Modules of the 0-Hecke algebras for genomic Schur functions

Young-Hun Kim ${ }^{* 1}$ and Semin Yoo ${ }^{\dagger 2}$
${ }^{1}$ Center for quantum structures in modules and spaces, Seoul National University, Seoul 08826, Republic of Korea
${ }^{2}$ School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdae-mun-gu, Seoul 02455, Republic of Korea

Abstract

We construct an $H_{m}(0)$-module $\mathbf{G}_{\lambda ; m}$ whose image under the quasisymmetric characteristic is the m th degree homogeneous component of the genomic Schur function U_{λ} by defining an $H_{m}(0)$-action on increasing gapless tableaux. We then provide a direct sum decomposition of $\mathbf{G}_{\lambda ; m}$ and show that each summand of this decomposition is isomorphic to a weak Bruhat interval module.

Keywords: 0-Hecke algebra, weak Bruhat order, genomic Schur function, quasisymmetric characteristic

1 Introduction

Let $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ be the Grassmannian of k-dimensional subspaces of \mathbb{C}^{n}. Since the early 2000s, several combinatorial interpretations for the K-theoretic Littlewood-Richardson rule have been introduced. For instance, see [3, 11, 15, 16]. In particular, Pechenik and Yong [11] gave a combinatorial interpretation by using genomic tableaux. Therein, they defined a symmetric function U_{λ}, called the genomic Schur function, as a generating function for genomic tableaux of shape λ for all partition λ. Further, they proved that $\left\{U_{\lambda} \mid \lambda\right.$ is a partition $\}$ is a basis for the ring of symmetric functions and pointed out that genomic Schur functions are not Schur-positive in general. As an alternative positivity, Pechenik [10] showed that genomic Schur functions are fundamental positive. Specifically, for any partition λ,

$$
U_{\lambda}=\sum_{T \in \operatorname{IGLT}(\lambda)} F_{\operatorname{comp}(T)},
$$

[^0]where $\operatorname{IGLT}(\lambda)$ is the set of increasing gapless tableaux of shape $\lambda, \operatorname{comp}(T)$ is the composition associated to T, and $F_{\mathrm{comp}(T)}$ is the fundamental quasisymmetric function associated to $\operatorname{comp}(T)$. For the precise definitions, see Subsection 2.4.

The 0 -Hecke algebra $H_{n}(0)$ is the \mathbb{C}-algebra obtained from the Hecke algebra $H_{n}(q)$ by specializing q to 0 . Duchamp, Krob, Leclerc, and Thibon [6] introduced a ring isomorphism, called quasisymmetric characteristic,

$$
\text { ch : } \mathcal{G}_{0}\left(H_{\bullet}(0)\right) \rightarrow \text { QSym, } \quad\left[\mathbf{F}_{\alpha}\right] \mapsto F_{\alpha}
$$

Here, $\mathcal{G}_{0}\left(H_{\bullet}(0)\right)$ is the Grothendieck ring associated to 0 -Hecke algebras and QSym is the ring of quasisymmetric functions. In view of this correspondence, there have been considerable attempts to provide a representation theoretic interpretation of noteworthy quasisymmetric functions by constructing appropriate 0 -Hecke modules. For instance, see [1, 2, 4, 12, 13, 14]. Recently, Jung, Kim, Lee, and Oh [7] introduced the weak Bruhat interval module $\mathrm{B}(\sigma, \rho)$ to provide a unified method to study the $H_{n}(0)$-modules in the papers mentioned above. Here, σ and ρ are permutations in the symmetric group \mathfrak{S}_{n}.

The purpose of this paper is to provide a nice representation theoretic interpretation of genomic Schur functions. First, for each $1 \leq m \leq n$, we construct an $H_{m}(0)$-module $\mathbf{G}_{\lambda ; m}$ by defining an $H_{m}(0)$-action on the \mathbb{C}-span of the set $\operatorname{IGLT}(\lambda)_{m}$ of increasing gapless tableaux of shape λ with maximum entry m. And, we see that the image of $\mathbf{G}_{\lambda ; m}$ under the quasisymmetric characteristic is the m th homogeneous component of U_{λ}. Next, we define an equivalence relation $\sim_{\lambda ; m}$ on $\operatorname{IGLT}(\lambda)_{m}$ and show that the \mathbb{C}-span of each equivalence class is closed under the $H_{m}(0)$-action. Thus, we obtain a direct sum decomposition

$$
\mathbf{G}_{\lambda ; m}=\bigoplus_{E \in \mathcal{E}_{\lambda ; m}} \mathbf{G}_{E}
$$

where $\mathcal{E}_{\lambda ; m}$ is the set of all equivalence classes with respect to $\sim_{\lambda ; m}$ and \mathbf{G}_{E} is the submodule of $\mathbf{G}_{\lambda ; m}$ whose underlying space is the \mathbb{C}-span of E. Finally, we show that \mathbf{G}_{E} is isomorphic to a weak Bruhat interval module for $E \in \mathcal{E}_{\lambda ; m}$. To do this, we prove that there exist unique source tableau T_{E} and sink tableau T_{E}^{\prime} in E. In addition, we assign a permutation read (T), called standardized reading word, to each $T \in E$. With these preparations, we show that

$$
\mathbf{G}_{E} \cong \mathrm{~B}\left(\operatorname{read}\left(T_{E}\right), \operatorname{read}\left(T_{E}^{\prime}\right)\right)
$$

We end with providing an avenue for future research. This paper is an extended abstract of our paper [8].

2 Preliminaries

Given any integers m and n, define $[m, n$] to be the set $\{k \in \mathbb{Z} \mid m \leq k \leq n\}$ if $m \leq n$ or the empty set otherwise. Throughout this section, n denotes a nonnegative integer.

2.1 Compositions and Diagrams

A composition α of a nonnegative integer n, denoted by $\alpha \vDash n$, is a finite ordered list of positive integers $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ satisfying $\sum_{i=1}^{k} \alpha_{i}=n$. We call $k=: \ell(\alpha)$ the length of α and $n=:|\alpha|$ the size of α. Given $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell(\alpha)}\right) \models n$, we $\operatorname{define} \operatorname{set}(\alpha):=$ $\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \sum_{i=1}^{\ell(\alpha)-1} \alpha_{i}\right\} \subseteq[1, n-1]$.

If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell(\lambda)}\right) \models n$ satisfies $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell(\lambda)}$, then we say that λ is a partition of n and denote it by $\lambda \vdash n$. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell(\lambda)}\right) \vdash n$, we define the Young diagram $\operatorname{yd}(\lambda)$ of λ by a left-justified array of n boxes where the i th row from the top has λ_{i} boxes for $1 \leq i \leq \ell(\lambda)$. We say that a box in $\operatorname{yd}(\lambda)$ is in the ith row if it is in the i th row from the top and in the jth column if it is in the j th column from the left. We denote by (i, j) the box in the i th row and j th column. Denoting $(i, j) \in \operatorname{yd}(\lambda)$ means that $1 \leq i \leq \ell(\lambda)$ and $1 \leq j \leq \lambda_{i}$. We also say that a lattice point on $\operatorname{yd}(\lambda)$ is in the i th row if it is in the $(i+1)$ st horizontal line from the top and in the jth column if it is in the $(j+1)$ st vertical line from the left. We denote by $(\underline{i, j})$ the lattice point in the i th row and j th column. For example, if $\lambda=(3,2,2)$, then

the box $(1,3)$ is the box filled with red, and the lattice point $(3,0)$ is the point marked by the blue dot. A filling of $\operatorname{yd}(\lambda)$ is a function $T: \operatorname{yd}(\lambda) \rightarrow \mathbb{Z}_{>0}$. Throughout this paper, we assume that

$$
\begin{array}{ll}
T((i, j))=\infty & \text { if }(i, j) \in\left(\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}\right) \backslash \operatorname{yd}(\lambda) \quad \text { and } \\
T((i, j))=-\infty & \text { if }(i, j) \in(\mathbb{Z} \times \mathbb{Z}) \backslash\left(\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}\right)
\end{array}
$$

For any filling T of $\operatorname{yd}(\lambda)$, let $\max (T):=\max \{T((i, j)) \mid(i, j) \in \operatorname{yd}(\lambda)\}$.

2.2 The 0-Hecke algebra and the quasisymmetric characteristic

To begin with, we recall that the symmetric group \mathfrak{S}_{n} is generated by simple transpositions $s_{i}:=(i, i+1)$ with $1 \leq i \leq n-1$. An expression for $\sigma \in \mathfrak{S}_{n}$ of the form $s_{i_{1}} s_{i_{2}} \cdots s_{i_{p}}$ that uses the minimal number of simple transpositions is called a reduced expression for σ. The number of simple transpositions in any reduced expression for σ, denoted by $\ell(\sigma)$, is called the length of σ.

The 0 -Hecke algebra $H_{n}(0)$ is the \mathbb{C}-algebra generated by $\pi_{1}, \pi_{2}, \ldots, \pi_{n-1}$ subject to the following three relations: (1) $\pi_{i}^{2}=\pi_{i}$ for $1 \leq i \leq n-1$, (2) $\pi_{i} \pi_{i+1} \pi_{i}=\pi_{i+1} \pi_{i} \pi_{i+1}$ for $1 \leq i \leq n-2$, and (3) $\pi_{i} \pi_{j}=\pi_{j} \pi_{i}$ if $|i-j| \geq 2$. Pick up any reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{p}}$ for a permutation $\sigma \in \mathfrak{S}_{n}$. We define the element π_{σ} of $H_{n}(0)$ by $\pi_{\sigma}:=\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{p}}$ It is well known that π_{σ} is independent of the choice of reduced expressions, and $\left\{\pi_{\sigma} \mid \sigma \in \mathfrak{S}_{n}\right\}$ is a basis for $H_{n}(0)$.

In [9], Norton classified all irreducible modules of the 0-Hecke algebras. It was shown that there are 2^{n-1} distinct irreducible $H_{n}(0)$-modules which are naturally parametrized by compositions of n. For each $\alpha \models n$, the irreducible module \mathbf{F}_{α} corresponding to α is the 1-dimensional $H_{n}(0)$-module spanned by a vector v_{α} whose $H_{n}(0)$-action is given by

$$
\pi_{i} \cdot v_{\alpha}=\left\{\begin{array}{ll}
0 & i \in \operatorname{set}(\alpha), \\
v_{\alpha} & i \notin \operatorname{set}(\alpha),
\end{array} \quad(1 \leq i \leq n-1)\right.
$$

Let $\mathcal{R}\left(H_{n}(0)\right)$ denote the \mathbb{Z}-span of the isomorphism classes of finite dimensional $H_{n}(0)$-modules. The isomorphism class corresponding to an $H_{n}(0)$-module M will be denoted by $[M]$. The Grothendieck group $\mathcal{G}_{0}\left(H_{n}(0)\right)$ is the quotient of $\mathcal{R}\left(H_{n}(0)\right)$ modulo the relations $[M]=\left[M^{\prime}\right]+\left[M^{\prime \prime}\right]$ whenever there exists a short exact sequence $0 \rightarrow M^{\prime} \rightarrow$ $M \rightarrow M^{\prime \prime} \rightarrow 0$. The irreducible $H_{n}(0)$-modules form a free \mathbb{Z}-basis for $\mathcal{G}_{0}\left(H_{n}(0)\right)$. Let $\mathcal{G}_{0}\left(H_{\bullet}(0)\right):=\bigoplus_{n \geq 0} \mathcal{G}_{0}\left(H_{n}(0)\right)$ be the ring equipped with the induction product. In [6], Duchamp, Krob, Leclerc, and Thibon revealed a deep connection between $\mathcal{G}_{0}\left(H_{\bullet}(0)\right)$ and the ring QSym of quasisymmetric functions by providing a ring isomorphism

$$
\text { ch : } \mathcal{G}_{0}\left(H_{\bullet}(0)\right) \rightarrow \text { QSym, } \quad\left[\mathbf{F}_{\alpha}\right] \mapsto F_{\alpha}
$$

called quasisymmetric characteristic. Here, F_{α} is the fundamental quasisymmetric function.

2.3 Weak Bruhat interval modules of the 0-Hecke algebra

Given $\sigma \in \mathfrak{S}_{n}$, let $\operatorname{Des}_{L}(\sigma):=\left\{i \in[1, n-1] \mid \ell\left(s_{i} \sigma\right)<\ell(\sigma)\right\}$. The left weak Bruhat order \preceq_{L} on \mathfrak{S}_{n} is the partial order on \mathfrak{S}_{n} whose covering relation \preceq_{L}^{c} is defined as follows: $\sigma \preceq_{L}^{c} s_{i} \sigma$ if and only if $i \notin \operatorname{Des}_{L}(\sigma)$. Given $\sigma, \rho \in \mathfrak{S}_{n}$, the left weak Bruhat interval from σ to ρ, denoted by $[\sigma, \rho]_{L}$, is the closed interval $\left\{\gamma \in \mathfrak{S}_{n} \mid \sigma \preceq_{L} \gamma \preceq_{L} \rho\right\}$.

Definition 2.1. ([7]) Let $\sigma, \rho \in \mathfrak{S}_{n}$. The weak Bruhat interval module associated to $[\sigma, \rho]_{L}$, denoted by $\mathrm{B}(\sigma, \rho)$, is the $H_{n}(0)$-module with the underlying space $\mathbb{C}[\sigma, \rho]_{L}$ and with the $H_{n}(0)$-action defined by

$$
\pi_{i} \cdot \gamma:= \begin{cases}\gamma & \text { if } i \in \operatorname{Des}_{L}(\gamma) \\ 0 & \text { if } i \notin \operatorname{Des}_{L}(\gamma) \text { and } s_{i} \gamma \notin[\sigma, \rho]_{L} \\ s_{i} \gamma & \text { if } i \notin \operatorname{Des}_{L}(\gamma) \text { and } s_{i} \gamma \in[\sigma, \rho]_{L}\end{cases}
$$

2.4 Genomic Schur functions

Given $\lambda \vdash n$, an increasing gapless tableau of shape λ is a filling of $\operatorname{yd}(\lambda)$ such that the entries in each row strictly increase from left to right, the entries in each column strictly increase from top to bottom, and the set $T^{-1}(i)$ is nonempty for all $1 \leq i \leq \max (T)$. Let $\operatorname{IGLT}(\lambda)$ be the set of all increasing gapless tableaux of shape λ. Given $T \in \operatorname{IGLT}(\lambda)$ and
$1 \leq i \leq \max (T)$, let $\operatorname{Top}_{i}(T)$ (resp. $\left.\operatorname{Bot}_{i}(T)\right)$ be the highest (resp. lowest) box in T having the entry i. Let

$$
\left(r_{\mathrm{b}}^{(i)}(T), c_{\mathrm{b}}^{(i)}(T)\right):=\operatorname{Bot}_{i}(T) \quad \text { and } \quad\left(r_{\mathrm{t}}^{(i)}(T), c_{\mathrm{t}}^{(i)}(T)\right):=\operatorname{Top}_{i}(T) .
$$

If T is clear in the context, we simply write $r_{\mathrm{b}}^{(i)}, c_{\mathrm{b}}^{(i)}, r_{\mathrm{t}}^{(i)}$, and $c_{\mathrm{t}}^{(i)}$ instead of $r_{\mathrm{b}}^{(i)}(T), c_{\mathrm{b}}^{(i)}(T)$, $r_{\mathrm{t}}^{(i)}(T)$, and $c_{\mathrm{t}}^{(i)}(T)$, respectively. We call an index $i \in[1, \max (T)-1]$ a descent of T if there is some instance of i strictly above some instance of $i+1$ in T. Let $\operatorname{Des}(T)$ be the set of all descents of T and let $\operatorname{comp}(T):=\operatorname{comp}(\operatorname{Des}(T))$.
Definition 2.2. ($[10,11])$ For $\lambda \vdash n$, the genomic Schur function U_{λ} is defined by

$$
U_{\lambda}:=\sum_{T \in \operatorname{IGLT}(\lambda)} F_{\operatorname{comp}(T)}
$$

Given $1 \leq m \leq n$, we define

$$
\operatorname{IGLT}(\lambda)_{m}:=\{T \in \operatorname{IGLT}(\lambda) \mid \max (T)=m\} \quad \text { and } \quad U_{\lambda ; m}:=\sum_{T \in \operatorname{IGLT}(\lambda)_{m}} F_{\operatorname{comp}(T)} .
$$

From the definition, it immediately follows that $U_{\lambda ; m}$ is the m th degree homogeneous component of U_{λ}.

Hereafter, we assume that n is a positive integer, m is a positive integer less than or equal to n, and λ is a partition of n, unless otherwise stated.

3 0-Hecke modules from increasing gapless tableaux

3.1 An $H_{m}(0)$-module for $U_{\lambda ; m}$

We start by introducing the necessary definitions.
Definition 3.1. Given $T \in \operatorname{IGLT}(\lambda)$ and $1 \leq i \leq \max (T)-1$, we say that i is an attacking descent if $i \in \operatorname{Des}(T)$, and either
(a) there exists $(j, k) \in \operatorname{yd}(\lambda)$ such that $T((j, k))=i$ and $T((j+1, k))=i+1$, or
(b) there exists a box $B \in T^{-1}(i+1)$ placed weakly above $\operatorname{Bot}_{i}(T)$.

Take any $1 \leq m \leq n$. For each $1 \leq i \leq m-1$, we define a linear operator π_{i} : $\mathbb{C} \operatorname{IGLT}(\lambda)_{m} \rightarrow \mathbb{C} \operatorname{IGLT}(\lambda)_{m}$ by

$$
\boldsymbol{\pi}_{i}(T):= \begin{cases}T & \text { if } i \text { is not a descent of } T \tag{3.1}\\ 0 & \text { if } i \text { is an attacking descent of } T \\ s_{i} \cdot T & \text { if } i \text { is a non-attacking descent of } T\end{cases}
$$

for $T \in \operatorname{IGLT}(\lambda)_{m}$ and extending it by linearity. Here, $s_{i} \cdot T$ is the tableau obtained from T by replacing i and $i+1$ with $i+1$ and i, respectively. By proving $\pi_{i}^{2}=\pi_{i}(1 \leq i \leq m-1)$, $\boldsymbol{\pi}_{i} \boldsymbol{\pi}_{i+1} \boldsymbol{\pi}_{i}=\boldsymbol{\pi}_{i+1} \boldsymbol{\pi}_{i} \boldsymbol{\pi}_{i+1}(1 \leq i \leq m-2)$, and $\boldsymbol{\pi}_{i} \boldsymbol{\pi}_{j}=\boldsymbol{\pi}_{j} \boldsymbol{\pi}_{i}(1 \leq i, j \leq m-1$ with $|i-j|>$ 1), we obtain the following theorem. For details, see [8, Subsection 3.1].

Theorem 3.2. For any $1 \leq m \leq n$, the operators $\boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2}, \ldots, \boldsymbol{\pi}_{m-1}$ satisfy the same relations as the generators $\pi_{1}, \pi_{2}, \ldots \pi_{m-1}$ for $H_{m}(0)$. In other words, $\boldsymbol{\pi}_{1}, \pi_{2}, \ldots, \boldsymbol{\pi}_{m-1}$ define an $H_{m}(0)$ action on $\operatorname{CIGLT}(\lambda)_{m}$.

Example 3.3. (1) When $T=$| 1 | 2 | 3 | 6 |
| :---: | :---: | :---: | :---: |
| 2 | 3 | 5 | 7 |
| 4 | 6 | 6 | | , we have $\boldsymbol{\pi}_{3}(T)=s_{3} \cdot T, \pi_{4}(T)=T$, and $\boldsymbol{\pi}_{i}(T)=0$ for $i=1,2,5,6$. Here, the indices in red are used to indicate the descents of the tableau.

 $U_{(2,1,1)}=\left(F_{(2,1,1)}+F_{(1,2,1)}+F_{(1,1,2)}\right)+2 F_{(1,1,1)}$. The following figures illustrate the $H_{m}(0)$ action on $\mathbf{G}_{(2,1,1) ; m}$ for $m=3,4$:

The following proposition follows immediately from (3.1) and Theorem 3.2.
Proposition 3.4. For any $\lambda \vdash n$ and $1 \leq m \leq n, \operatorname{ch}\left(\left[\mathbf{G}_{\lambda ; m}\right]\right)=U_{\lambda ; m}$. Consequently, $\sum_{1 \leq m \leq n} \operatorname{ch}\left(\left[\mathbf{G}_{\lambda ; m}\right]\right)=U_{\lambda}$.

Remark 3.5. In [5, Theorem 4.7], Duchamp, Hivert, and Thibon described the Ext-quiver of $H_{m}(0)$. According to their result, for any $\alpha \models m$, we have $\operatorname{Ext}_{H_{m}(0)}^{1}\left(\mathbf{F}_{\alpha}, \mathbf{F}_{\alpha}\right)=0$, equivalently, there is no indecomposable $H_{m}(0)$-module M such that $\operatorname{ch}([M])=2 F_{\alpha}$. On the other hand, in Example 3.3, we see that $U_{(2,1,1) ; 3}=2 F_{(1,1,1)}$. Thus, we conclude that there is no indecomposable $H_{3}(0)$-module M satisfying $\operatorname{ch}([M])=U_{(2,1,1) ; 3}$.

3.2 A direct sum decomposition of $\mathbf{G}_{\lambda ; m}$ into $H_{m}(0)$-submodules

Let us start with necessary definitions and notation. Given $T \in \operatorname{IGLT}(\lambda)_{m}, \operatorname{let} \mathcal{I}(T):=$ $\left\{i \in[1, m]\left|\left|T^{-1}(i)\right|>1\right\}\right.$. Given $i \in \mathcal{I}(T)$, let $\Gamma_{i}(T)$ be the lattice path from $\left(\underline{r_{\mathrm{b}}^{(i)}}, \mathrm{c}_{\mathrm{b}}^{(i)}-1\right)$ to $\left(\underline{\left.r_{t}^{(i)}-1, c_{t}^{(i)}\right)}\right.$ satisfying the following two conditions:
(i) if the path passes through two boxes horizontally, then the entry at the above box is smaller than i and the entry at the below box is greater than i, and
(ii) if the path passes through two boxes vertically, then the entry at the left box is smaller than i and the entry at the right box is greater than i.
Example 3.6. Let

Note that $\mathcal{I}(T)=\{17,21,27,29\}$. By following the way of defining lattice paths, we obtain the lattice paths $\Gamma_{17}(T), \Gamma_{21}(T), \Gamma_{27}(T)$, and $\Gamma_{29}(T)$ as follows:

$\Gamma_{17}(T)$

$\Gamma_{21}(T)$

$\Gamma_{27}(T)$

$\Gamma_{29}(T)$

Given a lattice path Γ, let $V(\Gamma)$ be the set of lattice points through which Γ passes. For two lattice paths Γ and Γ^{\prime}, we write $\Gamma=\Gamma^{\prime}$ if $V(\Gamma)=V\left(\Gamma^{\prime}\right)$.
Definition 3.7. Let $\lambda \vdash n$ and $T_{1}, T_{2} \in \operatorname{IGLT}(\lambda)_{m}$. The equivalence relation $\sim_{\lambda ; m}$ on $\operatorname{IGLT}(\lambda)_{m}$ is defined by $T_{1} \sim_{\lambda ; m} T_{2}$ if and only if

$$
\left\{\left(\Gamma_{i}\left(T_{1}\right), T_{1}^{-1}(i)\right) \mid i \in \mathcal{I}\left(T_{1}\right)\right\}=\left\{\left(\Gamma_{i}\left(T_{2}\right), T_{2}^{-1}(i)\right) \mid i \in \mathcal{I}\left(T_{2}\right)\right\}
$$

Then, $T_{1} \sim_{(4,3,2) ; 5} T_{2}$, but $T_{1} \not \chi_{(4,3,2) ; 5} T_{k}$ for $k=3,4$.
Let $\mathcal{E}_{\lambda ; m}$ be the set of equivalence classes of $\operatorname{IGLT}(\lambda)_{m}$ with respect to $\sim_{\lambda ; m}$.
Theorem 3.9. Let m and n be positive integers with $m \leq n$ and let $\lambda \vdash n$. For any $1 \leq i \leq$ $m-1$ and $E \in \mathcal{E}_{\lambda ; m}, \pi_{i} \cdot \mathbb{C} E \subseteq \mathbb{C} E$.

For each $E \in \mathcal{E}_{\lambda ; m}$, let \mathbf{G}_{E} be the $H_{m}(0)$-submodule of $\mathbf{G}_{\lambda ; m}$ whose underlying space is the \mathbb{C}-span of E. Then, we have the following direct sum decomposition

$$
\mathbf{G}_{\lambda ; m}=\bigoplus_{E \in \mathcal{E}_{\lambda ; m}} \mathbf{G}_{E}
$$

Hereafter, E denotes an equivalence class of $\operatorname{IGLT}(\lambda)_{m}$ with respect to $\sim_{\lambda ; m}$ and T denotes a tableau contained in $\operatorname{IGLT}(\lambda)_{m}$ unless otherwise stated.

4 Source and sink tableaux

The goal of this section is to show that there are two distinguished tableaux, called source and sink tableaux, in each equivalence class $E \in \mathcal{E}_{\lambda ; m}$. To achieve our goal, we first construct two tableaux source (T) and $\operatorname{sink}(T)$ for each $T \in E$. Then, we prove that source (T) (resp. sink $(T))$ is the unique source tableau (resp. sink tableau) in E, where T is an arbitrary chosen element in E.

To begin with, we give definitions for source tableaux and sink tableaux in $\operatorname{IGLT}(\lambda)_{m}$.
Definition 4.1. Let $T \in \operatorname{IGLT}(\lambda)_{m}$.
(1) T is said to be a source tableau if there do not exist $T^{\prime} \in \operatorname{IGLT}(\lambda)_{m}$ and $1 \leq i \leq m-1$ such that $\pi_{i} \cdot T^{\prime}=T$ and $T^{\prime} \neq T$.
(2) T is said to be a sink tableau if there do not exist $T^{\prime} \in \operatorname{IGLT}(\lambda)_{m}$ and $1 \leq i \leq m-1$ such that $\pi_{i} \cdot T=T^{\prime}$ and $T^{\prime} \neq T$.

To construct the desired tableau source(T), we need the following preparation. Given two lattice points P and P^{\prime} in the same row, we denote the horizontal line from P to P^{\prime} by $\operatorname{HL}\left(P, P^{\prime}\right)$. For each $i \in \mathcal{I}(T)$, we define a new lattice path $\widetilde{\Gamma}_{i}(T)$ by extending $\Gamma_{i}(T)$ with the following algorithm.

Algorithm 4.2. Fix $i \in \mathcal{I}(T)$ and let $\lambda_{0}:=\lambda_{1}$.
Step 1. For each $j \in \mathcal{I}(T)$, let Γ_{j}^{\prime} be the lattice path obtained by connecting three lattice paths $\operatorname{HL}\left(\left(\underline{r_{\mathrm{b}}^{(j)}, 0}\right),\left(\underline{\left.r_{\mathrm{b}}^{(j)}, c_{\mathrm{b}}^{(j)}-1\right)}\right), \Gamma_{j}(T)\right.$, and $\left.\mathrm{HL}\left(\underline{\left(r_{\mathrm{t}}^{(j)}-1, c_{\mathrm{t}}^{(j)}\right.}\right),\left(r_{\mathrm{t}}^{(j)}-1, \lambda_{r_{\mathrm{t}}^{(j)}-1}\right)\right)$.
Step 2. Let $r_{\mathrm{t}}=\min \left\{r \mid(\underline{r, c}) \in V\left(\Gamma_{i}^{\prime}\right)\right\}$ and $c_{\mathrm{t}}=\min \left\{c \mid\left(\underline{r_{\mathrm{t}}, c}\right) \in V\left(\Gamma_{i}^{\prime}\right)\right\}$.
Step 3. If there exists $j \in \mathcal{I}(T)$ such that

$$
\begin{equation*}
r^{\prime}<r_{\mathrm{t}}<r^{\prime \prime} \quad \text { and } \quad c^{\prime}, c^{\prime \prime}>c_{\mathrm{t}} \quad \text { for some }\left(\underline{r^{\prime}, c^{\prime}}\right),\left(\underline{r^{\prime \prime}, c^{\prime \prime}}\right) \in V\left(\Gamma_{j}^{\prime}\right), \tag{4.1}
\end{equation*}
$$

then go to Step 4. Otherwise, go to Step 5 .
Step 4. Let $j_{0}=\min \left\{j \mid \Gamma_{j}^{\prime}\right.$ satisfies (4.1) $\}$ and $c_{0}=\min \left\{c \mid\left(\underline{r_{\mathrm{t}}, c}\right) \in V\left(\Gamma_{j_{0}}^{\prime}\right)\right\}$. Then, let Γ be the lattice path satisfying that

$$
V(\Gamma)=V\left(\Gamma_{i}^{\prime}\right) \backslash\left\{\left(\underline{r_{\mathrm{t}}, c}\right) \mid c \geq c_{0}\right\} \cup\left\{(\underline{r, c}) \in V\left(\Gamma_{j_{0}}^{\prime}\right) \mid r \leq r_{\mathrm{t}} \text { and } c \geq c_{0}\right\}
$$

Set $\Gamma_{i}^{\prime}:=\Gamma$. Go to Step 2.
Step 5. Return $\widetilde{\Gamma}_{i}(T):=\Gamma_{i}^{\prime}$ and terminate the algorithm.
If T is clear in the context, we simply write the lattice path $\widetilde{\Gamma}_{i}(T)$ by $\widetilde{\Gamma}_{i}$ for $i \in \mathcal{I}(T)$.

Example 4.3. Let us revisit Example 3.6. By applying Algorithm 4.2 to each $i \in \mathcal{I}(T)$, we obtain $\widetilde{\Gamma}_{17}, \widetilde{\Gamma}_{21}, \widetilde{\Gamma}_{27}$, and $\widetilde{\Gamma}_{29}$ as follows:

$$
\widetilde{\Gamma}_{17}(T)
$$

$\widetilde{\Gamma}_{21}(T)$

$\widetilde{\Gamma}_{27}(T)$

$\widetilde{\Gamma}_{29}(T)$

For $i \in \mathcal{I}(T)$, we set $p_{i}^{\prime} \in\{1,2, \ldots,|\mathcal{I}(T)|\}$ satisfying the following: Let $i, j \in \mathcal{I}(T)$.
C1. If $r_{\mathrm{b}}^{(i)}<r_{\mathrm{b}}^{(j)}$, then $\mathrm{p}_{i}^{\prime}<\mathrm{p}_{j}^{\prime}$. And, if $r_{\mathrm{b}}^{(i)}>r_{\mathrm{b}}^{(j)}$, then $\mathrm{p}_{i}^{\prime}>\mathrm{p}_{j}^{\prime}$.
C2. When $r_{\mathrm{b}}^{(i)}=r_{\mathrm{b}}^{(j)}$, consider the lowest lattice point $p \in V\left(\widetilde{\Gamma}_{i}\right) \cap V\left(\widetilde{\Gamma}_{j}\right)$ such that neither $p+(\underline{-1,0})$ nor $p+(\underline{0,1})$ are contained in $V\left(\widetilde{\Gamma}_{i}\right) \cap V\left(\widetilde{\Gamma}_{j}\right)$. If $p+(\underline{-1,0}) \in V\left(\widetilde{\Gamma}_{i}\right)$, then $\mathrm{p}_{i}^{\prime}<\overline{\mathrm{p}_{j}^{\prime}}$. Otherwise, $\overline{\mathrm{p}_{i}^{\prime}}>\mathrm{p}_{j}^{\prime}$.

Given $i, j \in \mathcal{I}(T)$, if there exist $\left(\underline{r^{\prime}, c^{\prime}}\right),\left(\underline{r^{\prime \prime}, c^{\prime \prime}}\right) \in V\left(\widetilde{\Gamma}_{j}\right)$ such that $r^{\prime}<r_{\mathrm{b}}^{(i)}<r^{\prime \prime}$ and $c^{\prime}, c^{\prime \prime}<c_{\mathrm{b}}^{(i)}$, then we say that $\widetilde{\Gamma}_{j}$ crosses the bottom path of $\widetilde{\Gamma}_{i}$. By rearranging $\mathrm{p}_{i}^{\prime \prime} \mathrm{s}$ with the following algorithm, we define a bijection $\mathrm{p}_{T}: \mathcal{I}(T) \rightarrow\{1,2, \ldots,|\mathcal{I}(T)|\}$.

Algorithm 4.4. For each $i \in \mathcal{I}(T)$, let $p_{i}:=\mathrm{p}_{i}^{\prime}$, where p_{i}^{\prime} is the index defined above.
Step 1. Let $k=1$.
Step 2. Take i_{k} and i_{k+1} in $\mathcal{I}(T)$ such that $p_{i_{k}}=k$ and $p_{i_{k+1}}=k+1$.
Step 3. If $\widetilde{\Gamma}_{i_{k+1}}$ crosses the bottom path of $\widetilde{\Gamma}_{i_{k}}$ then set $p_{i_{k}}:=k+1$ and $p_{i_{k+1}}:=k$ and go to Step 1. Otherwise, go to Step 4.
Step 4. If $k<|\mathcal{I}(T)|-1$, then set $k=k+1$ and go to Step 2. Otherwise, set $\mathrm{p}_{T}(i):=p_{i}$ for each $i \in \mathcal{I}(T)$ and go to Step 5.
Step 5. Return $\left(\mathrm{p}_{T}(i)\right)_{i \in \mathcal{I}(T)}$ and terminate the algorithm.
Given $u \in[1,|\mathcal{I}(T)|]$, let A_{u} be the subdiagram of $\operatorname{yd}(\lambda)$ consisting of the boxes located above $\widetilde{\Gamma}^{(u)}$. Let

$$
\mathrm{D}_{u}^{(1)}(T):=\mathrm{A}_{u} \backslash\left(\bigcup_{1 \leq v<u}\left(\mathrm{~A}_{v} \cup T^{-1}\left(\mathrm{p}_{T}^{-1}(v)\right)\right)\right) \quad \text { and } \quad \mathrm{D}_{u}^{(2)}(T):=T^{-1}\left(\mathrm{p}_{T}^{-1}(u)\right)
$$

Now, we construct the desired tableau source (T) with the following algorithm.
Algorithm 4.5. Let $T \in \operatorname{IGLT}(\lambda)_{m}$. Set $e_{0}=0$ and $M_{0}=0$. For $1 \leq u \leq|\mathcal{I}(T)|$, let $e_{u}:=\left|\mathrm{D}_{u}^{(1)}(T)\right|+1$ and $M_{u}=\sum_{v=0}^{u} e_{v}$.

Step 1. Set $v:=1$.
Step 2. Fill the boxes in $\mathrm{D}_{v}^{(1)}(T)$ by $M_{v-1}+1, M_{v-1}+2, \ldots, M_{v-1}+e_{v}-1$ from left to right starting from the top.
Step 3. Fill the boxes in $\mathrm{D}_{v}^{(2)}(T)$ by M_{v}.
Step 4. If $v<|\mathcal{I}(T)|$, then set $v:=v+1$ and go to Step 2. Otherwise, fill the remaining boxes by $M_{|\mathcal{I}(T)|}+1, M_{|\mathcal{I}(T)|}+2, \ldots, m$ from left to right starting from the top. Set source (T) to be the resulting filling. Return source (T) and terminate the algorithm.

Example 4.6. Let us revisit Example 4.3. One can easily see that $p_{17}^{\prime}=2, p_{21}^{\prime}=4, p_{27}^{\prime}=3$, and $\mathrm{p}_{29}^{\prime}=1$. By applying Algorithm 4.4, we have

$$
\mathrm{p}_{T}(17)=1, \quad \mathrm{p}_{T}(21)=4, \quad \mathrm{p}_{T}(27)=2, \quad \text { and } \quad \mathrm{p}_{T}(29)=3
$$

In addition, by applying Algorithm 4.5, we have

Theorem 4.7. For any $T \in E$, source (T) is the unique source tableau in E.
Similarly, we construct $\operatorname{sink}(T)$ for each $T \in E$ and prove the following theorem.
Theorem 4.8. For any $T \in E, \operatorname{sink}(T)$ is the unique sink tableau in E.
We denote by T_{E} and T_{E}^{\prime} the unique source tableau and sink tableau in E, respectively.

5 A weak Bruhat interval module description of \mathbf{G}_{E}

Throughout this section, we let $\operatorname{Des}\left(T_{E}\right)=\left\{d_{1}<d_{2}<\cdots<d_{k}\right\}, d_{0}:=0$, and $d_{k+1}:=m$. For each $1 \leq j \leq k+1$, let $H_{j}:=T_{E}^{-1}\left(\left[d_{j-1}+1, d_{j}\right]\right)$.
Example 5.1. When
we have that $\operatorname{Des}\left(T_{E}\right)=\{5,8,12\}$. In this case, $\mathrm{H}_{j}(1 \leq j \leq 4)$ are given as follows:

$$
\begin{aligned}
& \mathrm{H}_{1}\left|\mathrm{H}_{1} \mathrm{H}_{1}\right| \mathrm{H}_{1}\left|\mathrm{H}_{1} \mathrm{H}_{3}\right| \mathrm{H}_{3}\left|\mathrm{H}_{4}\right| \mathrm{H}_{4} \\
& \mathrm{H}_{2} \mathrm{H}_{2} \mathrm{H}_{2} \mid \mathrm{H}_{3} \mathrm{H}_{3} \\
& \mathrm{H}_{3} \mathrm{H}_{3}\left|\mathrm{H}_{3}\right| \mathrm{H}_{4} \\
& \mathrm{H}_{4} \mathrm{H}_{4}
\end{aligned}
$$

For each $1 \leq j \leq k$, let $\mathrm{w}^{(j)}(T)$ be the word obtained by reading the entries of T contained in H_{j} from right to left. Note that if an integer i appears multiple times in $\mathrm{w}^{(j)}(T)$, then the integer i^{\prime} s are placed consecutively. We define $\overline{\mathrm{w}}^{(j)}(T)$ as the word obtained from $\mathrm{w}^{(j)}(T)$ by erasing all i^{\prime} s except one i for each i that appears in $\mathrm{w}^{(j)}(T)$.

Definition 5.2. For $T \in E$, the standardized reading word $\operatorname{read}(T)$ of T is defined to be the word $\overline{\mathrm{w}}^{(1)}(T) \overline{\mathrm{W}}^{(2)}(T) \cdots \overline{\mathrm{w}}^{(k+1)}(T)$ obtained by concatenating $\overline{\mathrm{W}}^{(j)}(T)$ for $1 \leq j \leq k+1$.

Example 5.3. We revisit Example 5.1. One can see that

$$
\operatorname{read}\left(T_{E}\right)=543218761211109151413 \in \mathfrak{S}_{15}
$$

Theorem 5.4. For each $E \in \mathcal{E}_{\lambda ; m}, \mathbf{G}_{E} \cong \mathrm{~B}\left(\operatorname{read}\left(T_{E}\right)\right.$, $\left.\operatorname{read}\left(T_{E}^{\prime}\right)\right)$ as $H_{m}(0)$-modules.

6 Further avenue

In [10], Pechenik proved that for all $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \vdash n$,

$$
\begin{equation*}
U_{\lambda}=\sum_{l_{\lambda} \leq m \leq n} \sum_{\mu \in \operatorname{Par}(\lambda ; m)} s_{\mu} \tag{6.1}
\end{equation*}
$$

where $l_{\lambda}:=\max \left\{\lambda_{1}, \lambda_{2}+1\right\}, \operatorname{Par}(\lambda ; n):=\left\{\left(\lambda_{1}, \lambda_{2}\right)\right\}$, and

$$
\operatorname{Par}(\lambda ; m):= \begin{cases}\left\{\left(\lambda_{1}-k_{m}, \lambda_{1}-k_{m}, 1^{k_{m}}\right)\right\} & \text { if } \lambda_{1}=\lambda_{2} \\ \left\{\left(\lambda_{1}-k_{m}, \lambda_{2}-k_{m}, 1^{k_{m}}\right),\left(\lambda_{1}-k_{m}, \lambda_{2}-k_{m}+1,1^{k_{m}-1}\right)\right\} & \text { if } \lambda_{1}>\lambda_{2}\end{cases}
$$

for all $l \leq m<n$. Here, $k_{m}:=n-m$ and $s_{\mu}:=0$ if μ is not a partition. And, for each $\lambda \vdash m$, Searles [12] introduced the $H_{m}(0)$-module X_{λ} such that $\operatorname{ch}\left(\left[X_{\lambda}\right]\right)=s_{\lambda}$. The study of representation theoretic interpretation for (6.1) will be pursued in the near future by using $\mathbf{G}_{\lambda ; m}$ and X_{μ}. In this direction, we leave the following conjecture.

Conjecture 6.1. Let $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \vdash n$. For each $l_{\lambda} \leq m \leq n$, there exists a partition $\left\{\mathcal{E}_{\mu} \mid \mu \in\right.$ $\operatorname{Par}(\lambda ; m)\}$ of $\mathcal{E}_{\lambda ; m}$ satisfying the following: For each $\mu \in \operatorname{Par}(\lambda ; m)$,
(1) $\sum_{E \in \mathcal{E}_{\mu}} \operatorname{ch}\left(\left[\mathbf{G}_{E}\right]\right)=s_{\mu}$,
(2) there exist a total order \prec_{μ} on $\mathcal{E}_{\mu}=\left\{E_{1} \prec_{\mu} \cdots \prec_{\mu} E_{\left|\mathcal{E}_{\mu}\right|}\right\}$ and a filtration $M_{0}=\{0\} \subseteq$ $M_{1} \subseteq \cdots \subseteq M_{\left|\mathcal{E}_{\mu}\right|}=X_{\mu}$ such that $\mathbf{G}_{E_{i}} \cong M_{i} / M_{i-1}$ for all $1 \leq i \leq\left|\mathcal{E}_{\mu}\right|$.

Acknowledgements

The authors are grateful to the anonymous referees for their careful readings of the manuscript and valuable advice.

References

[1] J. Bardwell and D. Searles. "0-Hecke modules for Young row-strict quasisymmetric Schur functions". European J. Combin. 102 (2022), Paper No. 103494, 18. DoI.
[2] C. Berg, N. Bergeron, F. Saliola, L. Serrano, and M. Zabrocki. "Indecomposable modules for the dual immaculate basis of quasi-symmetric functions". Proc. Amer. Math. Soc. 143.3 (2015), pp. 991-1000. Doi.
[3] A. S. Buch. "A Littlewood-Richardson rule for the K-theory of Grassmannians". Acta Math. 189.1 (2002), pp. 37-78. Doi.
[4] S.-I. Choi, Y.-H. Kim, S.-Y. Nam, and Y.-T. Oh. "The projective cover of tableau-cyclic indecomposable $H_{n}(0)$-modules". Trans. Amer. Math. Soc. 375.11 (2022), pp. 7747-7782. Doi.
[5] G. Duchamp, F. Hivert, and J.-Y. Thibon. "Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras". Internat. J. Algebra Comput. 12.5 (2002), pp. 671-717. DoI.
[6] G. Duchamp, D. Krob, B. Leclerc, and J.-Y. Thibon. "Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à $q=0$ ". C. R. Acad. Sci. Paris Sér. I Math. 322.2 (1996), pp. 107-112.
[7] W.-S. Jung, Y.-H. Kim, S.-Y. Lee, and Y.-T. Oh. "Weak Bruhat interval modules of the 0-Hecke algebra". Math. Z. 301.4 (2022), pp. 3755-3786. Doi.
[8] Y.-H. Kim and S. Yoo. "Weak Bruhat interval modules of the 0-Hecke algebras for genomic Schur functions". 2022. arXiv:2211.06575.
[9] P. N. Norton. "0-Hecke algebras". J. Austral. Math. Soc. Ser. A 27.3 (1979), pp. 337-357.
[10] O. Pechenik. "The genomic Schur function is fundamental-positive". Ann. Comb. 24.1 (2020), pp. 95-108. doi.
[11] O. Pechenik and A. Yong. "Genomic tableaux". J. Algebraic Combin. 45.3 (2017), pp. 649685. Doi.
[12] D. Searles. "Indecomposable 0-Hecke modules for extended Schur functions". Proc. Amer. Math. Soc. 148.5 (2020), pp. 1933-1943. Doi.
[13] V. Tewari and S. van Willigenburg. "Permuted composition tableaux, 0-Hecke algebra and labeled binary trees". J. Combin. Theory Ser. A 161 (2019), pp. 420-452. Dor.
[14] V. V. Tewari and S. J. van Willigenburg. "Modules of the 0-Hecke algebra and quasisymmetric Schur functions". Adv. Math. 285 (2015), pp. 1025-1065. Dor.
[15] H. Thomas and A. Yong. "A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus". Algebra Number Theory 3.2 (2009), pp. 121-148. Doi.
[16] R. Vakil. "A geometric Littlewood-Richardson rule". Ann. of Math. (2) 164.2 (2006). Appendix A written with A. Knutson, pp. 371-421. DoI.

[^0]: *ykim.math@gmail.com. Young-Hun Kim was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (NRF-2020R1A5A1016126 and NRF-2022R1A2C1004045).
 ${ }^{\dagger}$ syoo19@kias.re.kr. Semin Yoo was supported by the KIAS Individual Grant (CG082701) at Korea Institute for Advanced Study.

