB
I )
−1) = Q(DB

I ) and chB(C(LB
i )
−1) = Q(LB

i );

the latter of these identities implies that chB(
⊕n

i=1 C(LB
i )
−1) = Q(LB).
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The sets DB
I and LB

i are also ascent-compatible, so we additionally obtain Q((DB
I )
−1)

and Q((LB
i )
−1) as characteristics of HB

n (0)-modules. Let us remark that each LB
i is a

subset of a left descent class; more generally, any subset of a left descent class is ascent-
compatible.

Another example considered in [10] is the type B Knuth class CB
T associated to a stan-

dard domino tableau T: this is the set of all σ ∈ Bn that insert to T under a certain type B
analogue of the Robinson–Schensted correspondence (see Section 4 for the definition of
a standard domino tableau). The set (CB

T)
−1 is not in general ascent-compatible, but CB

T
itself is a subset of a left descent class, thus ascent-compatible. Therefore the functions
Q((CB

T)
−1) are characteristics of HB

n (0)-modules.
The final example considered in [10] is the signed arc permutations AB

n . These are the
elements of Bn whose one-line notation is a shuffle of a word a1 · · · ap over the alphabet
[n] and a word b1 · · · bn−p over the alphabet −[n] satisfying the following conditions:

• ai+1 ≡ ai + 1 (mod n) for all 1 ≤ i ≤ p− 1;

• bj+1 ≡ bj + 1 (mod n) for all 1 ≤ j ≤ n− p− 1;

• a1 ≡ −b1 + 1 (mod n) if p and n− p are both nonzero.

The set of inverses of signed arc permutations is not ascent-compatible, but the set of
signed arc permutations themselves is. Accordingly, we obtain the following theorem.

Theorem 3.7. The set AB
n is ascent-compatible. Therefore, CAB

n is an HB
n (0)-module, and

chB(CAB
n) = Q((AB

n)
−1).

4 Domino tableaux and type B peak functions

A central motivation for the families of functions considered in Section 3 is their positive
expansions into a type B analogue of Schur functions known as domino functions, which
have a formula in terms of domino tableaux [10]. In this section, we define an action
of the type B 0-Hecke algebra on standard domino tableaux, thus realizing the domino
functions as quasisymmetric characteristics of 0-Hecke modules. We then consider a
shifted analogue of domino tableaux introduced by Chemli [4], modify these to allow 0
entries, and introduce standard shifted domino tableaux. We show that the generating
functions of the (modified) shifted domino tableaux expand positively in the type B peak
functions, indexed by standard shifted domino tableaux.

Let λ ` 2n. A domino tiling of λ is a tiling of the Young diagram of shape λ by 1× 2
and 2× 1 rectangles called dominoes. A standard domino tableau of shape λ is a bijective
filling of a domino tiling of λ with entries from [n] such that entries increase from left to
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Figure 1: A standard domino tableau of shape (5, 4, 4, 1) ` 14.

right along rows and from top to bottom in columns (see Figure 1). Let SDT(λ) denote
the set of all standard domino tableaux of shape λ.

Suppose T ∈ SDT(λ). Let domi(T) denote the domino in T filled with the entry i.
A number i ∈ [0, n − 1] is a descent of T if i = 0 and dom1(T) is vertical or if i > 0
and domi+1(T) is strictly lower than domi(T). Let Des(T) be the set of descents of T.
For example, the descent set of the domino tableau in Figure 1 is {0, 2, 5, 6}. The domino
function Gλ [10] is defined by

Gλ = ∑
T∈SDT(λ)

FB
Des(T).

For 1 ≤ i ≤ n − 1, let si(T) be the tableau obtained by exchanging the entries i and
i + 1. If dom1(T) and dom2(T) tile a square in T, then we say these dominoes are
aligned and let s0(T) be the tableau obtained by switching the orientation of both these
dominoes (i.e., from horizontal to vertical or vice versa); otherwise, we say s0(T) is not
defined (in particular, we would say s0(T) 6∈ SDT(λ) in this case). We define operators
π0, π1, . . . πn−1 on standard domino tableaux by

πi(T) =


−T if i ∈ Des(T)
0 if i /∈ Des(T) and si(T) /∈ SDT(λ)

si(T) if i /∈ Des(T) and si(T) ∈ SDT(λ).

Example 4.1. Let λ = (4, 3, 3), and suppose

T = ∈ SDT(λ).

Then

π0(T) = and π2(T) = .

We also have π1(T) = π3(T) = −T and π4(T) = 0.
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Theorem 4.2. The operators π0, π1, . . . , πn−1 define an HB
n (0)-action on the space spanned by

the standard domino tableaux of shape λ. Moreover, the type B quasisymmetric characteristic of
the resulting HB

n (0)-module is precisely the domino function Gλ.

We now consider the shifted domino tableaux [4]. The definition of these tableaux
requires the notion of the 2-quotient of a partition λ = (λ1, . . . , λk), which is the pair of
partitions (µ, ν) obtained as follows. Let λ? be the partition obtained by adding k− i to
the part λi for each 1 ≤ i ≤ k. Now let w be obtained from λ? by replacing the odd
parts of λ? with 1, 3, 5, . . . and the even parts of λ? with 0, 2, 4, . . ., from right to left.
Then µ (respectively, ν) is the partition found by subtracting the even (respectively, odd)
entries of w from the even (respectively, odd) entries of λ?, dividing the result by 2, and
removing any 0 entries.

Example 4.3. If λ = (7, 7, 6, 5, 1), then λ? = (11, 10, 8, 6, 1), w = (3, 4, 2, 0, 1), µ = (3, 3, 3),
and ν = (4).

Let λ be a partition whose 2-quotient (µ = (µ1, . . . , µp), ν = (ν1, . . . , νq)) satisfies
µp ≥ p and νq ≥ q. A domino tiling of λ is a shifted tiling of λ if there is no vertical
domino d lying on the main diagonal such that all dominoes left of d and adjacent to d
are strictly below the main diagonal. Given a shifted tiling of λ, Chemli [4] defined a
semistandard shifted domino tableau of shape λ to be a filling of the dominoes in the tiling
lying weakly above the main diagonal with entries from 1′ < 1 < 2′ < 2 < · · · such that

1. entries weakly increase from left to right along rows and from top to bottom in
columns

2. each row contains at most one i′, and each column contains at most one i.

Under this definition, the weight generating function of semistandard shifted domino
tableaux of shape λ is equal to the product of the Schur Q-functions indexed by µ and ν

[4].
We modify Chemli’s definition of semistandard shifted domino tableaux to introduce

zeroed semistandard shifted domino tableaux. In these tableaux, we allow 0 entries (but not
0′), where 0 < 1′ < 1 < · · · ; we also require that all dominoes with a 0 entry are
horizontal. See the left of Figure 2. Let SSShDT(λ) denote the set of zeroed semistandard
shifted domino tableaux. For T ∈ SSShDT(λ), let the weight wt(T) of T be defined by
wt(T) = (wt0(T), wt1(T), . . .), where wti(T) is the number of entries in T equal to i or i′

(so wt0(T) is just the number of 0 entries in T). Let xwt(T) = ∏i≥0 xwti(T)
i . We define the

shifted domino function Hλ by

Hλ = ∑
T∈SSShDT(λ)

xwt(T).
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Figure 2: A semistandard shifted domino tableau T ∈ SSShDT(λ) (left) and a stan-
dard shifted domino tableau U ∈ SShDT(λ) (right), where λ = (7, 7, 6, 5, 1). We have
wt(T) = (1, 4, 0, 1, 2, 2) and Des(U) = {1, 5, 7, 8}.

The zeroed variant of semistandard shifted domino tableaux is analogous to a zeroed
variant of a semistandard version of (nonshifted) domino tableaux introduced in [10],
whose weight generating function is Gλ. In this way, the shifted domino functions may
be regarded as a type B analogue of the Schur Q-functions, similarly to how domino
functions provide a type B analogue of Schur functions.

Just as the Schur Q-functions expand positively in the peak functions, we claim the
shifted domino function expands positively in the type B peak functions. To this end, we
define a standard shifted domino tableau of shape λ to be a bijective filling of the dominoes
weakly above the main diagonal in a shifted tiling of λ with entries in [m] (where m
is the number of dominoes weakly above the main diagonal) such that entries strictly
increase from left to right along rows and from top to bottom in columns. See the right
of Figure 2. Let SShDT(λ) denote the set of standard shifted domino tableaux of shape
λ.

Let U ∈ SShDT(λ), and suppose U uses the entries 1, . . . , m. Write domi(U) for the
domino filled with the entry i in U. An integer i ∈ [0, m− 1] is a descent of U if i = 0
and dom1(U) is vertical or if i > 0 and domi+1(U) is strictly lower than domi(U). Let
Des(U) be the set of descents of U. Recall the definition of the type B peak function
∆B(I) from Section 2.1.

Theorem 4.4. We have
Hλ = ∑

U∈SShDT(λ)
∆B(Des(U)).

We remark that the same operators used in Theorem 4.2 also define a HB
n (0)-action

on the space spanned by SShDT(λ).

5 A type B analogue of the 0-Hecke–Clifford algebra

The 0-Hecke–Clifford algebra HCln(0) is the algebra with generators π1, . . . , πn−1 and
c1, . . . , cn such that the πi generate Hn(0), the cj satisfy the Clifford relations c2

j = −1
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and cicj = cjci for i 6= j, and the πi and cj satisfy the additional relations

πicj = cjπi for j 6= i, i + 1;

πici = ci+1πi;
(πi + 1)ci+1 = ci(πi + 1).

We construct an analogue HClB
n (0) of this algebra using the type B 0-Hecke algebra

HB
n (0). This algebra has generators π0, π1, . . . , πn−1 and c1, . . . , cn such that the πi gen-

erate HB
n (0), the cj satisfy the same Clifford relations c2

j = −1 and cicj = cjci for i 6= j,
and the πi and cj satisfy the additional relations

πicj = cjπi for j 6= i, i + 1;

πici+1 = ci+1πi for 1 ≤ i ≤ n− 1;
(πi + 1)ci = ci+1(πi + 1);

π0c1 =
√
−1π0.

Recall that we write SB
I for the simple HB

n (0)-module corresponding to the set {si :
i ∈ I} of simple generators of Bn. Let MB

I denote the HClB
n (0)-module induced from SB

I ,
and consider the restriction ResHB

n (0)
MB

I of MB
I to HB

n (0). The following theorem, whose
type A analogue was proven in [3], provides a representation-theoretic interpretation of
Petersen’s type B peak functions ∆B(I) [12].

Theorem 5.1. Let I ⊆ [0, n− 1] and let Ic = [0, n− 1] \ I. Then

chB(ResHB
n (0)

MB
Ic) = ∆B(I).

Moreover, two induced modules MB
I and MB

J are isomorphic if and only if

PeakB(Ic) = PeakB(Jc) and 0 6∈ I4J.
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