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Abstract. Standard tableaux of skew shape are fundamental objects in enumerative
and algebraic combinatorics and no product formula for the number is known. In
2014, Naruse gave a formula (NHLF) as a positive sum over excited diagrams of prod-
ucts of hook-lengths. Subsequently, Morales, Pak, and Panova gave several proofs
and generalized it to two q-analogues. They also showed, partly algebraically, that
the Hillman–Grassl map restricted to skew shapes must be a bijection. We study the
problem of circumventing the algebraic part and proving the bijection completely com-
binatorially. For a skew shape, we define a new set of semi-standard Young tableaux,
called the minimal SSYT, that are equinumerous with excited diagrams via a new de-
scription of the Hillman–Grassl bijection and a version of excited moves. Lastly, we
relate the minimal skew SSYT with the terms of the Okounkov-Olshanski formula
(OOF) for counting SYTs of skew shape. Our construction immediately implies that
the summands in the NHLF are less than the summands in the OOF.
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1 Introduction

Given a partition λ ⊢ n, the number f λ of standard Young tableaux (SYT) of shape λ is
an important quantity in enumerative, algebraic, and probabilistic combinatorics and is
given by the following hook-length formula of Frame-Robinson-Thrall [2] 1954.

Theorem 1.1 (Frame-Robinson-Thrall [2]). For λ a partition of n we have

f λ =
n!

∏(i,j)∈[λ] h(i, j)
, (1.1)

where [λ] is the Young diagram of λ and h(i, j) = λi − i + λ′
j − j + 1.
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Unlike for straight shapes, there is no such product formula for the number f λ/µ of
SYT of skew shape λ/µ. There is a determinantal formula for f λ/µ like the Jacobi–Trudi
identity, which is efficient but inherently non-positive. There is a classical positive for-
mula for f λ/µ involving the Littlewood–Richardson coefficients cλ

µ,ν, which are themselves
hard to compute.

Central to this paper are two other positive formulas for f λ/µ coming from equivari-
ant Schubert calculus or more explicitly from evaluations of factorial Schur functions: the
Okounkov–Olshanski formula [14] from 1998 and the Naruse hook-length formula [13]
from 2014. We start with the latter since it resembles (1.1).

Theorem 1.2 (Naruse [13], [10]). For a skew shape λ/µ of size n we have

f λ/µ = n! ∑
S∈E(λ/µ)

∏
u∈[λ]\S

1
h(u)

, (NHLF)

where E(λ/µ) is the set of excited diagrams of λ/µ.

The excited diagrams of shape λ/µ, denoted by E(λ/µ), are certain subsets of size
|µ| of the Young diagram of λ obtained from the Young diagram of [µ] by recursively
doing a local move β [5]. Excited diagrams are in correspondence with certain SSYT of
shape µ that are flagged, i.e. with certain bounds on the entries in each row. The Naruse
formula has been actively studied [1, 6, 9, 10].

The other positive formula by Okounkov-Olshanski is also a sum over certain SSYT
of shape µ with entries at most ℓ(λ) called Okounkov–Olshanski tableaux OOT (λ/µ).

Theorem 1.3 (Okounkov–Olshanskii [14]). For a skew shape λ/µ of size n we have

f λ/µ =
n!

∏u∈[λ] h(u) ∑
T∈OOT (λ/µ)

∏
(i,j)∈[µ]

(λℓ+1−T(i,j) − i + j). (OOF)

In [12], Morales–Zhu did a similar study of (OOF) as Morales–Pak–Panova did in [9,
10] for (NHLF). In particular, they gave in [12, Cor. 5.7] a reformulation of (OOF) in
terms of the following flagged tableaux: SSYT of shape λ/µ with entries in row i at most
i − 1, whose set we denote by SF (λ/µ).

A new formulation of Naruse’s formula: A natural question, which is the start of our
investigation, is to also find a reformulation of (NHLF) in terms of some SSYT of skew
shape λ/µ. We define the set SSYTmin(λ/µ) of minimal skew SSYT obtained from the
minimum SSYT, T0 of shape λ/µ with entries {0, 1, . . . , λ′

i − µ′
i − 1} by recursively doing

local moves δ. Our first result is a bijection Φ between excited diagrams and tableaux
SSYTmin(λ/µ) that intertwines with the respective local moves β and δ, respectively.

Theorem 1.4. For a skew shape λ/µ the map Φ : E(λ/µ) → SSYTmin(λ/µ) is a bijection that
intertwines with the respective local moves, that is Φ ◦ β = δ ◦ Φ.
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As a corollary, we obtain a new reformulation of (NHLF). Let (θ1, . . . , θk) be the
Lascoux–Pragacz decomposition of the shape λ/µ into border strips.

Theorem 1.5 (minimal SSYT version of (NHLF)). For a skew shape λ/µ of size n we have

f λ/µ =
n!

∏u∈[λ] h(u) ∑
T∈SSYTmin(λ/µ)

∏
(i,j)∈[µ]

h(i + α, j + α), (1.2)

where α is the number strips θk such that T(θk(j)) > µ′
j − i and T = T − T0.

We give an explicit non-recursive description of the tableaux in SSYTmin(λ/µ) (Theo-
rem 2.6) that immediately shows they are a subset of the skew flagged tableaux SF (λ/µ)
(see Lemma 3.4). As a corollary, we obtain that the Okounkov–Olshanski formula has
at least as many terms as the Naruse formula and characterize the skew shapes where
equality is attained. We denote the number of terms of each formula by ED(λ) and
OOT(λ/µ), respectively.

Theorem 1.6. For a connected skew shape λ/µ with d = ℓ(λ) and r = max{i | µ1 = µi}, we
have that ED(λ/µ) ≤ OOT(λ/µ) with equality if and only if λd ≥ µr + d − r.

Relation with the Hillman–Grassl correspondence: The hook-length formula (1.1) has
a q-analogue by Littlewood that is a special case of Stanley’s hook-content formula for
the generating series of SSYT of shape λ.

Theorem 1.7 (Littlewood). For a partition λ we have

sλ(1, q, q2, . . .) = q∑i(i−1)λi · ∏
u∈λ

1
1 − qh(u)

. (1.3)

This q-analogue has a bijective proof by Hillman–Grassl via the correspondence
HG(·) between reverse plane partitions of shape λ and arrays of nonnegative integers of
shape λ. This correspondence is related to the famous RSK correspondence (see [3, 10])
and has recent connections to quiver representations [4].

In [10], Morales–Pak–Panova gave a q-analogue of (NHLF) for the generating func-
tions of SSYT of skew shape λ/µ.

Theorem 1.8 (Morales–Pak–Panova [10]). For a skew shape λ/µ we have

sλ/µ(1, q, q2, . . .) = ∑
D∈E(λ/µ)

∏
(i,j)∈D

qλ′
j−i

1 − qh(i,j)
. (1.4)
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Interestingly, this identity corresponds to restricting the Hillman–Grassl bijection to
SSYT of shape λ/µ [10]. The resulting arrays A∗(λ/µ) have support on the complement
of excited diagrams and with certain forced nonzero entries on broken diagonals. The
proof of this connection with the Hillman–Grassl map HG(·) is partly algebraic and
remained mysterious. Our next results elucidate on this.

First, we show that the bijection between minimal tableaux and excited diagrams
coincides with the Hillman–Grassl map.

Theorem 1.9. The map Φ is equivalent to the inverse Hillman–Grassl map HG−1 on the arrays
A∗(λ/µ). That is for AD in A∗(λ/µ) we have HG−1(AD) = Φ(D).

As a corollary, we obtain a bijective proof of part of (1.4) by taking the leading terms
of each summand on the right-hand-side.

Corollary 1.10. For a shape λ/µ we have ∑T∈SSYTmin(λ/µ) q|T| = ∑D∈E(λ/µ) q∑(i,j)∈D(λ
′
j−i).

We also give a fully bijective proof of (1.4) for the case of border strips. The details of
this last result and full version of this abstract will appear in [11].

2 Minimal semistandard tableaux of shape λ/µ

2.1 Excited diagram and broken diagonals

Given a subset D of [λ], a cell (i, j) of D is active if the cells (i + 1, j), (i, j+ 1), (i + 1, j+ 1)
are not in D but are in [λ]. Given an active cell (i, j) of D, let β(i,j) : D → D′ be the map
that replaces cell (i, j) in D by (i + 1, j + 1). We call such β(i,j) an excited move. An excited
diagram of λ/µ is a set of |µ| cells obtained from [µ] ⊆ [λ] by applying excited moves.
We let E(λ/µ) be the set of excited diagrams of λ/µ (see Figure 2a). These diagrams
were introduced by Ikeda–Naruse in [5].

Each excited diagram D is associated with the broken diagonals Br(D), which are
obtained from the sub-diagonals of λ/µ by applying excited moves. For β(i,j) : D → D′,
then Br(D′) = Br(D) \ {(i + 1, j + 1)} ∪ {(i + 1, j)} (see Figure 2a).

2.2 Lascoux–Pragacz and Kreiman decomposition of λ/µ

We review two different decompositions of a Young diagram of shape λ/µ into strips
(connected skew shapes with no 2 × 2 box), see Figure 1a .

The Lascoux-Pragacz decomposition of λ/µ is a tuple of non-intersecting lattice paths
(θ1, . . . , θk), where θ1 is the outer border strip of λ, which starts at the southwest corner
of [λ/µ] and ends at the northeast corner of [λ/µ] [8]. Then θ2 is the outer border strip
of λ \ θ1 and each θi is the outer border strip of λ \ θ1 \ · · · \ θi−1. We assume each strip
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Figure 1: (a) Examples of the Lascoux–Pragacz decomposition and Kreiman decom-
position of the skew shape λ/µ. (b) Excited move δ on SSYTmin (c) Excited diagram to
SSYTmin

θi starts at the left or bottom of [λ/µ] and ends at the right or top of [λ/µ]. Given a
skew shape λ/µ, and its Lascoux-Pragacz decompositions (θ1, . . . , θk), denote f(θr) the
row number of the top most element of θr. We define the θr-height of row i, denoted as
htθr(i) to be i − f(θr). For example, in Figure 1a, the height of the element (7, 2) in θ1 is
6 whereas the height of (4, 1) in θ4 is 1.

The Kreiman decomposition of λ/µ is a tuple (γ1, . . . , γk) of non-intersecting lattice
paths with support [λ/µ], where each γi begins at the southwest corner and ends at
northeast corner [7] (see Figure 1a). We denote ϵi the distance between γ1 and γi. The
support of such paths are the complement of excited diagrams [7, §5, §6]. If an excited
diagram D corresponds to the tuple (γ′

1, . . . , γ′
k), we denote by γi(D) = γ′

i , the path
obtained from γi after applying the corresponding ladder moves to the excited moves
where [µ] is obtained from D (see Figure 2a).

Lemma 2.1. Let (γ1, . . . , γk) and (θ1, . . . , θk) be the Kreiman and Lascoux-Pragacz decomposi-
tion of shape λ/µ. For each i ∈ {1, . . . , k}, let γi : ( fi, gi) → (ci, di) and θi : (si, ti) → (ui, vi).
Then gi − ti = ϵi, i.e. the column difference of the starting point of γi and θi is ϵi.

2.3 Minimal skew Semistandard Young Tableaux

The minimal skew SSYT are obtained from the minimum SSYT T0 by applying a se-
quence of excited moves δ, defined as follows (see Figure 1b). Let λ/µ be a skew partition
and (θ1, . . . , θk) be its Lascoux-Pragacz decomposition. Given a strip θk and column j,
let θk(j) be the jth column segment of θk. Let (i, j) be the top-most cell and (i′, j) be the
bottom-most cell of θk(j) (which may agree if the column has size one).

Definition 2.2 (excited move δ). The column θk(j) of T in SSYT(λ/µ) is active if
(i) T(i, j) < htθk(i),

(ii) T(i, j) < T(i, j + 1) and T(i′, j) < T(i′ + 1, j) + 1.
Given an active column θk(j) of T, the excited move δ adds one to each entry in the column
segment θk(j) and T′ := δ(k;j)(T) be the tableau obtained from T by the move δ.
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We define a bijection between E(λ/µ) and SSYTmin(λ/µ) denoted Φ : E(λ/µ) →
SSYT(λ/µ), which commutes with the excited moves in E(λ/µ) and SSYTmin(λ/µ).

Definition 2.3. Given D ∈ E(λ/µ), let (γ1(D), . . . , γk(D)) and (θ1, . . . , θk) be its Kreiman
and Lascoux-Pracgaz decomposition into paths and Br(D) be its set of broken diagonals. Let bj
be the number of broken diagonals on the jth column of γi(D). For each γi(D) and θi, do the
following procedure starting from the left most column of each path to obtain T := Φ(D):

1. Denote the bottom-most element of the jth column of θi as (sj, tj). Let

T(sj, tj) =

{
bj if j = 1,
T(sj, tj − 1) + bj if j > 1.

2. Fill the rest of the jth column of θi so that each entry differs by 1.

The proof that Φ is well defined can be found in the full version [11].

Example 2.4. Let D ∈ E(λ/µ) be the excited diagram shown in Figure 1c. We apply the
correspondence to obtain T = Φ(D). The first column of γ1(D) has three broken diagonals, so
T(5, 1) = 3. the second column of γ1(D) has no broken diagonals , so T(5, 2) = 3, then the
rest of the column of θ1 is filled with each entry differing by 1 to maintain column strictness. We
continue the algorithm to obtain the final tableau T of skew shape λ/µ.

For the Lascoux–Pragacz decomposition of [λ/µ] and the Kreiman paths (γ1, . . . , γk)
corresponding to an excited diagram D, we denote by colλ/µ(θi, n) and colλ/µ(γi, n) the
column on λ/µ where the nth column of θi and γi is, respectively.

Lemma 2.5. Given an excited diagram D in E(λ/µ) and an active cell u = (a, b) of D we have

Φ(βu(D)) = δ f (u)(Φ(D)),

where f (a, b) = (i; µ(a, b)), i is the index of the Kreiman path γi(D) modified by β(a, b), and
µ(a, b) is the column of the original cell in µ where (a, b) came from.

Proof. The excited move β(a,b) corresponds to a ladder move on γi(D) → γi(D′), for
some i and a broken diagonal shift from (a + 1, b + 1) to (a + 1, b). Let gi and ti be the
starting column of γi(D) and θi, respectively. Suppose (a + 1, b) is in the jth column of
the path γi(D). Then the excited move β(a,b) shifts a broken diagonal to the j-th column
of γi(D′), where j = b − gi + 1. The j-th column of γi(D) corresponds to the j-th column
of θi, which corresponds to column ti + j − 1 of shape λ/µ. By Lemma 2.1 we know that
gi − ti = ϵi. Thus we have that

colλ/µ(θi, j) = ti + j − 1 = (gi − ϵi) + (b − gi + 1)− 1 = b − ϵi.

We know that ϵi is also the number of times (a, b) has been excited, which is b − µ(a, b).
Therefore we have that colλ/µ(θi, j) = µ(a, b). This shows that Φ(βu(D)) has increments
of 1 on θi at column µ(a, b) compared to Φ(D)). This is equivalent to what the move
δ(i;µ(a,b)) does on Φ(D). Thus Φ(βu(D)) = δ(i;µ(a,b))(Φ(D)), as desired.
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Figure 2: (a) The E(55332/22), their corresponding γi(D) (in blue) and broken diag-
onals (in red). (b) The SSYTmin(55332/22) with the active columns colored in yellow
and red.

Proof sketch of Theorem 1.4. By Lemma 2.5, Φ intertwines the excited moves β and δ. One
can check that Φ is injective. Note that Φ([µ]) = T0. Given any excited diagram D in
E(λ/µ), there exists a sequence β1, . . . , βm of excited moves such that D = βm ◦ · · · ◦
β1([µ]). Iterating Lemma 2.5 gives that Φ(D) = δm ◦ · · · ◦ δ1(T0).

Thus Φ(D) is in SSYTmin(λ/µ) and so Φ(E(λ/µ)) ⊆ SSYTmin(λ/µ). It remains
to show that Φ(D) is surjective. Given T in SSYTmin(λ/µ), there exists a sequence of
δ1, . . . , δk of excited moves such that δk ◦ · · · ◦ δ1(T0) = T. Again, iterating Lemma 2.5 we
have that for D′ = βk ◦ · · · ◦ β1([µ]), one obtains Φ(D′) = T, as desired.

There is the following non-recursive description of the minimal SSYT. This new char-
acterization will be related to the Okounkov–Olshanski tableaux in the next section. We
omit the details of the proof.

Theorem 2.6. A SSYT T of shape λ/µ is in SSYTmin(λ/µ) if and only if
(i) For each (ir, jr) in θr, T(ir, jr) ≤ htθr(ir)

(ii) For any (ir, jr) and (ir + 1, jr) in θr, T(ir + 1, jr)− T(ir, jr) = 1.

In other words, the set SSYTmin(λ/µ) consists of SSYT of shape λ/µ where the values
along each path θr are bounded by the height htθr and the values along entries in the
same column of a strip θr differ by one.

3 Reformulation of (NHLF) and comparison with (OOF)

In this section we use the bijection Φ between minimal SSYT and excited diagrams of
shape λ/µ to reformulate the Naruse hook formula (NHLF) in terms of minimal SSYT.
We need the following description of the inverse of Φ.
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Figure 3: (a) Example of bijection Φ−1 between a minimal SSYT and excited diagrams
for the shape λ/µ = 55552/21. (b) Illustration of skew shapes λ/µ and their Lascoux–
Pragacz decomposition with λd ≥ µr + d − r where ED(λ/µ) = OOT(λ/µ).

Lemma 3.1 (Inverse of Φ). Let D ∈ E(λ/µ) and recall T = T − T0, where T0 is the minimum
skew SSYT and T = Φ(D). Then

D = {(i + α, j + α) | (i, j) ∈ [µ]},

where α is the number of strips θk such that T(θk(j)) > µ′
j − i.

Proof of Theorem 1.5. The result follows by combining the excited diagram formulation
(NHLF) of Naruse’s formula and the description of inverse of Φ from Lemma 3.1.

Example 3.2. For the shape λ/µ = 55332/22, from each of its minimal tableaux in Figure 2b
we find T:

0 0 0
0 0 0

0 0 0
0 0 0
0 0

, 0 0 0
0 0 0

0 0 0
0 1 0
0 1

, 0 0 0
0 0 0

0 0 0
0 1 0
1 1

, 0 0 0
0 0 0

0 0 0
0 2 0
0 2

, 0 0 0
0 0 0

0 0 0
0 2 0
1 2

, 0 0 0
0 0 0

0 0 0
0 2 0
2 2

.

Next, for each T and (i, j) in µ = [22], we find α. Putting everything together using (1.2) gives

f λ/µ =
14!

9 82 7 6 52 42 32 24

(
h(1, 1)h(1, 2)h(2, 1)h(2, 2) + h(1, 1)h(1, 2)h(2, 1)h(2+1, 2+1)

+ h(1, 1)h(1+1, 2+1)h(2, 1)h(2+1, 2+1) + h(1, 1)h(1, 2)h(2+1, 1+1)h(2+1, 2+1)+
h(1, 1)h(1+1, 2+1)h(2+1, 1+1)h(2+1, 2+1) + h(1+1, 1+1)h(1+1, 2+1)h(2+1, 2+1)

)
.

In the rest of this section we use the explicit non-recursive description of the skew
minimal tableaux in SSYTmin(λ/µ) of Theorem 2.6 to relate the number ED(λ/µ) of
terms of (NHLF) and the number OOT(λ/µ) of terms of (OOF).

Theorem 3.3. For a skew shape λ/µ we have that ED(λ/µ) ≤ OOT(λ/µ).



Minimal skew SSYT and the Hillman–Grassl correspondence 9

The proof follows immediately from the following lemma.

Lemma 3.4. For a skew shape λ/µ we have that SSYTmin(λ/µ) ⊆ SF (λ/µ).

Proof. Let T be a tableau in SSYTmin(λ/µ). By Condition (i) in Theorem 2.6, we have that
for (i, j) in θr, T(i, j) ≤ htθr(i). By definition of the height, we have that htθr(i) ≤ i − 1.
Thus T is a flagged tableau in SF (λ/µ).

Theorem 1.6 characterizes the skew shapes where the Naruse hook-length formula
and the Okounkov–Olshanski formula have the same number of terms.

Proof sketch of Theorem 1.6. The inequality ED(λ/µ) ≤ OOT(λ/µ) follows from Theo-
rem 3.3. By Lemma 3.4 we have that equality occurs if and only if all the flagged
tableaux in SF (λ/µ) are minimal. First, define the maximal tableau T ∈ SF (λ/µ)
as T(i, j) = i − 1 for (i, j) ∈ [λ/µ], and let (θ1, . . . , θk) be the Lascoux-Pragacz decompo-
sition of λ/µ.

By the height condition in the definition of minimal tableaux (Condition (i) in The-
orem 2.6), it follows that all border strips θk reach the top row. the border strips θk are
entirely horizontal in the first µ1 columns of λ/µ and we have d − r of them starting
in the first µ1 columns. Thus λd ≥ µ1. Also, since these border strips reach the top
row, they must all cross the diagonal starting at (r, µr) and thus this diagonal extends to
the last row of the shape, so λd ≥ µr + d − r, which proves the forward direction. See
Figure 3b.

For the other direction, if λd ≥ µr + d − r, then it is easy to see that all border strips
θi reach the top row and they are horizontal in the first µ1 columns. The tableaux in
SF (λ/µ) consisting of the columns past µ1 are of straight shape, and one can show
the entries in row i are i − 1. For the first µ1 columns, since all border strips are
horizontal, there are no further restrictions coming from the minimal tableaux. Thus
SSYTmin(λ/µ) = SF (λ/µ), as desired.

For shapes where ED(λ/µ) = OOT(λ/µ), this number is given by the hook-content
formula. We omit the proof.

Corollary 3.5. For a connected skew shape λ/µ satisfying λd ≥ µr + d − r where d = ℓ(λ)
and r = max{i | µ1 = µi}, we have that ED(λ/µ) = OOT(λ/µ) = sµ(1d−r).

4 The Hillman–Grassl correspondence and the map Φ

In this section, we sketch the proof of Theorem 1.9.
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4.1 Background on Hillman–Grassl

We denote by HG(·) the Hillman–Grassl bijection between reverse plane partitions in
RPP(λ) ranked by size and integer arrays of shape λ ranked by hook weight. That is, if
HG : π 7→ A then |π| = ∑u∈λ h(u) · Au. We follow the definition of HG(·) in [15, §7.22].
This bijection also implies (1.3) as a corollary.

Definition 4.1 (Hillman–Grassl correspondence). The correspondence is obtained via a se-
quence of pairs (π0, A0) := (π, 0), (π1, A1) . . . , (πk, Ak) := (0, HG(π)) where each πi is a
reverse plane partition and Ai is an array of nonnegative integers of shape λ obtained recursively
as follows:

(i) start at the SW most nonzero cell of πi,
(ii) traverse a NE path: from cell (a, b), if (πi)a,b = (πi)a−1,b then the path moves North,

otherwise the path moves East.
(iii) Terminate when this is no longer possible.

Let ui = (c, d) where d is the column where the path starts and c is the row where it ends. Note
that |πi| − |πi−1| = h(ui). We obtain the array Ai+1 from Ai by adding one to cell ui. We
continue until πk as only zero entries. We let Ak = HG(π).

We extend HG to SSYT(λ/µ) by viewing each skew SSYT T as a plane partition of
shape λ with zero entries in [µ].

For any excited diagram D ∈ E(λ/µ), denote by AD the 0-1 array of shape λ with
support on the broken diagonals Br(D) of D and let A∗(λ/µ) = {AD | D ∈ E(λ/µ)}.
Let A∗

D be the set of arrays A of nonnegative integers of shape λ with support contained
in [λ] \ D and positive entries Ai,j > 0 if (AD)i,j = 1.

Theorem 4.2 ([10, Thm. 7.7]). The (restricted) Hillman–Grassl map HG is a bijection

HG : SSYT(λ/µ) →
⋃

D∈E(λ/µ)

A∗
D.

This property combined with the correspondence between RPPs and SSYTs of straight
shape yields (1.4) as a corollary (see [10, Sec. 7.1]). The proof of this result is partly alge-
braic and the authors of [10] asked for a fully bijective proof. We make progress on this
question by (i) giving a combinatorial proof for border strips λ/µ, and (ii) characterizing
what is the image of SSYTmin(λ/µ). We sketch the latter in the next section and the
former is in [11].

4.2 Hillman–Grassl on minimal skew SSYT

In this section we give the necessary lemmas to prove Theorem 1.9. Fix a skew shape
λ/µ with Lascoux–Pragacz decomposition (θ1, . . . , θk).
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Let Aγi(D) be the a subarray of AD of shape λ \ ∪i−1
j=1γj(D) with support on the

broken diagonal of γi(D). We define the sum Aγi(D) + Aγi+1(D) as an array of shape
Aγi(D) with supports on the broken diagonals of γi(D) and γi+1(D). In other words, it
is the entry-wise sum of the arrays where alignment of Aγi(D) and Aγi+1(D) corresponds
to the original AD (see Figure 4a).

Similarly, let Tθi be a SSYT of shape λ \∪i−1
j=1θj(D) with tableau entries in θi. We define

the Tθi ∪ Tθi+1 to be the tableaux of shape Tθi with entries of both θi and θi+1.
The first lemma is a variation of Theorem 1.9 restricted to the individual γi and θi

(see Figure 4a).

Lemma 4.3. Let D ∈ E(λ/µ) and T = Φ(D) ∈ SSYTmin(λ/µ). Then for i = 1, . . . , k we
have that HG(Tθi) = Aγi(D).

0 0 0

0 1 1 1

0 2 2 2 2

1 3 3 3 3

3 4

θ1θ2θ3

T = Φ(D)

0

1

2

3 3 3 3

3 4

Tθ1

0

1

0 2 2 2

1

Tθ2

1

1

1

0

0

0

0 0 0 0

0 0

0

0

000

0 0 0 1

0

0

0 0 0 0

010

1 0 0

1

1

1

1

0

0

0 0 0 0

0 0

0

0

010

1 0 1

AD Aγ1(D) Aγ2(D)

0

10

1

Aγ3(D)

0

0

0 1 10

Tθ3

HG HG

0

(a)

1

1

0

1

0

0

0

0 0 0 0

1 0 0

0

0

000

0 0 0 1

0 0 0 0

00

0 0

HG(Tθ1) HG(Tθ2)

1

1

0

1

1

0 0 0 0

1 0 0

0

0

00

0 0

HG(Tθ1∪θ2)

0 1

1 0

0

0

1

1

(b)

Figure 4: (a) The Hillman–Grassl map of Tθ1 , Tθ2 , and Tθ3 separately (b) Additivity of
the Hillman–Grassl correspondence on Tθi .

In order to show Theorem 1.9, we need the following additivity results (see Sec-
tion 4.2). We define the sum of arrays HG(Tθi) and HG(Tθi+1) similarly to the sum of
Aγi(D) and Aγi+1(D). We omit the technical proof by induction.

Lemma 4.4. We have that ∑k
i=1 HG(Tθi) = HG(Tθ1∪···∪θk).

Proof sketch of Theorem 1.9. We have that Tθ1∪···∪θk = Φ(D). We obtain the desired iden-
tity HG(Φ(D)) = ∑k

i=1 Aγi(D) = AD by Lemma 4.3 and Lemma 4.4.
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