Séminaire Lotharingien de Combinatoire **89B** (2023) Article #54, 12 pp.

Modules of the 0-Hecke algebras for genomic Schur functions

Young-Hun Kim^{*1} and Semin Yoo^{†2}

¹Center for quantum structures in modules and spaces, Seoul National University, Seoul 08826, Republic of Korea

²School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea

Abstract. We construct an $H_m(0)$ -module $\mathbf{G}_{\lambda;m}$ whose image under the quasisymmetric characteristic is the *m*th degree homogeneous component of the genomic Schur function U_{λ} by defining an $H_m(0)$ -action on increasing gapless tableaux. We then provide a direct sum decomposition of $\mathbf{G}_{\lambda;m}$ and show that each summand of this decomposition is isomorphic to a weak Bruhat interval module.

Keywords: 0-Hecke algebra, weak Bruhat order, genomic Schur function, quasisymmetric characteristic

1 Introduction

Let $X = \operatorname{Gr}_k(\mathbb{C}^n)$ be the Grassmannian of *k*-dimensional subspaces of \mathbb{C}^n . Since the early 2000s, several combinatorial interpretations for the *K*-theoretic Littlewood-Richardson rule have been introduced. For instance, see [3, 11, 15, 16]. In particular, Pechenik and Yong [11] gave a combinatorial interpretation by using genomic tableaux. Therein, they defined a symmetric function U_{λ} , called the genomic Schur function, as a generating function for genomic tableaux of shape λ for all partition λ . Further, they proved that $\{U_{\lambda} \mid \lambda \text{ is a partition}\}$ is a basis for the ring of symmetric functions and pointed out that genomic Schur functions are not Schur-positive in general. As an alternative positivity, Pechenik [10] showed that genomic Schur functions are fundamental positive. Specifically, for any partition λ ,

$$U_{\lambda} = \sum_{T \in \text{IGLT}(\lambda)} F_{\text{comp}(T)},$$

^{*}ykim.math@gmail.com. Young-Hun Kim was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (NRF-2020R1A5A1016126 and NRF-2022R1A2C1004045).

[†]syoo19@kias.re.kr. Semin Yoo was supported by the KIAS Individual Grant (CG082701) at Korea Institute for Advanced Study.

where IGLT(λ) is the set of *increasing gapless tableaux* of shape λ , comp(T) is the composition associated to T, and $F_{\text{comp}(T)}$ is the *fundamental quasisymmetric function* associated to comp(T). For the precise definitions, see Subsection 2.4.

The 0-*Hecke algebra* $H_n(0)$ is the C-algebra obtained from the Hecke algebra $H_n(q)$ by specializing q to 0. Duchamp, Krob, Leclerc, and Thibon [6] introduced a ring isomorphism, called *quasisymmetric characteristic*,

$$\operatorname{ch}: \mathcal{G}_0(H_{\bullet}(0)) \to \operatorname{QSym}, \quad [\mathbf{F}_{\alpha}] \mapsto F_{\alpha}.$$

Here, $\mathcal{G}_0(H_{\bullet}(0))$ is the Grothendieck ring associated to 0-Hecke algebras and QSym is the ring of quasisymmetric functions. In view of this correspondence, there have been considerable attempts to provide a representation theoretic interpretation of noteworthy quasisymmetric functions by constructing appropriate 0-Hecke modules. For instance, see [1, 2, 4, 12, 13, 14]. Recently, Jung, Kim, Lee, and Oh [7] introduced the *weak Bruhat interval module* B(σ , ρ) to provide a unified method to study the $H_n(0)$ -modules in the papers mentioned above. Here, σ and ρ are permutations in the symmetric group \mathfrak{S}_n .

The purpose of this paper is to provide a nice representation theoretic interpretation of genomic Schur functions. First, for each $1 \le m \le n$, we construct an $H_m(0)$ -module $\mathbf{G}_{\lambda;m}$ by defining an $H_m(0)$ -action on the \mathbb{C} -span of the set IGLT(λ)_m of increasing gapless tableaux of shape λ with maximum entry m. And, we see that the image of $\mathbf{G}_{\lambda;m}$ under the quasisymmetric characteristic is the mth homogeneous component of U_{λ} . Next, we define an equivalence relation $\sim_{\lambda;m}$ on IGLT(λ)_m and show that the \mathbb{C} -span of each equivalence class is closed under the $H_m(0)$ -action. Thus, we obtain a direct sum decomposition

$$\mathbf{G}_{\lambda;m} = \bigoplus_{E \in \mathcal{E}_{\lambda;m}} \mathbf{G}_E,$$

where $\mathcal{E}_{\lambda;m}$ is the set of all equivalence classes with respect to $\sim_{\lambda;m}$ and \mathbf{G}_E is the submodule of $\mathbf{G}_{\lambda;m}$ whose underlying space is the C-span of *E*. Finally, we show that \mathbf{G}_E is isomorphic to a weak Bruhat interval module for $E \in \mathcal{E}_{\lambda;m}$. To do this, we prove that there exist unique source tableau T_E and sink tableau T'_E in *E*. In addition, we assign a permutation read(*T*), called *standardized reading word*, to each $T \in E$. With these preparations, we show that

$$\mathbf{G}_E \cong \mathsf{B}(\mathsf{read}(T_E),\mathsf{read}(T'_E)).$$

We end with providing an avenue for future research. This paper is an extended abstract of our paper [8].

2 Preliminaries

Given any integers *m* and *n*, define [m, n] to be the set $\{k \in \mathbb{Z} \mid m \le k \le n\}$ if $m \le n$ or the empty set otherwise. Throughout this section, *n* denotes a nonnegative integer.

2.1 Compositions and Diagrams

A *composition* α of a nonnegative integer n, denoted by $\alpha \models n$, is a finite ordered list of positive integers $(\alpha_1, \alpha_2, ..., \alpha_k)$ satisfying $\sum_{i=1}^k \alpha_i = n$. We call $k =: \ell(\alpha)$ the *length* of α and $n =: |\alpha|$ the *size* of α . Given $\alpha = (\alpha_1, \alpha_2, ..., \alpha_{\ell(\alpha)}) \models n$, we define set $(\alpha) := \{\alpha_1, \alpha_1 + \alpha_2, ..., \sum_{i=1}^{\ell(\alpha)-1} \alpha_i\} \subseteq [1, n-1].$

If $\lambda = (\lambda_1, \lambda_2, ..., \lambda_{\ell(\lambda)}) \models n$ satisfies $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{\ell(\lambda)}$, then we say that λ is a *partition* of *n* and denote it by $\lambda \vdash n$. For $\lambda = (\lambda_1, \lambda_2, ..., \lambda_{\ell(\lambda)}) \vdash n$, we define the *Young diagram* yd(λ) of λ by a left-justified array of *n* boxes where the *i*th row from the top has λ_i boxes for $1 \le i \le \ell(\lambda)$. We say that a box in yd(λ) is *in the ith row* if it is in the *i*th row from the top and *in the jth column* if it is in the *j*th column from the left. We denote by (i, j) the box in the *i*th row and *j*th column. Denoting $(i, j) \in yd(\lambda)$ means that $1 \le i \le \ell(\lambda)$ and $1 \le j \le \lambda_i$. We also say that a lattice point on yd(λ) is *in the ith row* if it is in the (i + 1)st horizontal line from the top and *in the jth column* if it is in the (j + 1)st vertical line from the left. We denote by $(\underline{i, j})$ the lattice point in the *i*th row and *j*th column. For example, if $\lambda = (3, 2, 2)$, then

the box (1, 3) is the box filled with red, and the lattice point (3,0) is the point marked by the blue dot. A *filling of* $yd(\lambda)$ is a function $T : yd(\lambda) \to \mathbb{Z}_{>0}$. Throughout this paper, we assume that

$$T((i, j)) = \infty \quad \text{if } (i, j) \in (\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}) \setminus \text{yd}(\lambda) \text{ and}$$

$$T((i, j)) = -\infty \quad \text{if } (i, j) \in (\mathbb{Z} \times \mathbb{Z}) \setminus (\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}).$$

For any filling *T* of $yd(\lambda)$, let $max(T) := max\{T((i, j)) \mid (i, j) \in yd(\lambda)\}$.

2.2 The 0-Hecke algebra and the quasisymmetric characteristic

To begin with, we recall that the symmetric group \mathfrak{S}_n is generated by simple transpositions $s_i := (i, i + 1)$ with $1 \le i \le n - 1$. An expression for $\sigma \in \mathfrak{S}_n$ of the form $s_{i_1}s_{i_2}\cdots s_{i_p}$ that uses the minimal number of simple transpositions is called a *reduced expression* for σ . The number of simple transpositions in any reduced expression for σ , denoted by $\ell(\sigma)$, is called the *length* of σ .

The 0-*Hecke algebra* $H_n(0)$ is the C-algebra generated by $\pi_1, \pi_2, \ldots, \pi_{n-1}$ subject to the following three relations: (1) $\pi_i^2 = \pi_i$ for $1 \le i \le n-1$, (2) $\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1}$ for $1 \le i \le n-2$, and (3) $\pi_i \pi_j = \pi_j \pi_i$ if $|i-j| \ge 2$. Pick up any reduced expression $s_{i_1}s_{i_2}\cdots s_{i_p}$ for a permutation $\sigma \in \mathfrak{S}_n$. We define the element π_σ of $H_n(0)$ by $\pi_\sigma := \pi_{i_1}\pi_{i_2}\cdots \pi_{i_p}$ It is well known that π_σ is independent of the choice of reduced expressions, and $\{\pi_\sigma \mid \sigma \in \mathfrak{S}_n\}$ is a basis for $H_n(0)$.

In [9], Norton classified all irreducible modules of the 0-Hecke algebras. It was shown that there are 2^{n-1} distinct irreducible $H_n(0)$ -modules which are naturally parametrized by compositions of n. For each $\alpha \models n$, the irreducible module \mathbf{F}_{α} corresponding to α is the 1-dimensional $H_n(0)$ -module spanned by a vector v_{α} whose $H_n(0)$ -action is given by

$$\pi_i \cdot v_{\alpha} = egin{cases} 0 & i \in \operatorname{set}(lpha), \ v_{lpha} & i \notin \operatorname{set}(lpha), \end{cases} \quad (1 \leq i \leq n-1).$$

Let $\mathcal{R}(H_n(0))$ denote the \mathbb{Z} -span of the isomorphism classes of finite dimensional $H_n(0)$ -modules. The isomorphism class corresponding to an $H_n(0)$ -module M will be denoted by [M]. The *Grothendieck group* $\mathcal{G}_0(H_n(0))$ is the quotient of $\mathcal{R}(H_n(0))$ modulo the relations [M] = [M'] + [M''] whenever there exists a short exact sequence $0 \to M' \to M \to M'' \to 0$. The irreducible $H_n(0)$ -modules form a free \mathbb{Z} -basis for $\mathcal{G}_0(H_n(0))$. Let $\mathcal{G}_0(H_{\bullet}(0)) := \bigoplus_{n \ge 0} \mathcal{G}_0(H_n(0))$ be the ring equipped with the induction product. In [6], Duchamp, Krob, Leclerc, and Thibon revealed a deep connection between $\mathcal{G}_0(H_{\bullet}(0))$ and the ring QSym of quasisymmetric functions by providing a ring isomorphism

$$\operatorname{ch}: \mathcal{G}_0(H_{\bullet}(0)) \to \operatorname{QSym}, \quad [\mathbf{F}_{\alpha}] \mapsto F_{\alpha},$$

called *quasisymmetric characteristic*. Here, F_{α} is the *fundamental quasisymmetric function*.

2.3 Weak Bruhat interval modules of the 0-Hecke algebra

Given $\sigma \in \mathfrak{S}_n$, let $\text{Des}_L(\sigma) := \{i \in [1, n-1] \mid \ell(s_i\sigma) < \ell(\sigma)\}$. The *left weak Bruhat order* \preceq_L on \mathfrak{S}_n is the partial order on \mathfrak{S}_n whose covering relation \preceq_L^c is defined as follows: $\sigma \preceq_L^c s_i \sigma$ if and only if $i \notin \text{Des}_L(\sigma)$. Given $\sigma, \rho \in \mathfrak{S}_n$, the *left weak Bruhat interval from* σ *to* ρ , denoted by $[\sigma, \rho]_L$, is the closed interval $\{\gamma \in \mathfrak{S}_n \mid \sigma \preceq_L \gamma \preceq_L \rho\}$.

Definition 2.1. ([7]) Let $\sigma, \rho \in \mathfrak{S}_n$. The weak Bruhat interval module associated to $[\sigma, \rho]_L$, denoted by $\mathsf{B}(\sigma, \rho)$, is the $H_n(0)$ -module with the underlying space $\mathbb{C}[\sigma, \rho]_L$ and with the $H_n(0)$ -action defined by

$$\pi_i \cdot \gamma := \begin{cases} \gamma & \text{if } i \in \text{Des}_L(\gamma), \\ 0 & \text{if } i \notin \text{Des}_L(\gamma) \text{ and } s_i \gamma \notin [\sigma, \rho]_L, \\ s_i \gamma & \text{if } i \notin \text{Des}_L(\gamma) \text{ and } s_i \gamma \in [\sigma, \rho]_L. \end{cases}$$

2.4 Genomic Schur functions

Given $\lambda \vdash n$, an *increasing gapless tableau* of shape λ is a filling of $yd(\lambda)$ such that the entries in each row strictly increase from left to right, the entries in each column strictly increase from top to bottom, and the set $T^{-1}(i)$ is nonempty for all $1 \le i \le max(T)$. Let IGLT(λ) be the set of all increasing gapless tableaux of shape λ . Given $T \in IGLT(\lambda)$ and

 $1 \le i \le \max(T)$, let $\operatorname{Top}_i(T)$ (resp. $\operatorname{Bot}_i(T)$) be the highest (resp. lowest) box in *T* having the entry *i*. Let

$$(r_{b}^{(i)}(T), c_{b}^{(i)}(T)) := \text{Bot}_{i}(T) \text{ and } (r_{t}^{(i)}(T), c_{t}^{(i)}(T)) := \text{Top}_{i}(T).$$

If *T* is clear in the context, we simply write $r_b^{(i)}, c_b^{(i)}, r_t^{(i)}$, and $c_t^{(i)}$ instead of $r_b^{(i)}(T), c_b^{(i)}(T), r_t^{(i)}(T)$, and $c_t^{(i)}(T)$, respectively. We call an index $i \in [1, \max(T) - 1]$ a *descent of T* if there is some instance of *i* strictly above some instance of i + 1 in *T*. Let Des(T) be the set of all descents of *T* and let comp(T) := comp(Des(T)).

Definition 2.2. ([10, 11]) For $\lambda \vdash n$, the genomic Schur function U_{λ} is defined by

$$U_{\lambda} := \sum_{T \in \mathrm{IGLT}(\lambda)} F_{\mathrm{comp}(T)}.$$

Given $1 \le m \le n$, we define

$$\operatorname{IGLT}(\lambda)_m := \{T \in \operatorname{IGLT}(\lambda) \mid \max(T) = m\} \text{ and } U_{\lambda;m} := \sum_{T \in \operatorname{IGLT}(\lambda)_m} F_{\operatorname{comp}(T)}.$$

From the definition, it immediately follows that $U_{\lambda;m}$ is the *m*th degree homogeneous component of U_{λ} .

Hereafter, we assume that *n* is a positive integer, *m* is a positive integer less than or equal to *n*, and λ is a partition of *n*, unless otherwise stated.

3 0-Hecke modules from increasing gapless tableaux

3.1 An $H_m(0)$ -module for $U_{\lambda;m}$

We start by introducing the necessary definitions.

Definition 3.1. Given $T \in \text{IGLT}(\lambda)$ and $1 \le i \le \max(T) - 1$, we say that *i* is an *attacking descent* if $i \in \text{Des}(T)$, and either

- (a) there exists $(j,k) \in yd(\lambda)$ such that T((j,k)) = i and T((j+1,k)) = i+1, or
- (b) there exists a box $B \in T^{-1}(i+1)$ placed weakly above $Bot_i(T)$.

Take any $1 \le m \le n$. For each $1 \le i \le m - 1$, we define a linear operator π_i : $\mathbb{C} \operatorname{IGLT}(\lambda)_m \to \mathbb{C} \operatorname{IGLT}(\lambda)_m$ by

$$\pi_i(T) := \begin{cases} T & \text{if } i \text{ is not a descent of } T, \\ 0 & \text{if } i \text{ is an attacking descent of } T, \\ s_i \cdot T & \text{if } i \text{ is a non-attacking descent of } T \end{cases}$$
(3.1)

for $T \in \text{IGLT}(\lambda)_m$ and extending it by linearity. Here, $s_i \cdot T$ is the tableau obtained from T by replacing i and i + 1 with i + 1 and i, respectively. By proving $\pi_i^2 = \pi_i$ $(1 \le i \le m - 1)$, $\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1}$ $(1 \le i \le m - 2)$, and $\pi_i \pi_j = \pi_j \pi_i$ $(1 \le i, j \le m - 1 \text{ with } |i - j| > 1)$, we obtain the following theorem. For details, see [8, Subsection 3.1].

Theorem 3.2. For any $1 \le m \le n$, the operators $\pi_1, \pi_2, \ldots, \pi_{m-1}$ satisfy the same relations as the generators $\pi_1, \pi_2, \ldots, \pi_{m-1}$ for $H_m(0)$. In other words, $\pi_1, \pi_2, \ldots, \pi_{m-1}$ define an $H_m(0)$ -action on \mathbb{C} IGLT(λ)_m.

Example 3.3. (1) When $T = \begin{bmatrix} 1 & 2 & 3 & 6 \\ 2 & 3 & 5 & 7 \\ 4 & 6 \end{bmatrix}$, we have $\pi_3(T) = s_3 \cdot T$, $\pi_4(T) = T$, and $\pi_i(T) = 0$ for i = 1, 2, 5, 6. Here, the indices in red are used to indicate the descents of the tableau. (2) Note that IGLT((2, 1, 1)) = $\left\{ \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 4 & 7 \\ 4 & 7 \\ 4 & 7 \\ 4 & 7 \\ 4 & 7 \\ 4 & 7 \\ 5 & 7 \\ 4 & 7 \\ 5 & 7 \\ 7$

The following proposition follows immediately from (3.1) and Theorem 3.2.

Proposition 3.4. For any $\lambda \vdash n$ and $1 \leq m \leq n$, $ch([\mathbf{G}_{\lambda;m}]) = U_{\lambda;m}$. Consequently, $\sum_{1 \leq m \leq n} ch([\mathbf{G}_{\lambda;m}]) = U_{\lambda}$.

Remark 3.5. In [5, Theorem 4.7], Duchamp, Hivert, and Thibon described the *Ext-quiver* of $H_m(0)$. According to their result, for any $\alpha \models m$, we have $\operatorname{Ext}^1_{H_m(0)}(\mathbf{F}_{\alpha}, \mathbf{F}_{\alpha}) = 0$, equivalently, there is no indecomposable $H_m(0)$ -module M such that $\operatorname{ch}([M]) = 2F_{\alpha}$. On the other hand, in Example 3.3, we see that $U_{(2,1,1);3} = 2F_{(1,1,1)}$. Thus, we conclude that there is no indecomposable $H_3(0)$ -module M satisfying $\operatorname{ch}([M]) = U_{(2,1,1);3}$.

3.2 A direct sum decomposition of $G_{\lambda;m}$ into $H_m(0)$ -submodules

Let us start with necessary definitions and notation. Given $T \in \text{IGLT}(\lambda)_m$, let $\mathcal{I}(T) := \{i \in [1,m] \mid |T^{-1}(i)| > 1\}$. Given $i \in \mathcal{I}(T)$, let $\Gamma_i(T)$ be the lattice path from $(\underline{r}_{b}^{(i)}, c_{b}^{(i)} - 1)$ to $(r_t^{(i)} - 1, c_t^{(i)})$ satisfying the following two conditions:

(i) if the path passes through two boxes horizontally, then the entry at the above box is smaller than *i* and the entry at the below box is greater than *i*, and

(ii) if the path passes through two boxes vertically, then the entry at the left box is smaller than *i* and the entry at the right box is greater than *i*.

Example 3.6. Let

Note that $\mathcal{I}(T) = \{17, 21, 27, 29\}$. By following the way of defining lattice paths, we obtain the lattice paths $\Gamma_{17}(T)$, $\Gamma_{21}(T)$, $\Gamma_{27}(T)$, and $\Gamma_{29}(T)$ as follows:

Given a lattice path Γ , let $V(\Gamma)$ be the set of lattice points through which Γ passes. For two lattice paths Γ and Γ' , we write $\Gamma = \Gamma'$ if $V(\Gamma) = V(\Gamma')$.

Definition 3.7. Let $\lambda \vdash n$ and $T_1, T_2 \in \text{IGLT}(\lambda)_m$. The equivalence relation $\sim_{\lambda;m}$ on $\text{IGLT}(\lambda)_m$ is defined by $T_1 \sim_{\lambda;m} T_2$ if and only if

$$\left\{\left(\Gamma_i(T_1), T_1^{-1}(i)\right) \mid i \in \mathcal{I}(T_1)\right\} = \left\{\left(\Gamma_i(T_2), T_2^{-1}(i)\right) \mid i \in \mathcal{I}(T_2)\right\}.$$

Example 3.8. Let
$$T_1 = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 5 & 6 \\ 3 & 5 & 7 \end{bmatrix}$$
, $T_2 = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 5 & 7 \\ 3 & 5 & 6 \end{bmatrix}$, $T_3 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 5 & 6 \\ 3 & 4 & 7 \end{bmatrix}$, and $T_4 = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 2 & 3 & 5 & 6 \\ 4 & 5 & 7 \end{bmatrix}$.

Then, $T_1 \sim_{(4,3,2);5} T_2$, but $T_1 \not\sim_{(4,3,2);5} T_k$ for k = 3, 4.

Let $\mathcal{E}_{\lambda;m}$ be the set of equivalence classes of IGLT(λ)_m with respect to $\sim_{\lambda;m}$.

Theorem 3.9. Let *m* and *n* be positive integers with $m \le n$ and let $\lambda \vdash n$. For any $1 \le i \le m - 1$ and $E \in \mathcal{E}_{\lambda;m}$, $\pi_i \cdot \mathbb{C}E \subseteq \mathbb{C}E$.

For each $E \in \mathcal{E}_{\lambda;m}$, let \mathbf{G}_E be the $H_m(0)$ -submodule of $\mathbf{G}_{\lambda;m}$ whose underlying space is the C-span of *E*. Then, we have the following direct sum decomposition

$$\mathbf{G}_{\lambda;m} = \bigoplus_{E \in \mathcal{E}_{\lambda;m}} \mathbf{G}_E.$$

Hereafter, *E* denotes an equivalence class of $IGLT(\lambda)_m$ with respect to $\sim_{\lambda;m}$ and *T* denotes a tableau contained in $IGLT(\lambda)_m$ unless otherwise stated.

4 Source and sink tableaux

The goal of this section is to show that there are two distinguished tableaux, called *source* and *sink tableaux*, in each equivalence class $E \in \mathcal{E}_{\lambda;m}$. To achieve our goal, we first construct two tableaux source(*T*) and sink(*T*) for each $T \in E$. Then, we prove that source(*T*) (resp. sink(*T*)) is the unique source tableau (resp. sink tableau) in *E*, where *T* is an arbitrary chosen element in *E*.

To begin with, we give definitions for source tableaux and sink tableaux in IGLT(λ)_m.

Definition 4.1. Let $T \in IGLT(\lambda)_m$.

- (1) *T* is said to be a *source tableau* if there do not exist $T' \in \text{IGLT}(\lambda)_m$ and $1 \le i \le m 1$ such that $\pi_i \cdot T' = T$ and $T' \ne T$.
- (2) *T* is said to be a *sink tableau* if there do not exist $T' \in \text{IGLT}(\lambda)_m$ and $1 \le i \le m 1$ such that $\pi_i \cdot T = T'$ and $T' \ne T$.

To construct the desired tableau source(*T*), we need the following preparation. Given two lattice points *P* and *P'* in the same row, we denote the horizontal line from *P* to *P'* by HL(P, P'). For each $i \in \mathcal{I}(T)$, we define a new lattice path $\widetilde{\Gamma}_i(T)$ by extending $\Gamma_i(T)$ with the following algorithm.

Algorithm 4.2. Fix $i \in \mathcal{I}(T)$ and let $\lambda_0 := \lambda_1$.

Step 1. For each $j \in \mathcal{I}(T)$, let Γ'_j be the lattice path obtained by connecting three lattice

paths HL
$$((\underline{r_{b}^{(j)}}, 0), (\underline{r_{b}^{(j)}}, c_{b}^{(j)} - 1)), \Gamma_{j}(T)$$
, and HL $((\underline{r_{t}^{(j)}} - 1, c_{t}^{(j)}), (\underline{r_{t}^{(j)}} - 1, \lambda_{\underline{r_{t}^{(j)}} - 1}))$.
Step 2. Let $r_{t} = \min\{r \mid (r, c) \in V(\Gamma_{i}')\}$ and $c_{t} = \min\{c \mid (r_{t}, c) \in V(\overline{\Gamma_{i}'})\}$.

Step 3. If there exists $j \in \mathcal{I}(T)$ such that

$$r' < r_{t} < r''$$
 and $c', c'' > c_{t}$ for some $(\underline{r'}, c'), (\underline{r''}, c'') \in V(\Gamma'_{j}),$ (4.1)

then go to Step 4. Otherwise, go to Step 5.

Step 4. Let $j_0 = \min\{j \mid \Gamma'_j \text{ satisfies (4.1)}\}$ and $c_0 = \min\{c \mid (\underline{r_t, c}) \in V(\Gamma'_{j_0})\}$. Then, let Γ be the lattice path satisfying that

$$V(\Gamma) = V(\Gamma'_i) \setminus \{(\underline{r_t, c}) \mid c \ge c_0\} \cup \{(\underline{r, c}) \in V(\Gamma'_{j_0}) \mid r \le r_t \text{ and } c \ge c_0\}.$$

Set $\Gamma'_i := \Gamma$. Go to *Step* 2.

Step 5. Return $\widetilde{\Gamma}_i(T) := \Gamma'_i$ and terminate the algorithm.

If *T* is clear in the context, we simply write the lattice path $\widetilde{\Gamma}_i(T)$ by $\widetilde{\Gamma}_i$ for $i \in \mathcal{I}(T)$.

Example 4.3. Let us revisit Example 3.6. By applying Algorithm 4.2 to each $i \in \mathcal{I}(T)$, we obtain $\widetilde{\Gamma}_{17}$, $\widetilde{\Gamma}_{21}$, $\widetilde{\Gamma}_{27}$, and $\widetilde{\Gamma}_{29}$ as follows:

For $i \in \mathcal{I}(T)$, we set $p'_i \in \{1, 2, ..., |\mathcal{I}(T)|\}$ satisfying the following: Let $i, j \in \mathcal{I}(T)$. **C1.** If $r_{b}^{(i)} < r_{b}^{(j)}$, then $p'_i < p'_j$. And, if $r_{b}^{(i)} > r_{b}^{(j)}$, then $p'_i > p'_j$.

C2. When $r_{b}^{(i)} = r_{b}^{(j)}$, consider the lowest lattice point $p \in V(\widetilde{\Gamma}_{i}) \cap V(\widetilde{\Gamma}_{j})$ such that neither $p + (\underline{-1,0})$ nor $p + (\underline{0,1})$ are contained in $V(\widetilde{\Gamma}_{i}) \cap V(\widetilde{\Gamma}_{j})$. If $p + (\underline{-1,0}) \in V(\widetilde{\Gamma}_{i})$, then $p'_{i} < p'_{j}$. Otherwise, $p'_{i} > p'_{j}$.

Given $i, j \in \mathcal{I}(T)$, if there exist $(\underline{r', c'}), (\underline{r'', c''}) \in V(\widetilde{\Gamma}_j)$ such that $r' < r_b^{(i)} < r''$ and $c', c'' < c_b^{(i)}$, then we say that $\widetilde{\Gamma}_j$ crosses the bottom path of $\widetilde{\Gamma}_i$. By rearranging p'_i 's with the following algorithm, we define a bijection $p_T : \mathcal{I}(T) \to \{1, 2, \dots, |\mathcal{I}(T)|\}$.

Algorithm 4.4. For each $i \in \mathcal{I}(T)$, let $p_i := p'_i$, where p'_i is the index defined above.

- *Step 1.* Let k = 1.
- Step 2. Take i_k and i_{k+1} in $\mathcal{I}(T)$ such that $p_{i_k} = k$ and $p_{i_{k+1}} = k + 1$.
- Step 3. If $\Gamma_{i_{k+1}}$ crosses the bottom path of Γ_{i_k} , then set $p_{i_k} := k + 1$ and $p_{i_{k+1}} := k$ and go to *Step 1*. Otherwise, go to *Step 4*.
- Step 4. If $k < |\mathcal{I}(T)| 1$, then set k = k + 1 and go to Step 2. Otherwise, set $p_T(i) := p_i$ for each $i \in \mathcal{I}(T)$ and go to Step 5.
- *Step 5.* Return $(p_T(i))_{i \in \mathcal{I}(T)}$ and terminate the algorithm.

Given $u \in [1, |\mathcal{I}(T)|]$, let A_u be the subdiagram of $yd(\lambda)$ consisting of the boxes located above $\tilde{\Gamma}^{(u)}$. Let

$$\mathsf{D}_{u}^{(1)}(T) := \mathsf{A}_{u} \setminus \left(\bigcup_{1 \le v < u} \left(\mathsf{A}_{v} \cup T^{-1}(\mathsf{p}_{T}^{-1}(v)) \right) \right) \text{ and } \mathsf{D}_{u}^{(2)}(T) := T^{-1}(\mathsf{p}_{T}^{-1}(u)).$$

Now, we construct the desired tableau source(T) with the following algorithm.

Algorithm 4.5. Let $T \in \text{IGLT}(\lambda)_m$. Set $e_0 = 0$ and $M_0 = 0$. For $1 \le u \le |\mathcal{I}(T)|$, let $e_u := |\mathsf{D}_u^{(1)}(T)| + 1$ and $M_u = \sum_{v=0}^u e_v$.

Step 1. Set v := 1.

- Step 2. Fill the boxes in $D_v^{(1)}(T)$ by $M_{v-1} + 1, M_{v-1} + 2, \dots, M_{v-1} + e_v 1$ from left to right starting from the top.
- Step 3. Fill the boxes in $D_v^{(2)}(T)$ by M_v .
- *Step 4.* If $v < |\mathcal{I}(T)|$, then set v := v + 1 and go to *Step 2*. Otherwise, fill the remaining boxes by $M_{|\mathcal{I}(T)|} + 1$, $M_{|\mathcal{I}(T)|} + 2$, ..., *m* from left to right starting from the top. Set source(*T*) to be the resulting filling. Return source(*T*) and terminate the algorithm.

Example 4.6. Let us revisit Example 4.3. One can easily see that $p'_{17} = 2$, $p'_{21} = 4$, $p'_{27} = 3$, and $p'_{29} = 1$. By applying Algorithm 4.4, we have

$$p_T(17) = 1$$
, $p_T(21) = 4$, $p_T(27) = 2$, and $p_T(29) = 3$

In addition, by applying Algorithm 4.5, we have

Theorem 4.7. For any $T \in E$, source(T) is the unique source tableau in E.

Similarly, we construct sink(T) for each $T \in E$ and prove the following theorem.

Theorem 4.8. For any $T \in E$, sink(T) is the unique sink tableau in E.

We denote by T_E and T'_E the unique source tableau and sink tableau in *E*, respectively.

5 A weak Bruhat interval module description of **G**_E

Throughout this section, we let $\text{Des}(T_E) = \{d_1 < d_2 < \cdots < d_k\}, d_0 := 0, \text{ and } d_{k+1} := m.$ For each $1 \le j \le k+1$, let $\mathbb{H}_j := T_E^{-1}([d_{j-1}+1, d_j]).$

Example 5.1. When

$$T_E = \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 11 & 12 & 14 & 15 \\ \hline 6 & 7 & 8 & 10 & 11 & 14 \\ \hline 9 & 10 \\ \hline 13 & 14 \end{array}$$

we have that $\text{Des}(T_E) = \{5, 8, 12\}$. In this case, H_j ($1 \le j \le 4$) are given as follows:

For each $1 \le j \le k$, let $w^{(j)}(T)$ be the word obtained by reading the entries of T contained in \mathbb{H}_j from right to left. Note that if an integer *i* appears multiple times in $w^{(j)}(T)$, then the integer *i*'s are placed consecutively. We define $\overline{w}^{(j)}(T)$ as the word obtained from $w^{(j)}(T)$ by erasing all *i*'s except one *i* for each *i* that appears in $w^{(j)}(T)$.

Definition 5.2. For $T \in E$, the standardized reading word read(*T*) of *T* is defined to be the word $\overline{w}^{(1)}(T)\overline{w}^{(2)}(T)\cdots\overline{w}^{(k+1)}(T)$ obtained by concatenating $\overline{w}^{(j)}(T)$ for $1 \le j \le k+1$.

Example 5.3. We revisit Example 5.1. One can see that

$$\mathsf{read}(T_E) = 5\ 4\ 3\ 2\ 1\ 8\ 7\ 6\ 12\ 11\ 10\ 9\ 15\ 14\ 13 \in \mathfrak{S}_{15}.$$

Theorem 5.4. For each $E \in \mathcal{E}_{\lambda;m}$, $\mathbf{G}_E \cong \mathsf{B}(\mathsf{read}(T_E), \mathsf{read}(T'_E))$ as $H_m(0)$ -modules.

6 Further avenue

In [10], Pechenik proved that for all $\lambda = (\lambda_1, \lambda_2) \vdash n$,

$$U_{\lambda} = \sum_{l_{\lambda} \le m \le n} \sum_{\mu \in \mathsf{Par}(\lambda;m)} s_{\mu}, \tag{6.1}$$

where $l_{\lambda} := \max{\{\lambda_1, \lambda_2 + 1\}}$, $Par(\lambda; n) := {(\lambda_1, \lambda_2)}$, and

$$\mathsf{Par}(\lambda; m) := \begin{cases} \{(\lambda_1 - k_m, \lambda_1 - k_m, 1^{k_m})\} & \text{if } \lambda_1 = \lambda_2, \\ \{(\lambda_1 - k_m, \lambda_2 - k_m, 1^{k_m}), (\lambda_1 - k_m, \lambda_2 - k_m + 1, 1^{k_m - 1})\} & \text{if } \lambda_1 > \lambda_2 \end{cases}$$

for all $l \le m < n$. Here, $k_m := n - m$ and $s_\mu := 0$ if μ is not a partition. And, for each $\lambda \vdash m$, Searles [12] introduced the $H_m(0)$ -module X_λ such that $ch([X_\lambda]) = s_\lambda$. The study of representation theoretic interpretation for (6.1) will be pursued in the near future by using $\mathbf{G}_{\lambda;m}$ and X_μ . In this direction, we leave the following conjecture.

Conjecture 6.1. Let $\lambda = (\lambda_1, \lambda_2) \vdash n$. For each $l_{\lambda} \leq m \leq n$, there exists a partition $\{\mathcal{E}_{\mu} \mid \mu \in Par(\lambda; m)\}$ of $\mathcal{E}_{\lambda;m}$ satisfying the following: For each $\mu \in Par(\lambda; m)$,

- (1) $\sum_{E\in\mathcal{E}_{\mu}} \operatorname{ch}([\mathbf{G}_{E}]) = s_{\mu}$
- (2) there exist a total order \prec_{μ} on $\mathcal{E}_{\mu} = \{E_1 \prec_{\mu} \cdots \prec_{\mu} E_{|\mathcal{E}_{\mu}|}\}$ and a filtration $M_0 = \{0\} \subseteq M_1 \subseteq \cdots \subseteq M_{|\mathcal{E}_{\mu}|} = X_{\mu}$ such that $\mathbf{G}_{E_i} \cong M_i/M_{i-1}$ for all $1 \leq i \leq |\mathcal{E}_{\mu}|$.

Acknowledgements

The authors are grateful to the anonymous referees for their careful readings of the manuscript and valuable advice.

References

- [1] J. Bardwell and D. Searles. "0-Hecke modules for Young row-strict quasisymmetric Schur functions". *European J. Combin.* **102** (2022), Paper No. 103494, 18. DOI.
- [2] C. Berg, N. Bergeron, F. Saliola, L. Serrano, and M. Zabrocki. "Indecomposable modules for the dual immaculate basis of quasi-symmetric functions". *Proc. Amer. Math. Soc.* 143.3 (2015), pp. 991–1000. DOI.
- [3] A. S. Buch. "A Littlewood-Richardson rule for the *K*-theory of Grassmannians". *Acta Math.* **189**.1 (2002), pp. 37–78. DOI.
- [4] S.-I. Choi, Y.-H. Kim, S.-Y. Nam, and Y.-T. Oh. "The projective cover of tableau-cyclic indecomposable *H_n*(0)-modules". *Trans. Amer. Math. Soc.* **375**.11 (2022), pp. 7747–7782. DOI.
- [5] G. Duchamp, F. Hivert, and J.-Y. Thibon. "Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras". *Internat. J. Algebra Comput.* **12**.5 (2002), pp. 671–717. DOI.
- [6] G. Duchamp, D. Krob, B. Leclerc, and J.-Y. Thibon. "Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à q = 0". C. R. Acad. Sci. Paris Sér. I Math. 322.2 (1996), pp. 107–112.
- [7] W.-S. Jung, Y.-H. Kim, S.-Y. Lee, and Y.-T. Oh. "Weak Bruhat interval modules of the 0-Hecke algebra". *Math. Z.* **301**.4 (2022), pp. 3755–3786. DOI.
- [8] Y.-H. Kim and S. Yoo. "Weak Bruhat interval modules of the 0-Hecke algebras for genomic Schur functions". 2022. arXiv:2211.06575.
- [9] P. N. Norton. "0-Hecke algebras". J. Austral. Math. Soc. Ser. A 27.3 (1979), pp. 337–357.
- [10] O. Pechenik. "The genomic Schur function is fundamental-positive". Ann. Comb. 24.1 (2020), pp. 95–108. DOI.
- [11] O. Pechenik and A. Yong. "Genomic tableaux". J. Algebraic Combin. 45.3 (2017), pp. 649–685. DOI.
- [12] D. Searles. "Indecomposable 0-Hecke modules for extended Schur functions". Proc. Amer. Math. Soc. 148.5 (2020), pp. 1933–1943. DOI.
- [13] V. Tewari and S. van Willigenburg. "Permuted composition tableaux, 0-Hecke algebra and labeled binary trees". J. Combin. Theory Ser. A **161** (2019), pp. 420–452. DOI.
- [14] V. V. Tewari and S. J. van Willigenburg. "Modules of the 0-Hecke algebra and quasisymmetric Schur functions". *Adv. Math.* **285** (2015), pp. 1025–1065. DOI.
- [15] H. Thomas and A. Yong. "A jeu de taquin theory for increasing tableaux, with applications to *K*-theoretic Schubert calculus". *Algebra Number Theory* **3**.2 (2009), pp. 121–148. DOI.
- [16] R. Vakil. "A geometric Littlewood-Richardson rule". *Ann. of Math.* (2) **164**.2 (2006). Appendix A written with A. Knutson, pp. 371–421. DOI.