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1 Introduction

Let X = Grk(Cn) be the Grassmannian of k-dimensional subspaces of Cn. Since the
early 2000s, several combinatorial interpretations for the K-theoretic Littlewood-Richardson
rule have been introduced. For instance, see [3, 11, 15, 16]. In particular, Pechenik
and Yong [11] gave a combinatorial interpretation by using genomic tableaux. Therein,
they defined a symmetric function Uλ, called the genomic Schur function, as a generat-
ing function for genomic tableaux of shape λ for all partition λ. Further, they proved
that {Uλ | λ is a partition} is a basis for the ring of symmetric functions and pointed
out that genomic Schur functions are not Schur-positive in general. As an alternative
positivity, Pechenik [10] showed that genomic Schur functions are fundamental positive.
Specifically, for any partition λ,

Uλ = ∑
T∈IGLT(λ)

Fcomp(T),
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where IGLT(λ) is the set of increasing gapless tableaux of shape λ, comp(T) is the compo-
sition associated to T, and Fcomp(T) is the fundamental quasisymmetric function associated
to comp(T). For the precise definitions, see Subsection 2.4.

The 0-Hecke algebra Hn(0) is the C-algebra obtained from the Hecke algebra Hn(q) by
specializing q to 0. Duchamp, Krob, Leclerc, and Thibon [6] introduced a ring isomor-
phism, called quasisymmetric characteristic,

ch : G0(H•(0)) → QSym, [Fα] 7→ Fα.

Here, G0(H•(0)) is the Grothendieck ring associated to 0-Hecke algebras and QSym is
the ring of quasisymmetric functions. In view of this correspondence, there have been
considerable attempts to provide a representation theoretic interpretation of noteworthy
quasisymmetric functions by constructing appropriate 0-Hecke modules. For instance,
see [1, 2, 4, 12, 13, 14]. Recently, Jung, Kim, Lee, and Oh [7] introduced the weak Bruhat
interval module B(σ, ρ) to provide a unified method to study the Hn(0)-modules in the
papers mentioned above. Here, σ and ρ are permutations in the symmetric group Sn.

The purpose of this paper is to provide a nice representation theoretic interpretation
of genomic Schur functions. First, for each 1 ≤ m ≤ n, we construct an Hm(0)-module
Gλ;m by defining an Hm(0)-action on the C-span of the set IGLT(λ)m of increasing gapless
tableaux of shape λ with maximum entry m. And, we see that the image of Gλ;m un-
der the quasisymmetric characteristic is the mth homogeneous component of Uλ. Next,
we define an equivalence relation ∼λ;m on IGLT(λ)m and show that the C-span of each
equivalence class is closed under the Hm(0)-action. Thus, we obtain a direct sum decom-
position

Gλ;m =
⊕

E∈Eλ;m

GE,

where Eλ;m is the set of all equivalence classes with respect to ∼λ;m and GE is the sub-
module of Gλ;m whose underlying space is the C-span of E. Finally, we show that GE
is isomorphic to a weak Bruhat interval module for E ∈ Eλ;m. To do this, we prove
that there exist unique source tableau TE and sink tableau T′

E in E. In addition, we as-
sign a permutation read(T), called standardized reading word, to each T ∈ E. With these
preparations, we show that

GE
∼= B(read(TE), read(T′

E)).

We end with providing an avenue for future research. This paper is an extended
abstract of our paper [8].

2 Preliminaries

Given any integers m and n, define [m, n] to be the set {k ∈ Z | m ≤ k ≤ n} if m ≤ n or
the empty set otherwise. Throughout this section, n denotes a nonnegative integer.
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2.1 Compositions and Diagrams

A composition α of a nonnegative integer n, denoted by α |= n, is a finite ordered list
of positive integers (α1, α2, . . . , αk) satisfying ∑k

i=1 αi = n. We call k =: ℓ(α) the length
of α and n =: |α| the size of α. Given α = (α1, α2, . . . , αℓ(α)) |= n, we define set(α) :=
{α1, α1 + α2, . . . , ∑ℓ(α)−1

i=1 αi} ⊆ [1, n − 1].
If λ = (λ1, λ2, . . . , λℓ(λ)) |= n satisfies λ1 ≥ λ2 ≥ · · · ≥ λℓ(λ), then we say that λ is

a partition of n and denote it by λ ⊢ n. For λ = (λ1, λ2, . . . , λℓ(λ)) ⊢ n, we define the
Young diagram yd(λ) of λ by a left-justified array of n boxes where the ith row from the
top has λi boxes for 1 ≤ i ≤ ℓ(λ). We say that a box in yd(λ) is in the ith row if it is
in the ith row from the top and in the jth column if it is in the jth column from the left.
We denote by (i, j) the box in the ith row and jth column. Denoting (i, j) ∈ yd(λ) means
that 1 ≤ i ≤ ℓ(λ) and 1 ≤ j ≤ λi. We also say that a lattice point on yd(λ) is in the ith
row if it is in the (i + 1)st horizontal line from the top and in the jth column if it is in the
(j + 1)st vertical line from the left. We denote by (i, j) the lattice point in the ith row and
jth column. For example, if λ = (3, 2, 2), then

yd(λ) =
(1, 3)

•
(3, 0)

,

the box (1, 3) is the box filled with red, and the lattice point (3, 0) is the point marked by
the blue dot. A filling of yd(λ) is a function T : yd(λ) → Z>0. Throughout this paper, we
assume that

T((i, j)) = ∞ if (i, j) ∈ (Z>0 × Z>0) \ yd(λ) and
T((i, j)) = −∞ if (i, j) ∈ (Z × Z) \ (Z>0 × Z>0).

For any filling T of yd(λ), let max(T) := max{T((i, j)) | (i, j) ∈ yd(λ)}.

2.2 The 0-Hecke algebra and the quasisymmetric characteristic

To begin with, we recall that the symmetric group Sn is generated by simple transposi-
tions si := (i, i + 1) with 1 ≤ i ≤ n − 1. An expression for σ ∈ Sn of the form si1si2 · · · sip

that uses the minimal number of simple transpositions is called a reduced expression for
σ. The number of simple transpositions in any reduced expression for σ, denoted by
ℓ(σ), is called the length of σ.

The 0-Hecke algebra Hn(0) is the C-algebra generated by π1, π2, . . . , πn−1 subject to the
following three relations: (1) π2

i = πi for 1 ≤ i ≤ n − 1, (2) πiπi+1πi = πi+1πiπi+1
for 1 ≤ i ≤ n − 2, and (3) πiπj = πjπi if |i − j| ≥ 2. Pick up any reduced expres-
sion si1si2 · · · sip for a permutation σ ∈ Sn. We define the element πσ of Hn(0) by
πσ := πi1πi2 · · ·πip It is well known that πσ is independent of the choice of reduced
expressions, and {πσ | σ ∈ Sn} is a basis for Hn(0).
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In [9], Norton classified all irreducible modules of the 0-Hecke algebras. It was shown
that there are 2n−1 distinct irreducible Hn(0)-modules which are naturally parametrized
by compositions of n. For each α |= n, the irreducible module Fα corresponding to α is
the 1-dimensional Hn(0)-module spanned by a vector vα whose Hn(0)-action is given by

πi · vα =

{
0 i ∈ set(α),
vα i /∈ set(α),

(1 ≤ i ≤ n − 1).

Let R(Hn(0)) denote the Z-span of the isomorphism classes of finite dimensional
Hn(0)-modules. The isomorphism class corresponding to an Hn(0)-module M will be
denoted by [M]. The Grothendieck group G0(Hn(0)) is the quotient of R(Hn(0)) modulo
the relations [M] = [M′]+ [M′′] whenever there exists a short exact sequence 0 → M′ →
M → M′′ → 0. The irreducible Hn(0)-modules form a free Z-basis for G0(Hn(0)). Let
G0(H•(0)) :=

⊕
n≥0 G0(Hn(0)) be the ring equipped with the induction product. In [6],

Duchamp, Krob, Leclerc, and Thibon revealed a deep connection between G0(H•(0)) and
the ring QSym of quasisymmetric functions by providing a ring isomorphism

ch : G0(H•(0)) → QSym, [Fα] 7→ Fα,

called quasisymmetric characteristic. Here, Fα is the fundamental quasisymmetric function.

2.3 Weak Bruhat interval modules of the 0-Hecke algebra

Given σ ∈ Sn, let DesL(σ) := {i ∈ [1, n − 1] | ℓ(siσ) < ℓ(σ)}. The left weak Bruhat order
⪯L on Sn is the partial order on Sn whose covering relation ⪯c

L is defined as follows:
σ ⪯c

L siσ if and only if i /∈ DesL(σ). Given σ, ρ ∈ Sn, the left weak Bruhat interval from σ to
ρ, denoted by [σ, ρ]L, is the closed interval {γ ∈ Sn | σ ⪯L γ ⪯L ρ}.

Definition 2.1. ([7]) Let σ, ρ ∈ Sn. The weak Bruhat interval module associated to [σ, ρ]L,
denoted by B(σ, ρ), is the Hn(0)-module with the underlying space C[σ, ρ]L and with the
Hn(0)-action defined by

πi · γ :=


γ if i ∈ DesL(γ),
0 if i /∈ DesL(γ) and siγ /∈ [σ, ρ]L,
siγ if i /∈ DesL(γ) and siγ ∈ [σ, ρ]L.

2.4 Genomic Schur functions

Given λ ⊢ n, an increasing gapless tableau of shape λ is a filling of yd(λ) such that the
entries in each row strictly increase from left to right, the entries in each column strictly
increase from top to bottom, and the set T−1(i) is nonempty for all 1 ≤ i ≤ max(T). Let
IGLT(λ) be the set of all increasing gapless tableaux of shape λ. Given T ∈ IGLT(λ) and
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1 ≤ i ≤ max(T), let Topi(T) (resp. Boti(T)) be the highest (resp. lowest) box in T having
the entry i. Let

(r(i)
b (T), c(i)

b (T)) := Boti(T) and (r(i)
t (T), c(i)

t (T)) := Topi(T).

If T is clear in the context, we simply write r(i)
b , c(i)

b , r(i)
t , and c(i)

t instead of r(i)
b (T), c(i)

b (T),
r(i)
t (T), and c(i)

t (T), respectively. We call an index i ∈ [1, max(T) − 1] a descent of T if there
is some instance of i strictly above some instance of i + 1 in T. Let Des(T) be the set of
all descents of T and let comp(T) := comp(Des(T)).

Definition 2.2. ([10, 11]) For λ ⊢ n, the genomic Schur function Uλ is defined by

Uλ := ∑
T∈IGLT(λ)

Fcomp(T).

Given 1 ≤ m ≤ n, we define

IGLT(λ)m := {T ∈ IGLT(λ) | max(T) = m} and Uλ;m := ∑
T∈IGLT(λ)m

Fcomp(T).

From the definition, it immediately follows that Uλ;m is the mth degree homogeneous
component of Uλ.

Hereafter, we assume that n is a positive integer, m is a positive integer less than or
equal to n, and λ is a partition of n, unless otherwise stated.

3 0-Hecke modules from increasing gapless tableaux

3.1 An Hm(0)-module for Uλ;m

We start by introducing the necessary definitions.

Definition 3.1. Given T ∈ IGLT(λ) and 1 ≤ i ≤ max(T) − 1, we say that i is an attacking
descent if i ∈ Des(T), and either

(a) there exists (j, k) ∈ yd(λ) such that T((j, k)) = i and T((j + 1, k)) = i + 1, or
(b) there exists a box B ∈ T−1(i + 1) placed weakly above Boti(T).

Take any 1 ≤ m ≤ n. For each 1 ≤ i ≤ m − 1, we define a linear operator πi :
C IGLT(λ)m → C IGLT(λ)m by

πi(T) :=


T if i is not a descent of T,
0 if i is an attacking descent of T,
si · T if i is a non-attacking descent of T

(3.1)

for T ∈ IGLT(λ)m and extending it by linearity. Here, si · T is the tableau obtained from T
by replacing i and i+ 1 with i+ 1 and i, respectively. By proving π2

i = πi (1 ≤ i ≤ m− 1),
πiπi+1πi = πi+1πiπi+1 (1 ≤ i ≤ m − 2), and πiπj = πjπi (1 ≤ i, j ≤ m − 1 with |i − j| >
1), we obtain the following theorem. For details, see [8, Subsection 3.1].
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Theorem 3.2. For any 1 ≤ m ≤ n, the operators π1,π2, . . . ,πm−1 satisfy the same relations as
the generators π1, π2, . . . πm−1 for Hm(0). In other words, π1,π2, . . . ,πm−1 define an Hm(0)-
action on C IGLT(λ)m.

Example 3.3. (1) When T =
1 2 3 6
2 3 5 7
4 6

, we have π3(T) = s3 · T, π4(T) = T, and πi(T) = 0

for i = 1, 2, 5, 6. Here, the indices in red are used to indicate the descents of the tableau.

(2) Note that IGLT((2, 1, 1)) =

ß
1 2
3
4

,
1 3
2
4

,
1 4
2
3

,
1 2
2
3

,
1 3
2
3

™
. One can see that

U(2,1,1) = (F(2,1,1) + F(1,2,1) + F(1,1,2)) + 2F(1,1,1). The following figures illustrate the Hm(0)-
action on G(2,1,1);m for m = 3, 4:

1 2
3
4

π1

π2
π3

0
1 3
2
4

π2

π3
π1

0
1 4
2
3

π3

π1, π2

0

1 2
2
3

π1, π2

0

1 3
2
3

π1, π2

0

⊕

G(2,1,1);4

G(2,1,1);3

The following proposition follows immediately from (3.1) and Theorem 3.2.

Proposition 3.4. For any λ ⊢ n and 1 ≤ m ≤ n, ch([Gλ;m]) = Uλ;m. Consequently,
∑1≤m≤n ch([Gλ;m]) = Uλ.

Remark 3.5. In [5, Theorem 4.7], Duchamp, Hivert, and Thibon described the Ext-quiver
of Hm(0). According to their result, for any α |= m, we have Ext1

Hm(0)(Fα, Fα) = 0, equiv-
alently, there is no indecomposable Hm(0)-module M such that ch([M]) = 2Fα. On the
other hand, in Example 3.3, we see that U(2,1,1);3 = 2F(1,1,1). Thus, we conclude that there
is no indecomposable H3(0)-module M satisfying ch([M]) = U(2,1,1);3.

3.2 A direct sum decomposition of Gλ;m into Hm(0)-submodules

Let us start with necessary definitions and notation. Given T ∈ IGLT(λ)m, let I(T) :=
{i ∈ [1, m] | |T−1(i)| > 1}. Given i ∈ I(T), let Γi(T) be the lattice path from (r(i)

b , c(i)
b − 1)

to (r(i)
t − 1, c(i)

t ) satisfying the following two conditions:
(i) if the path passes through two boxes horizontally, then the entry at the above box

is smaller than i and the entry at the below box is greater than i, and
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(ii) if the path passes through two boxes vertically, then the entry at the left box is
smaller than i and the entry at the right box is greater than i.

Example 3.6. Let

T =

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

.

Note that I(T) = {17, 21, 27, 29}. By following the way of defining lattice paths, we
obtain the lattice paths Γ17(T), Γ21(T), Γ27(T), and Γ29(T) as follows:

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27

18 20
19 21
21

Γ17(T)

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27

18 20
19 21
21

Γ21(T)

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ27(T)

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27

18 20
19 21
21

Γ29(T)

Given a lattice path Γ, let V(Γ) be the set of lattice points through which Γ passes.
For two lattice paths Γ and Γ′, we write Γ = Γ′ if V(Γ) = V(Γ′).

Definition 3.7. Let λ ⊢ n and T1, T2 ∈ IGLT(λ)m. The equivalence relation ∼λ;m on
IGLT(λ)m is defined by T1 ∼λ;m T2 if and only if¶Ä

Γi(T1), T−1
1 (i)

ä ∣∣∣ i ∈ I(T1)
©
=
¶Ä

Γi(T2), T−1
2 (i)

ä ∣∣∣ i ∈ I(T2)
©

.

Example 3.8. Let T1 =
1 2 3 5
2 4 5 6
3 5 7

, T2 =
1 2 3 5
2 4 5 7
3 5 6

, T3 =
1 2 3 4
2 3 5 6
3 4 7

, and T4 =
1 2 4 5
2 3 5 6
4 5 7

.

Then, T1 ∼(4,3,2);5 T2, but T1 ̸∼(4,3,2);5 Tk for k = 3, 4.

Let Eλ;m be the set of equivalence classes of IGLT(λ)m with respect to ∼λ;m.

Theorem 3.9. Let m and n be positive integers with m ≤ n and let λ ⊢ n. For any 1 ≤ i ≤
m − 1 and E ∈ Eλ;m, πi · CE ⊆ CE.

For each E ∈ Eλ;m, let GE be the Hm(0)-submodule of Gλ;m whose underlying space
is the C-span of E. Then, we have the following direct sum decomposition

Gλ;m =
⊕

E∈Eλ;m

GE.

Hereafter, E denotes an equivalence class of IGLT(λ)m with respect to ∼λ;m and T
denotes a tableau contained in IGLT(λ)m unless otherwise stated.
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4 Source and sink tableaux

The goal of this section is to show that there are two distinguished tableaux, called
source and sink tableaux, in each equivalence class E ∈ Eλ;m. To achieve our goal, we
first construct two tableaux source(T) and sink(T) for each T ∈ E. Then, we prove that
source(T) (resp. sink(T)) is the unique source tableau (resp. sink tableau) in E, where T is
an arbitrary chosen element in E.

To begin with, we give definitions for source tableaux and sink tableaux in IGLT(λ)m.

Definition 4.1. Let T ∈ IGLT(λ)m.

(1) T is said to be a source tableau if there do not exist T′ ∈ IGLT(λ)m and 1 ≤ i ≤ m − 1
such that πi · T′ = T and T′ ̸= T.

(2) T is said to be a sink tableau if there do not exist T′ ∈ IGLT(λ)m and 1 ≤ i ≤ m − 1
such that πi · T = T′ and T′ ̸= T.

To construct the desired tableau source(T), we need the following preparation. Given
two lattice points P and P′ in the same row, we denote the horizontal line from P to P′

by HL(P, P′). For each i ∈ I(T), we define a new lattice path Γ̃i(T) by extending Γi(T)
with the following algorithm.

Algorithm 4.2. Fix i ∈ I(T) and let λ0 := λ1.

Step 1. For each j ∈ I(T), let Γ′
j be the lattice path obtained by connecting three lattice

paths HL
Ä

(r(j)
b , 0), (r(j)

b , c(j)
b − 1)

ä
, Γj(T), and HL

Å
(r(j)
t − 1, c(j)

t ), (r(j)
t − 1, λ

r(j)
t −1

)
ã

.

Step 2. Let rt = min{r | (r, c) ∈ V(Γ′
i)} and ct = min{c | (rt, c) ∈ V(Γ′

i)}.
Step 3. If there exists j ∈ I(T) such that

r′ < rt < r′′ and c′, c′′ > ct for some (r′, c′), (r′′, c′′) ∈ V(Γ′
j), (4.1)

then go to Step 4. Otherwise, go to Step 5.

Step 4. Let j0 = min{j | Γ′
j satisfies (4.1)} and c0 = min

¶
c | (rt, c) ∈ V(Γ′

j0
)
©

. Then, let Γ
be the lattice path satisfying that

V(Γ) = V(Γ′
i) \ {(rt, c) | c ≥ c0} ∪ {(r, c) ∈ V(Γ′

j0) | r ≤ rt and c ≥ c0}.

Set Γ′
i := Γ. Go to Step 2.

Step 5. Return Γ̃i(T) := Γ′
i and terminate the algorithm.

If T is clear in the context, we simply write the lattice path Γ̃i(T) by Γ̃i for i ∈ I(T).
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Example 4.3. Let us revisit Example 3.6. By applying Algorithm 4.2 to each i ∈ I(T), we
obtain Γ̃17, Γ̃21, Γ̃27, and Γ̃29 as follows:

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27

18 20
19 21
21

Γ̃17(T)

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27

18 20
19 21
21

Γ̃21(T)

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ̃27(T)

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27

18 20
19 21
21

Γ̃29(T)

For i ∈ I(T), we set p′i ∈ {1, 2, . . . , |I(T)|} satisfying the following: Let i, j ∈ I(T).

C1. If r(i)
b < r(j)

b , then p′i < p′j. And, if r(i)
b > r(j)

b , then p′i > p′j.

C2. When r(i)
b = r(j)

b , consider the lowest lattice point p ∈ V(Γ̃i)∩V(Γ̃j) such that neither
p + (−1, 0) nor p + (0, 1) are contained in V(Γ̃i) ∩ V(Γ̃j). If p + (−1, 0) ∈ V(Γ̃i), then
p′i < p′j. Otherwise, p′i > p′j.

Given i, j ∈ I(T), if there exist (r′, c′), (r′′, c′′) ∈ V(Γ̃j) such that r′ < r(i)
b < r′′ and

c′, c′′ < c(i)
b , then we say that Γ̃j crosses the bottom path of Γ̃i. By rearranging p′i’s with the

following algorithm, we define a bijection pT : I(T) → {1, 2, . . . , |I(T)|}.

Algorithm 4.4. For each i ∈ I(T), let pi := p′i, where p′i is the index defined above.

Step 1. Let k = 1.
Step 2. Take ik and ik+1 in I(T) such that pik = k and pik+1 = k + 1.

Step 3. If Γ̃ik+1 crosses the bottom path of Γ̃ik , then set pik := k + 1 and pik+1 := k and go
to Step 1. Otherwise, go to Step 4.

Step 4. If k < |I(T)| − 1, then set k = k + 1 and go to Step 2. Otherwise, set pT(i) := pi
for each i ∈ I(T) and go to Step 5.

Step 5. Return (pT(i))i∈I(T) and terminate the algorithm.

Given u ∈ [1, |I(T)| ], let Au be the subdiagram of yd(λ) consisting of the boxes located
above Γ̃(u). Let

D
(1)
u (T) := Au \

Ä ⋃
1≤v<u

Ä
Av ∪ T−1(p−1

T (v))
ä ä

and D
(2)
u (T) := T−1(p−1

T (u)).

Now, we construct the desired tableau source(T) with the following algorithm.

Algorithm 4.5. Let T ∈ IGLT(λ)m. Set e0 = 0 and M0 = 0. For 1 ≤ u ≤ |I(T)|, let
eu := |D(1)

u (T)|+ 1 and Mu = ∑u
v=0 ev.
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Step 1. Set v := 1.

Step 2. Fill the boxes in D
(1)
v (T) by Mv−1 + 1, Mv−1 + 2, . . . , Mv−1 + ev − 1 from left to

right starting from the top.

Step 3. Fill the boxes in D
(2)
v (T) by Mv.

Step 4. If v < |I(T)|, then set v := v + 1 and go to Step 2. Otherwise, fill the remaining
boxes by M|I(T)| + 1, M|I(T)| + 2, . . . , m from left to right starting from the top. Set
source(T) to be the resulting filling. Return source(T) and terminate the algorithm.

Example 4.6. Let us revisit Example 4.3. One can easily see that p′17 = 2, p′21 = 4, p′27 = 3,
and p′29 = 1. By applying Algorithm 4.4, we have

pT(17) = 1, pT(21) = 4, pT(27) = 2, and pT(29) = 3.

In addition, by applying Algorithm 4.5, we have

T =

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Algorithm 4.5
source(T) = .

1 2 3 4 5 6 7 23
8 9 10 11 12 13 25

14 15 16 17 24 25
18 19 20 22
21 22 23
26 27
28 29
29

Theorem 4.7. For any T ∈ E, source(T) is the unique source tableau in E.

Similarly, we construct sink(T) for each T ∈ E and prove the following theorem.

Theorem 4.8. For any T ∈ E, sink(T) is the unique sink tableau in E.

We denote by TE and T′
E the unique source tableau and sink tableau in E, respectively.

5 A weak Bruhat interval module description of GE

Throughout this section, we let Des(TE) = {d1 < d2 < · · · < dk}, d0 := 0, and dk+1 := m.
For each 1 ≤ j ≤ k + 1, let Hj := T−1

E ([dj−1 + 1, dj]).

Example 5.1. When

TE =

1 2 3 4 5 11 12 14 15
6 7 8 10 11 14
9 10
13 14

,

we have that Des(TE) = {5, 8, 12}. In this case, Hj (1 ≤ j ≤ 4) are given as follows:

H1 H1 H1 H1 H1 H3 H3 H4 H4
H2 H2 H2 H3 H3 H4
H3 H3
H4 H4
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For each 1 ≤ j ≤ k, let w(j)(T) be the word obtained by reading the entries of T
contained in Hj from right to left. Note that if an integer i appears multiple times in
w(j)(T), then the integer i’s are placed consecutively. We define w(j)(T) as the word
obtained from w(j)(T) by erasing all i’s except one i for each i that appears in w(j)(T).

Definition 5.2. For T ∈ E, the standardized reading word read(T) of T is defined to be the
word w(1)(T)w(2)(T) · · ·w(k+1)(T) obtained by concatenating w(j)(T) for 1 ≤ j ≤ k + 1.

Example 5.3. We revisit Example 5.1. One can see that

read(TE) = 5 4 3 2 1 8 7 6 12 11 10 9 15 14 13 ∈ S15.

Theorem 5.4. For each E ∈ Eλ;m, GE
∼= B(read(TE), read(T′

E)) as Hm(0)-modules.

6 Further avenue

In [10], Pechenik proved that for all λ = (λ1, λ2) ⊢ n,

Uλ = ∑
lλ≤m≤n

∑
µ∈Par(λ;m)

sµ, (6.1)

where lλ := max{λ1, λ2 + 1}, Par(λ; n) := {(λ1, λ2)}, and

Par(λ; m) :=

{¶
(λ1 − km, λ1 − km, 1km)

©
if λ1 = λ2,¶

(λ1 − km, λ2 − km, 1km), (λ1 − km, λ2 − km + 1, 1km−1)
©

if λ1 > λ2

for all l ≤ m < n. Here, km := n − m and sµ := 0 if µ is not a partition. And, for each
λ ⊢ m, Searles [12] introduced the Hm(0)-module Xλ such that ch([Xλ]) = sλ. The study
of representation theoretic interpretation for (6.1) will be pursued in the near future by
using Gλ;m and Xµ. In this direction, we leave the following conjecture.

Conjecture 6.1. Let λ = (λ1, λ2) ⊢ n. For each lλ ≤ m ≤ n, there exists a partition {Eµ | µ ∈
Par(λ; m)} of Eλ;m satisfying the following: For each µ ∈ Par(λ; m),

(1) ∑E∈Eµ
ch([GE]) = sµ,

(2) there exist a total order ≺µ on Eµ = {E1 ≺µ · · · ≺µ E|Eµ|} and a filtration M0 = {0} ⊆
M1 ⊆ · · · ⊆ M|Eµ| = Xµ such that GEi

∼= Mi/Mi−1 for all 1 ≤ i ≤ |Eµ|.
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