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Abstract. We give a combinatorial interpretation to Donaldson–Thomas invariants of
symmetric quivers by using the method of orbit harmonics. Along the way we connect
Young subgroup actions on break divisors of graphs, quotients of the polynomial ring
modulo power ideals of Postnikov–Ardila, and a construction of Efimov in the context
of Cohomological Hall algebras.
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1 Introduction

Donaldson–Thomas (DT) invariants of quivers with potential were introduced in the
seminal work of Kontsevich–Soibelman [10] as a mathematical definition of the string-
theoretic concept of BPS state count. We give a high-level introduction to DT invariants
with the goal of emphasizing that the algebraic formalism hides an interesting combina-
torial question, which is what we address.

In [10], (quantum) DT invariants were introduced as follows: Attached to a quiver
Q on k vertices is a cohomological Hall algebra H which carries a Zk

≥0-grading. If Q
is symmetric then H is Zk

≥0 × Z-graded. Kontsevich and Soibelman conjectured [10,
Conjecture 1] that in this case H is a free (super-)commutative algebra generated by a
Zk

≥0 × Z-graded vector space V of the form Vprim ⊗ Q[x]. Furthermore that, given a

fixed dimension vector γ ∈ Zk
≥0, only finitely many cγ,k := dim(Vprim

γ,k ) are nonzero.
Efimov [6] proved this conjecture via an ingenious but mysterious construction for

the spaces Vprim
γ . The quantum DT invariant ΩQ,γ(q) is the Laurent polynomial tracking

the cγ,k as k varies over Z. Naturally its coefficients lie in Z≥0. The numerical DT-
invariant DTQ,γ is the evaluation of ΩQ,γ(q) at q = 1. We note that these numbers are
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called by various names in (mathematical physics) literature, e.g. LMOV invariants and
BPS invariants.

At the level of Poincaré series, [10, Conjecture 1] implies a ‘sum=product’ flavored
equality common in combinatorics and number theory. For instance, the numerical DT-
invariants DTQ,(n) for a single vertex (m + 1)-loop quiver Q with dimension vector (n)
for n ∈ Z≥1 may be defined by considering an Euler product factorization:

∑
n≥0

1
mn + 1

(
(m + 1)n

n + 1

)
tn = ∏

n≥1
(1 − (−1)mntn)−(−1)mn nDTQ,(n) . (1.1)

On the left-hand side is the generating function for Fuss–Catalan numbers well known
to count (m + 1)-ary trees. It is not immediate from Equation (1.1) that the exponents
DTQ,(n) are nonnegative and integral.

In what follows we give a combinatorial interpretation for DTQ,γ for a symmetric
quiver Q with at least one loop at each vertex and dimension vector γ. Our route is
winding and hinges on realizing Efimov’s construction as an instance of a construction
of Dahmen–Micchelli from the 1980s.

Let X be a finite collection of nonzero vectors in Rn. Motivated by problems in ap-
proximation theory, Dahmen–Micchelli associated a pair of vector spaces (P(X),D(X))
to X. Subsequent work [2, 9, 15] cast more light on these spaces. When the afore-
mentioned collection of vectors is obtained from a finite connected graph G, work of
Postnikov–Shapiro [15] lends a fresh perspective involving divisors on graphs. This will
be our point of entry, with P(X) becoming the Postnikov–Shapiro slim subgraph space.

Throughout, graphs are finite connected graphs with multiple edges allowed but not
self loops. Given such a graph G, we let V (G) (respectively E (G)) denote its vertex set
(respectively multiset of edges). An assignment D : V (G) → Z is called a divisor. Baker–
Norine [3] studied this notion in depth and shed light on rich combinatorics underlying
it. Another place where divisors play a role is tropical geometry, thanks to work of
Mikhalkin–Zharkov [14] who introduced break divisors in this context; see [1] for more
on their combinatorics. We care particularly about this class of divisors.

The genus of G is g(G) = |V (G)| − |E (G)|+ 1. A divisor D is effective if D(v) ≥ 0 for
all v ∈ V (G). The degree of D is equal to ∑v∈V (G) D(v). We say that D is a break divisor if
its degree is g(G) and furthermore, for every connected subgraph H of G the degree of
D restricted to H weakly exceeds g(H). This description implies that the set Break(G)
of break divisors on G may be identified with integer lattice points of a polytope. It also
implies that the automorphism group Aut(G) of G acts by permutations on Break(G).

With this elementary setup, one may ask an elementary question: Does the Aut(G)
module Break(G) carry interesting information? We hope to convince the reader that the
answer is in the affirmative by giving an enumerative application to DT theory. Given
a symmetric quiver Q and dimension vector γ, we associate a connected graph GQ,γ
that we call the covering graph. Let Sγ denote the Young subgroup determined by γ.
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Unraveling Efimov’s construction using GQ,γ allows us to cast his results in the context
of the space P(GQ,γ). Here is our chief result.

Theorem 1. The dimensions of the graded pieces of P(GQ,γ)
Sγ are the coefficients of the quantum

DT invariant Ω̃γ(q). In particular, the numerical DT invariant DTQ,γ := Ω̃γ(1) equals the
number of Sγ-orbits on Break(G).

Theorem 1 gives, to the best of our knowledge, the first manifestly nonnegative com-
binatorial interpretation for DTQ,γ by describing it as an orbit count. Our interpretation
comes from invoking the theory of orbit harmonics (see Theorem 3). In fact, this theory
will give an interpretation of quantum DT invariant as the graded dimension of a space
of Sγ-invariants in a certain polynomial ring quotient (see Theorem 7).

The full version of this extended abstract with proofs appears on the arXiv [16].

2 The Postnikov–Shapiro slim subgraph space

For reasons of space, we discuss the objects in the title solely in the context they matter
to us, referring the reader to [5] and references therein for a detailed treatment. Some of
the jargon is matroid-theoretic, and for good reason.

Let G be a connected graph as before. We typically identify the vertex set with
[n] := {1, . . . , n} where n = |V (G)|. Given a nonempty proper subset S ⊂ V (G),
we denote by G[S] the graph induced on vertices in S. We define the edge cut ∂(S)
of G associated to S to be the set of edges with one endpoint in S and the other in
S̄ = V (G) \ S. We let d(S) := |∂(S)|. We denote the set of edge cuts by C (G). A minimal
non-empty edge cut is called a bond. We denote the set of bonds by B(G).

Suppose H ⊂ E (G) is such that the subgraph of G given by G′ := (V (G), E (G) \ H)
is connected. We say that H (or the subgraph in G determined by it) is slim. Such
subgraphs play a key role in two works that serve as our motivation, namely [4, 15]. We
attach certain polynomials to subgraphs of G and subsequently discuss the special role
played by slim subgraphs.

For each edge e ∈ E (G) joining vertices i and j where i < j, consider the linear form
pe := xi − xj. Given H ⊆ E (G), define the polynomial

pH = ∏
e∈H

pe. (2.1)

Consider the polynomial ring Q[pe | e ∈ E (G)] which must equal Q[xi − xj | i < j] as G
is connected. In this ring, the cocircuit ideal I(G) is defined as

I(G) := ⟨pH | H ∈ B(G)⟩. (2.2)

Note that we could have defined I(G) as the ideal generated by all pH where H ∈ C (G).
Indeed pH′ for H′ a cut is a multiple of pH for H some bond.
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Now define the (Postnikov–Shapiro) slim subgraph space (also known as the central P-
space) as the Q-vector space associated to G as follows:

P(G) := Q {pH | H slim subgraph of G} . (2.3)

Example 2. Say G is the graph on three vertices (identified with [3]) with two edges
between vertices 1 and 2, and two between 2 and 3. Then it is easily checked that

I(G) = ⟨(x1 − x2)
2, (x2 − x3)

2⟩,
P(G) = Q{1, x1 − x2, x2 − x3, (x1 − x2)(x2 − x3)}.

Observe that Q[x1 − x2, x1 − x3, x2 − x3] = I(G)⊕P(G), and that dim(P(G)) = 4. This
is no coincidence, as we explain next.

Let ST(G) denote the set of spanning trees of G, which are in bijection with the set of
bases in the collection of vectors {ei − ej | {i < j} ∈ E (G)}. The vectors e1 through en
denote the standard basis vectors for Rn. The following fundamental results then hold
(see [9, Theorem 3.8] or [5, Corollary 11.23]):

1. Q[xi − xj | i < j] = P(G)⊕ I(G),

2. dimP(G) = |ST(G)|.

Let Q[xn] := Q[x1, . . . , xn]. By throwing in the linear form x1 + · · · + xn into the mix,
the first of these may be written as Q[xn] = P(G)⊕ Î(G), where Î(G) is now the ideal
in Q[xn] with the same generators as I(G) as well as x1 + · · · + xn. Observe that the
central P-space P(G) remains unchanged in both direct sum decompositions. We will
henceforth abuse notation and treat Î(G) and I(G) as the same, with the ambient ring
serving to distinguish them.

An alternative perspective on P(G) than the one just offered will eventually allow
us to describe it by the method of orbit harmonics. P(G) is also the Macaulay-inverse to
a power ideal determined by G. We proceed to make this precise. Like before the set of
bonds B(G) will be important. Given nonempty S ⊆ [n], let xS := ∑i∈S xi. Recall that
for S nonempty and proper, we denote by d(S) the size of the edge cut ∂(S). Consider
the power ideal I(G) in Q[xn] defined by

I(G) = ⟨x1 + · · ·+ xn, xd(S)
S where ∅ ̸= S ⊊ [n] such that ∂(S) ∈ B(G)⟩

Several nice properties of such ideals (and corresponding quotients) defined in this man-
ner were brought forth by Ardila–Postnikov [2]. The quotient Q[xn]/I(G) is known as
the central zonotopal algebra attached to G.1

1We note that the ideals I(G) also appear in [15], but their set of generators has many redundant
elements, and Postnikov–Shapiro eliminate xn and work in a quotient of Q[xn−1].
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How does I(G) relate to P(G)? Let ∂i := ∂
∂xi

. We have ([9, Theorem 3.8 (5)], or [5,
Theorem 11.25]):

P(G) = { f ∈ Q[xn] | p(∂1, . . . , ∂n) f = 0 for all p ∈ I(G)}. (2.4)

Going back to Example 2, we see for instance that the differential operator ( ∂
∂x1

+ ∂
∂x2

)2

corresponding to (x1 + x2)
2 ∈ I(G) annihilates the four polynomials that span P(G):

three for degree reasons, and the fourth by a routine computation. Furthermore ∂
∂x1

+
∂

∂x2
+ ∂

∂x3
annihilates any polynomial in the differences xi − xj for 1 ≤ i < j ≤ 3.

3 Orbit harmonics and break divisors

Recall from the introduction that we denote the set of break divisors on G by Break(G).
To motivate the connection of these divisors with the results in the preceding section, we
note here the important equality |Break(G)| = |ST(G)| [1, Theorem 4.25].

Under our usual identification of V (G) with [n], elements of Break(G) become certain
lattice points in Rn. In fact, they are exactly the set of lattice points in a close cousin of
a polytope attached to G. Consider the graphical zonotope ZG ∈ Rn determined from G
by taking the Minkowski sum of line segments [ei, ej] for every edge {i, j} ∈ E (G). Let
∆n−1,n denotes the (n − 1)-th hypersimplex obtained as the convex hull of the Sn-orbit
of the point (1n−1, 0) ∈ Rn. This given we have [12, Proposition 2.1]:

Break(G) = (ZG − ∆n−1,n) ∩ Zn,

where ZG − ∆n−1,n denotes the trimmed graphical zonotope obtained as a Minkowski dif-
ference. As mentioned in the introduction, Aut(G) acts on Break(G) by permutations.
Thus we have a point set on which a linear group acts, and such a setup is ideal for the
method of orbit harmonics.

The method of orbit harmonics gives a technique for turning an ungraded permutation
representation of some linear group G acting on a finite point locus Y into a graded
G -module. Orbit harmonics was introduced by Kostant [13] and has seen subsequent
application (for example) by Garsia–Procesi [7] in the context of Springer fibers and by
Haglund–Rhoades–Shimozono [8] in the context of Macdonald-theoretic delta operators.

Consider a finite point set Y ⊂ Qn and let I(Y) ⊆ Q[xn] be the ideal of polynomials
which vanish on Y. The quotient of Q[xn] by the ideal I(Y) has vector space dimension
dimQ (Q[xn]/I(Y)) = |Y|. If the set Y is G -stable for some group G ⊂ GLn(Q), then we
have an isomorphism of ungraded G -modules

Q[xn]/I(Y) ∼=G Q[Y].



6 Reineke, Rhoades, Tewari

Orbit harmonics produces a quotient that will afford the structure of a graded G -module.
Given a nonzero polynomial f ∈ Q[xn], let τ( f ) be the top degree homogeneous com-
ponent of f . Define an ideal T(Y) ⊆ Q[xn] by

T(Y) = ⟨τ( f ) : f ∈ I(Y), f ̸= 0⟩.

The G -module isomorphism given above extends to a chain

Q[xn]/T(Y) ∼=G Q[xn]/I(Y) ∼=G Q[Y],

with the added feature that the left hand side is a graded G -module.

3.1 Applying orbit harmonics to Break(G)

We will apply orbit harmonics to the locus Y = Break(G) with G = Aut(G). Remarkably,
the ideal T(Y) which so arises will coincide with the power ideal I(G). For brevity we
refer to the ideals I(Break(G)) and T(Break(G)) by I(G) and T(G) respectively. We then
have the following result.

Theorem 3. We have the equality of ideals T(G) = I(G). Consequently we have the following
isomorphisms and equalities of ungraded Aut(G)-modules:

Q[Break(G)] ∼= Q[xn]/T(G) = Q[xn]/I(G) ∼= P(G).

where the middle equality and right isomorphism are in the category of graded Aut(G)-modules.

Sketch of proof. We begin by identifying a family of polynomials indexed by B(G) that
vanish on Break(G). Subsequently we consider the ideal T̃(G) generated by top de-
gree homogeneous summands of the polynomials in the aforementioned family. The
inclusion T̃(G) ⊂ T(G) on the one hand implies that

dim
(
Q[xn]/T̃(G)

)
≥ dim (Q[xn]/T(G)) .

On the other hand, it transpires that T̃(G) equals the power ideal I(G) and thus the left
hand side equals |ST(G)|. Additionally, the right hand side equals |Break(G)|. Given
that |ST(G)| = |Break(G)| we conclude that T̃(G) = T(G).

We demonstrate several key notions of this section in the following example.

Example 4. Let G be the complete bipartite graph K2,3. Let us identify the vertex set
with [5] with {1, 2} and {3, 4, 5} being the two partite sets. Elements of Break(G) are
certain tuples (d1, d2, d3, d4, d5) ∈ Z5

≥0 where ∑1≤i≤5 di = g(K2,3) = 2. Any subgraph
that is a tree gives a trivial constraint. From the S2 × S3 symmetry in G it follows that
given any break divisor we can permute d1 and d2 (respectively d3, d4, and d5) to get
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another break divisor. Thus, up to S2 × S3 symmetry, the only relevant inequality is
d1 + d2 + d3 + d4 ≥ 1. In summary we obtain the following four orbit representatives for
S2 × S3-action on Break(G): (2, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (0, 0, 1, 1, 0). We thus
obtain |Break(G)| = 12, which agrees with the number of spanning trees of G.

Consider the bond ∂(S) determined by choosing S = {1}. This determines the lin-
ear form x1. The smallest (respectively largest) value that x1 attains on Break(G) is 0
(respectively 2). Thus the polynomial x1(x1 − 1)(x1 − 2) vanishes on Break(G). This
polynomial has x3

1 as the top degree homogeneous summand, and this polynomial is
indeed in I(K2,3) as well as T(K2,3). We leave it to the reader to verify that

T(K2,3) = ⟨x1 + · · ·+ x5, x3
i , x2

j , (xi + xj)
3 where i ∈ {1, 2}, j ∈ {3, 4, 5}⟩.

The quotient Q[x5]/T(K2,3) has a monomial basis

{1, x1, x2, x3, x4, x2
1, x2

2, x1x2, x1x3, x2x3, x1x4, x2x4}.

It can be shown that the elements {1, x1 + x2, x2
1 + x2

2, x1x2} span the space of S2 × S3-
invariants. We thus get

Hilb((Q[x5]/T(K2,3))
S2×S3) = 1 + q + 2q2.

As we shall soon see, this last polynomial is essentially a quantum DT invariant; see
Example 8. This shall follow once we make a connection to Efimov’s work.

We conclude this section with one final remark. In general, it follows from [15] that
the quotient Q[xn]/I(G) has a monomial basis indexed by G-parking functions. Thus,
Theorem 3 provides an algebraic perspective on the fact that the set of q-reduced divisors
on G (essentially G-parking functions) has the same cardinality as Break(G). Indeed, this
same quotient arises when applying orbit harmonics to Break(G).

4 A construction of Efimov for quantum DT invariants

Let A = (aij)i,j∈[k] be a symmetric matrix with nonnegative integer entries. We assume
aii ≥ 1 throughout. The matrix A determines a quiver Q on k vertices labeled 1 through k,
with aij arrows from i to j for i, j ∈ [k]. Note that aii ≥ 1 ensures at least one loop at each
vertex. We further assume A is such that Q is connected. Let γ = (γ1, . . . , γk) ∈ Zk

≥0 be
a dimension vector. We begin by describing the essential construction in [6].

Consider variables xi,α for 1 ≤ i ≤ k and 1 ≤ α ≤ γi, and let σγ be their sum. Define
the polynomial ring

Aγ = Q[xi,α | 1 ≤ i ≤ k, 1 ≤ α ≤ γi]. (4.1)
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Furthermore, let

Aprim
γ = Q[xj,α2 − xi,α1 | 1 ≤ i, j ≤ k, 1 ≤ α1 ≤ γi, 1 ≤ α2 ≤ γj]. (4.2)

Then we have Aγ = Aprim
γ ⊗ Q[σγ]. Define Sγ := Sγ1 × · · · × Sγk .

Define Jγ to be the smallest Sγ-stable Aprim
γ -submodule of Aprim

γ such that the follow-
ing holds: for any decomposition of γ = δ + δ̄ where both δ and δ̄ are nonzero we have
that

fδ,δ̄ = ∏
i ̸=j∈[k]

δi

∏
α1=1

γj

∏
α2=δj+1

(xj,α2 − xi,α1)
aij ∏

i∈[k]

δi

∏
α1=1

γi

∏
α2=δi+1

(xi,α2 − xi,α1)
aii−1 ∈ Jγ. (4.3)

We shall later reinterpret fδ,δ̄ in terms of cuts (as the indexing hints) in a graph con-
structed from (A, γ).

Letting Hprim
γ := (Aprim

γ )Sγ , consider the decomposition [6, p. 1139]

Hprim
γ = Vprim

γ ⊕ JSγ
γ . (4.4)

The quantum DT invariants of the quiver Q with dimension vector γ (assuming trivial
potential and stability) arise as dimensions of the graded pieces of the graded vector
space Vprim

γ as explained in [6, Section 4]. We describe the Z-grading employed.
Given dimension vectors γ and δ, the Euler form χQ(γ, δ) is defined as

χQ(γ, δ) := ∑
1≤i≤k

γiδi − ∑
1≤i,j≤k

aijγiδj. (4.5)

Homogeneous polynomials f ∈ Hγ of degree d get assigned the grading 2d + χQ(γ, γ).
We let Vprim

γ,m be the space of elements in Vprim
γ with grading m. Following [6, Section

4], and as in the introduction, set cγ,m := dim(Vprim
γ,m ), and consider the polynomial in

Z≥0[q±
1
2 ]:

Ωγ(q) = ∑
m∈Z

cγ,mqm/2. (4.6)

These Ωγ(q) are the quantum DT-invariants of the quiver Q.
We get a necessary condition for when Vprim

γ,m is nonzero in [6, Theorem 1.2] (also
presented as [6, Theorem 3.10]). It involves a statistic Nγ(Q) [6, Section 1] whose precise
definition is unnecessary for the purposes of this abstract.

Theorem 5 ([6, Theorem 3.10]). If Vprim
γ,m ̸= 0, then γ ̸= 0, m ≡ χQ(γ, γ) mod 2, and

χQ(γ, γ) ≤ m < χQ(γ, γ) + 2Nγ(Q).
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In view of Theorem 5 we may rewrite Ωγ(q) as

Ωγ(q) = q
1
2 χQ(γ,γ) ∑

0≤m≤Nγ(Q)−1
cγ,2m+χQ(γ,γ)q

m. (4.7)

Denote the sum on the right by Ω̃γ(q). It lies in Z≥0[q] and its degree is bounded by
Nγ(Q)− 1. We abuse notation and refer to Ω̃γ(q) as the quantum DT invariant as well.2

4.1 The covering graph construction

The reader might find the preceding construction both ingenious and mysterious. It
transpires that the space Vprim

γ,m is the space of Sγ-invariants for a slim subgraph space
determined naturally from the quiver and the dimension vector. We proceed to describe
this construction.

Our point of departure from Efimov is to consider an analogue of (4.4) where we do
not take Sγ-invariants. We will construct an Sγ-stable space Wprim

γ so that

Aprim
γ = Wprim

γ ⊕ Jγ. (4.8)

Our next construction is crucial to this end.
Given Q as before, we construct an undirected graph GQ,γ: Consider a set of vertices

vi,α for 1 ≤ i ≤ k and 1 ≤ α ≤ γi. For i ∈ [k], the restriction of GQ,γ to the vertices
vi,1, . . . , vi,γi is the clique on γi vertices with aii − 1 edges between any two distinct ver-
tices. In particular, if aii = 1, then we have a collection of γi totally disconnected vertices.
For i ̸= j ∈ [k] we draw aij edges between any vertex vi,α1 and vj,α2 for 1 ≤ α1 ≤ γi and
1 ≤ α2 ≤ γj. This determines GQ,γ. Note that Sγ is a subgroup of Aut(GQ,γ).

We will assume throughout that GQ,γ is connected. For the remainder of this section,
we fix our symmetric quiver Q and dimension vector γ, and we will drop them from
notation. In particular, unless otherwise noted, let G := GQ,γ.

We reinterpret the important element fδ,δ̄ ∈ Jγ from Equation (4.3) as the polynomial
pH for some cut in G.

Lemma 6. Consider a decomposition γ = δ + δ̄ where δ, δ̄ ̸= γ. The following hold.

1. fδ,δ̄ = pH for some H ∈ C (G).

2. For ∅ ̸= S ⊊ V (G) such that ∂(S) ∈ B(G), we have that p∂(S) ∈ Jγ. More specifically,
there exists a decomposition γ = δ + δ̄ such that σ( fδ,δ̄) = p∂(S) for some σ ∈ Sγ.

The preceding lemma simply states that Efimov’s ideal Jγ is precisely the ideal gen-
erated by pH for H ∈ B(G), i.e. Jγ = I(G) where the latter is the cocircuit ideal from
Equation (2.2). We thus obtain the following theorem that ‘combinatorializes’ Efimov’s
construction and describes the DT invariants in terms of P(G).

2As the careful reader may have realized, we already do so in the introduction.
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Theorem 7. The following decomposition holds: Aprim
γ = P(G) ⊕ Jγ. Consequently we have

the equality

Hilb(P(G)Sγ) = Ω̃γ(q).

From the chain of isomorphisms in Theorem 3 we have DTQ,γ = Ω̃γ(1) = dim(Q[Break(G)]Sγ),
i.e. the number of Sγ-orbits on Break(G).

To demonstrate our main result, we revisit Example 4, this time starting with a quiver
and a dimension vector.

Example 8. Consider the quiver with two vertices, each with a self-loop, and two edges
between the vertices, one in each direction. Pick γ = (2, 3). The covering graph con-
struction then yields GQ,γ as the bipartite graph K2,3. We reindex our variables x1 = x11,
x2 = x12, x3 = x21, x4 = x22, and x5 = x32. We let S2 × S3 act on Q[x1, . . . , x5] by letting
S2 (respectively S3) act on x1, x2 (respectively x3, x4, x5).

P(G) is spanned by pH for slim subgraphs H which may be obtained as the Sγ-orbit
of elements in {1, x1 − x3, (x1 − x3)(x1 − x4), (x1 − x3)(x2 − x4)}. The space P(G)Sγ has
basis elements

{1, ∑
σ∈Sγ

σ · (x1 − x3), ∑
σ∈Sγ

σ · (x1 − x3)(x1 − x4), ∑
σ∈Sγ

σ · (x1 − x3)(x2 − x4))}.

Explicitly, other than the constant polynomial 1, up to normalization these equal

3(x1 + x2)− 2(x3 + x4 + x5)

3(x2
1 + x2

2)− 2(x1 + x2)(x3 + x4 + x5) + 2(x3x4 + x3x5 + x4x5)

3x1x2 − (x1 + x2)(x3 + x4 + x5) + (x3x4 + x3x5 + x4x5).

We thus infer that
Ω̃γ(q) = 1 + q + 2q2,

and therefore that Ω̃γ(1) = 4. Going back to Example 4, this agrees with the number
of S2 × S3-orbits on Break(K2,3). We also encountered the polynomial 1 + q + 2q2 in that
same example. Back then we obtained it as Hilb((Q[x5]/I(K2,3))

S2×S3).

5 Two applications

We close with two representation-theoretic results of independent interest, with motiva-
tion coming from [4]. Like before, we set G := GQ,γ.
The top degree of P(G) as an Sγ-module. The graph G (with V (G) = [n]) determines
a hyperplane arrangement AG in Cn by considering the union of hyperplanes xi − xj =
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0 for edges {i, j} ∈ E(G). The de Rham cohomology ring H∗(Cn \ AG) over C of the
complement Cn \ AG is the exterior algebra over the generators d log(β) = dβ

β where β

ranges over the linear forms that cut out AG. Consider the collection of vectors XG =
{ei − ej | {i < j} ∈ E (G)}, and endow it with a total order. The top degree graded piece
of H∗(Cn \ AG), denoted by H∗(Cn \ AG)top, has a basis indexed by so-called unbroken
bases. Such bases also form a basis for the top degree of P(G), denoted by P(G)top. This
equality in dimension of the two spaces is a shadow of an Sγ-isomorphism between two
vector spaces. The following result generalizes [4, Theorem 5].

Proposition 9. We have the following Sγ-isomorphism:

P(G)top ∼= H∗(Cn \ AG)top ⊗ εa11−1
γ1 ⊗ · · · ⊗ ε

akk−1
γk .

Here aii − 1 is one less than the number of loops at vertex i in Q, and εγi denotes the sign
representation of Sγi .

The (m + 1)-loop quiver. Let m be a positive integer. We revisit the case of the (m + 1)-
loop quiver Q with dimension vector γ = (n) where n ≥ 1. The covering graph G :=
GQ,γ is the complete multipartite graph Km

n , i.e. the graph on n vertices with m edges
between any two distinct vertices. Aut(G) is clearly the symmetric group Sn. Theorem 3
then gives us (isomorphic) spaces with dimension mn−1nn−2.

Berget–Rhoades [4] consider the Sn-modules P(Km
n ) and establish several interesting

results. While the graded Frobenius characteristics of these modules remains elusive, we
are able to shed light on related matters. In fact these modules encode a large class of
DT invariants; see [16, Section 5.4] for more.

Theorem 3 allows us to connect the space P(Km
n ) to Q[Break(Km

n )] and, among other
things, resolve [11, Conjecture 3.3] and recover one of the main results in [4].

Corollary 10. The following hold.

1. We have the isomorphism P(Km
n )

∼=Sn Q[Break(Km
n )] of ungraded representations. In

particular, the Frobenius characteristic Frob(P(Km
n )) is h-positive.

2. The graded multiplicity of the trivial representation of Sn in P(Km
n ) is given by the quan-

tum DT invariant Ω̃(n)(q). At q = 1 we obtain

dim(P(Km
n )

Sn) = DTQ,(n) =
1

mn2 ∑
d|n

(−1)mn+mn
d µ(d)

( (m+1)n
d − 1

n
d

)
.

3. On the level of graded Frobenius characteristics, we have

grFrob(P(Kn) ↓Sn
Sn−1

) = grFrob(PFn−1),

where PFn−1 is the parking function representation of Sn−1, with basis indexed by parking
functions and grading given by the sum of entries in a parking function.



12 Reineke, Rhoades, Tewari

References

[1] Y. An, M. Baker, G. Kuperberg, and F. Shokrieh. “Canonical representatives for divisor
classes on tropical curves and the matrix-tree theorem”. Forum Math. Sigma 2 (2014), e24,
25 pages. doi.

[2] F. Ardila and A. Postnikov. “Combinatorics and geometry of power ideals”. Trans. Amer.
Math. Soc. 362.8 (2010), pp. 4357–4384. doi.

[3] M. Baker and S. Norine. “Riemann-Roch and Abel-Jacobi theory on a finite graph”. Adv.
Math. 215.2 (2007), pp. 766–788. doi.

[4] A. Berget and B. Rhoades. “Extending the parking space”. J. Combin. Theory Ser. A 123
(2014), pp. 43–56. doi.

[5] C. De Concini and C. Procesi. Topics in hyperplane arrangements, polytopes and box-splines.
Universitext. Springer, New York, 2011, pp. xx+384.

[6] A. I. Efimov. “Cohomological Hall algebra of a symmetric quiver”. Compos. Math. 148.4
(2012), pp. 1133–1146. doi.

[7] A. M. Garsia and C. Procesi. “On certain graded Sn-modules and the q-Kostka polynomi-
als”. Adv. Math. 94.1 (1992), pp. 82–138. doi.

[8] J. Haglund, B. Rhoades, and M. Shimozono. “Ordered set partitions, generalized coinvari-
ant algebras, and the delta conjecture”. Adv. Math. 329 (2018), pp. 851–915. doi.

[9] O. Holtz and A. Ron. “Zonotopal algebra”. Adv. Math. 227.2 (2011), pp. 847–894. doi.

[10] M. Kontsevich and Y. Soibelman. “Cohomological Hall algebra, exponential Hodge struc-
tures and motivic Donaldson-Thomas invariants”. Commun. Number Theory Phys. 5.2 (2011),
pp. 231–352. doi.

[11] M. Konvalinka and V. Tewari. “Some natural extensions of the parking space”. J. Combin.
Theory Ser. A 180 (2021), Paper No. 105394, 19. doi.

[12] M. Konvalinka, M. Reineke, and V. Tewari. “Divisors on complete multigraphs and Donald-
son-Thomas invariants of loop quivers”. 2021. doi.

[13] B. Kostant. “Lie group representations on polynomial rings”. Bull. Amer. Math. Soc. 69.4
(1963), pp. 518–526.

[14] G. Mikhalkin and I. Zharkov. “Tropical curves, their Jacobians and theta functions”. Curves
and abelian varieties. Vol. 465. Contemp. Math. Amer. Math. Soc., Providence, RI, 2008,
pp. 203–230. doi.

[15] A. Postnikov and B. Shapiro. “Trees, parking functions, syzygies, and deformations of
monomial ideals”. Trans. Amer. Math. Soc. 356.8 (2004), pp. 3109–3142.

[16] M. Reineke, B. Rhoades, and V. Tewari. “Zonotopal algebras, orbit harmonics, and Donald-
son-Thomas invariants of symmetric quivers”. 2022. doi.

https://dx.doi.org/10.1017/fms.2014.25
https://dx.doi.org/10.1090/S0002-9947-10-05018-X
https://dx.doi.org/10.1016/j.aim.2007.04.012
https://dx.doi.org/10.1016/j.jcta.2013.11.004
https://dx.doi.org/10.1112/S0010437X12000152
https://dx.doi.org/10.1016/0001-8708(92)90034-I
https://dx.doi.org/10.1016/j.aim.2018.01.028
https://dx.doi.org/10.1016/j.aim.2011.02.012
https://dx.doi.org/10.4310/CNTP.2011.v5.n2.a1
https://dx.doi.org/10.1016/j.jcta.2020.105394
https://dx.doi.org/10.48550/ARXIV.2111.07071
https://dx.doi.org/10.1090/conm/465/09104
https://dx.doi.org/10.48550/ARXIV.2207.11861

	Introduction
	The Postnikov–Shapiro slim subgraph space
	Orbit harmonics and break divisors
	Applying orbit harmonics to Break(G)

	A construction of Efimov for quantum DT invariants
	The covering graph construction

	Two applications

