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Abstract. The Tamari lattice is a well-known quotient of the weak order on permuta-
tions, and can be realized as the increasing flip poset of a family of pipe dreams with
a well-chosen exit permutation. We show that for any permutation ω, the increasing
flip poset on acyclic pipe dreams with exit permutation ω is a lattice quotient of the in-
terval [id, ω] of the weak order. We then give similar quotients on acyclic pipe dreams
on a family of non-triangular shapes. We finally discuss conjectural generalizations of
these results to acyclic facets of subword complexes on any finite Coxeter group.

Résumé. Le treillis de Tamari est un quotient bien connu de l’ordre faible sur les
permutations, et il peut être réalisé comme l’ordre des flips croissants sur une famille
d’arrangements de tuyaux de permutation de sortie bien choisie. Nous montrons que
pour toute permutation ω, l’ordre des flips croissants sur les arrangements de tuyaux
acycliques de permutation de sortie ω est un quotient de treillis de l’intervalle [id, ω]

de l’ordre faible. Nous donnons ensuite des quotients similaires sur des arrangements
de tuyaux acycliques sur une famille de formes non triangulaires. Nous discutons
finalement des généralisations conjecturales de ces résultats aux facettes acycliques de
complexes de sous-mots sur des groupes de Coxeter finis quelconques.
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1 Introduction

A triangular pipe dream is a filling of a triangular shape with crosses and contacts so
that all pipes entering on the left side exit on the top side, as illustrated in Figure 1. We
will only consider reduced pipe dreams, where two pipes have at most one crossing. The
pipes are labeled from 1 to n on the left size from top to bottom. For a pipe dream P
with n pipes, its exit permutation is the order in which the pipes exit the shape at the top,
read from left to right. For a fixed permutation ω ∈ Sn, we denote by Π(ω) the set of
reduced pipe dreams with exit permutation ω.

A contact c on a pipe dream P is flippable if the two pipes passing through c have a
crossing x. The flip on c exchange the contact c with the crossing x to obtain a pipe dream
with the same exit permutation as P, as illustrated in Figure 1. The flip is increasing if c
is north-east of x and decreasing otherwise. The increasing flip graph is the graph on Π(ω)
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Figure 1: An increasing flip between two triangular pipe dreams with exit permuta-
tion 15432 and their contact graphs.

with an arc from P to P′ if we can obtain P′ by doing an increasing flip on P. The
increasing flip order is the reflexive and transitive closure of the increasing flip graph.

Several authors [14, 9, 13] have observed that the set Π(1 n (n − 1) . . . 3 2) is counted
by the Catalan number Cn−1. Moreover, the increasing flip graph on this set is iso-
morphic to the Hasse diagram of the Tamari lattice. Since there exists a simple lattice
isomorphism from binary trees with n − 1 nodes to those pipe dreams and a surjective
lattice morphism from the weak order on Sn−1 to binary trees, we can combine them
to obtain a lattice morphism from Sn−1 to Π(1 n (n − 1) . . . 3 2). The increasing flip
order in this particular case is therefore a quotient of the weak order on permutations.
In this paper, we discuss several extensions of this result obtained by changing the exit
permutation, the shapes of pipes dreams, and even the group on which they are defined.

In Section 2, we will first study the triangular pipe dreams with any fixed exit per-
mutation. We will prove in Theorem 2.8 that for any permutation ω, the increasing flip
graph on acyclic pipe dreams with exit permutation ω is a lattice quotient of the weak
order interval [id, ω]. We will give a lattice morphism from this interval to the acyclic
pipe dreams and several ways to compute the image of a permutation.

Then in Section 3, we will consider pipe dreams on non-triangular shapes and discuss
what hypothesis need to be modified to obtain a similar theorem, given in Theorem 3.3.
We will see that the quotient may sometimes be realized on a subset of acyclic pipe
dreams and may not use all of the increasing flip graph, but that it is linked to the
brick polyhedron, an object introduced on spherical subword complexes in [11] and
generalized to any subword complex in [5].

Finally, as pipe dreams can be interpreted as the facets of some subword complexes in
type A Coxeter groups, we will discuss in Section 4 how those results can be generalized
to subword complexes in any finite Coxeter group and give a conjecture that has been
extensively tested in this context in Conjecture 4.3.

The details and proofs omitted in this extended abstract will soon be available in
two articles in preparation [1, 2]. I am grateful to Nantel Bergeron, Cesar Ceballos and
Vincent Pilaud for allowing me to use the results of [1] here.
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2 Triangular pipe dreams

We defined triangular pipe dreams and their flips in the introduction. The contact graph
of a pipe dream P is the directed graph P# that has a vertex for each pipe of P and
contains the edges (a, b) if and only if a contact a b appears somewhere in P (see
two examples in Figure 1). We say that P is acyclic if and only if its contact graph is
acyclic, and in that case we denote by lin(P) the linear extensions of its contact graph P#.
For any permutation ω ∈ Sn we denote by Σ(ω) the set of acyclic pipe dreams with exit
permutation ω. Our first result deals with these sets of linear extensions of pipe dreams.

Theorem 2.1. The set {lin(P) | P ∈ Σ(ω)} is a partition of the weak order interval [id, ω].

This partition defines an equivalence relation ≡ω on [id, ω] with an equivalence
class lin(P) for each P ∈ Σ(ω).

For instance, consider the exit permutation ω = 1 n (n − 1) . . . 3 2. Then the inter-
val [id, ω], i.e the set of all permutations in Sn starting with 1, is isomorphic for the
weak order to Sn−1 via the map ϕ : σ ∈ Sn−1 7→ 1 (σ(1) + 1) . . . (σ(n − 1) + 1) ∈ [id, ω].
Moreover, the contact graph of a pipe dream of Π(ω) is a binary search tree on {2, . . . , n}
and with an additional node 1 pointing to the root. Hence, the relation ≡ω is the image
by ϕ of the sylvester congruence defined in [4], whose classes are linear extensions of
standard binary search trees. This congruence is also the transitive closure of the rewrit-
ing rule UijV ≡ UjiV if and only if U contains a letter k such that i < k < j, with U
and V (possibly empty) words on [n] and i < j integers, and the following theorem gives
a similar alternate definition of ≡ω for any permutation.

Theorem 2.2. The equivalence relation ≡ω is the transitive closure of the rewriting rule saying
that for any weak order cover UijV ⋖UjiV in [id, ω], then UijV ≡ω UjiV if and only if

|{k < i | ω−1(k) < ω−1(j)}| ⩽ |{k ∈ U | i < k < j and ω−1(j) < ω−1(k) < ω−1(i)}|

A congruence of a lattice (L,⩽,∧,∨) is an equivalence relation ≡ on L which respects
meets and joins: if x ≡ x′ and y ≡ y′, then x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′. In that case,
the lattice quotient L/ ≡ is the lattice on the classes of ≡ where for any two classes X
and Y, we have X ⩽ Y if and only if there exist x ∈ X and y ∈ Y such that x ⩽ y [12]. As
the sylvester congruence is a lattice congruence, and the Tamari lattice is the associated
lattice quotient of the weak order, it is natural to study the same properties on ≡ω for
any permutation ω.

Theorem 2.3. For any permutation ω, the equivalence relation ≡ω is a lattice congruence of the
weak order interval [id, ω].

Theorem 2.1 also allows us to define a map insω : [id, ω] 7→ Σ(ω) such that for
any π ∈ [id, ω], the permutation π is a linear extension of the contact graph of insω(π).
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Figure 2: The sweeping algorithm with ω = 15432 and π = 15243.

We note that insω(id) is the unique source of the increasing flip graph on Π(ω),
and insω(ω) is its unique sink. The fibers of the map insω are the equivalence classes of
the congruence ≡ω.

When w = 1 n (n − 1) . . . 3 2, the image insω(π) can be computed by iterated inser-
tions in a binary search tree as described in [4]. For general w, there are two known
algorithms to compute insω(π) for any π ⩽ ω: the sweeping algorithm, which fill the
cells of the triangular shape one by one, and the insertion algorithm, which adds the
pipes to the pipe dream one by one.

Algorithm 2.4. The sweeping algorithm on triangular pipe dreams, illustrated in Figure 2,
computes insω(π) by filling the cells of the triangular shape from south-west to north-east with
contacts and crosses as follows. We denote by i the pipe entering the current cell from the west
side and by j the one entering from the south side, and we fill the cell with a cross if and only if

• i < j and ω−1(i) > ω−1(j) and
• π−1(i) > π−1(j) or the current cell lies in column ω−1(j).

Algorithm 2.5. The insertion algorithm on triangular pipe dreams, illustrated in Figure 3,
computes insω(π) by drawing the pipes of the pipe dream one by one in order of π. At step t,
we draw pipe π(t) starting in row π(t), ending in column ω−1(π(t)) and covering with its
south-to-east elbows the west-to-north free elbows in the rectangle between those two points.

We know from Theorem 2.3 that the fibers of insω respect the lattice properties of the
weak order on [id, ω]. The following theorem shows that this application also send the
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Figure 3: The insertion algorithm with ω = 15432 and π = 15243.
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Figure 4: Two pipe dreams comparable in the flip order but not in the weak order.

weak order to the increasing flip graph on Σ(ω).

Theorem 2.6. For any two pipe dreams P, P′ ∈ Σ(ω), there is a path from P to P′ in the
increasing flip graph on acyclic pipe dreams if and only if there exist linear extensions π of P
and π′ of P′ such that π is below π′ in the weak order.

Remark 2.7. The image of the weak order by insω is not always the restriction of the
increasing flip order on Π(ω) to acyclic pipe dreams. An example is given in Figure 4:
a sequence of ascending flips from P1 to P2 is represented, therefore P1 < P2 in the flip
order. Moreover, we see that lin(P1) = {123546} and lin(P2) = {126453} so both P1
and P2 are acyclic. However, the only linear extension of P1 is not comparable to the
only linear extension of P2 in the weak order, and thus P1 ≮ P2 in the image of the weak
order; this is possible because the two middle pipe dreams are not acyclic, so the flips
are not part of the increasing flip graph on Σ(126543).

Combining Theorem 2.6 and Theorem 2.3 tells us that we can quotient [id, ω] by ≡ω

to obtain a lattice quotient whose elements are the fibers of insω, and we thus obtain the
following result.

Theorem 2.8. The increasing flip graph on Σ(ω) is isomorphic to the Hasse diagram of the
lattice quotient [id, ω]/ ≡ω. Moreover, the map insω is a lattice morphism from the weak order
on [id, ω] to the reflexive and transitive closure of the increasing flip graph on Σ(ω).
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3 Generalized pipe dreams

The previous section proved that increasing flip graphs on acyclic triangular pipe dreams
were lattice quotients of weak order intervals. A similar result was given in [8], where we
observe that cambrian lattices – a generalization of the Tamari lattice introduced in [12]
– can be realized with pipe dreams in some well-chosen shapes on the two dimensional
cartesian grid. Here we consider even more general shapes inspired by this work.

To describe the boundaries of our shapes on this grid, we will describe paths by their
origin in Z2 and a sequence of steps of length one given by their direction: the letters N,
S, E and W correspond respectively to northward, southward, eastward and westward
step. Moreover, for a path P , the notation |P|x denotes the numbers of steps in P with
direction x.

In general, we will define an n-shape F for n ⩾ 2 as a collection of cells on the
two-dimensional cartesian grid delimited by four paths as follows:

• a starting path SF from (0, 0) to (|SF|E,−|SF|S) with n steps S or E;
• a NW stair path from (0, 0) to (tF, tF) of the form (NE)tF for some tF ⩾ 0;
• a SE stair path from (|SF|E,−|SF|S) to (|SF|E + bF,−|SF|S + bF) of the form (EN)bF

for some bF ⩾ 0;
• an ending path EF from (tF, tF) to (|SF|E + bF,−|SF|S + bF) with n steps S or E.

An example is given in Figure 5: the 4-shape is drawn in black, with the starting and
ending path bolded and the stair paths drawn with finer lines.

A pipe dream on the n-shape F is then a filling of this shape with crosses and
contacts such that the figure contains n pipes starting on a step of the starting path
and ending on a step of the ending path. The pipes are numbered in the natural order
from north-west to south-east on the starting path, and the order in which they appear
on the ending path from north-west to south-east is the exit permutation of the pipe
dream. As in the triangular case, we only consider reduced pipe dreams, i.e those where
any two pipes cross at most once. For an n-shape F and a permutation ω ∈ Sn, we
denote by ΠF(ω) the set of reduced pipe dreams on F with exit permutation ω.

We note that the triangular shape used to create triangular pipe dreams is an n-shape:
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Figure 5: An ascending flip between two reduced pipe dreams on a 4-shape with exit
permutation 3241 and their contact graphs.
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the starting path only has S steps, the ending path only has E steps, the NW stair path
has length 0 and the SE stair path has length 2n. Cambrian shapes in [12] are another
particular case of these shapes, where the starting and ending paths are opposite.

Flips, increasing and decreasing flips, the increasing flip order and the contact graph
of a pipe dream are defined the same way as in the triangular case, as illustrated in
Figure 5. We denote by ΣF(ω) the set of acyclic reduced pipe dreams on the n-shape F
for any permutation ω ∈ Sn.

Until now, the generalization of triangular pipe dreams to n-shapes seems to be very
simple, but some limitations appear very quickly. The first is that n-shapes can be "too
small", in the sense that one can find an n-shape F and a permutation ω ∈ Sn such
that Π(ω) is empty because there is not enough space in F for the pipes of a pipe dream
to cross each other in a way to exit in order ω. In general, we will say that a permutation
ω ∈ Sn is sortable on an n-shape F if Π(ω) contains at least one pipe dream. In that case,
it turns out that Σ(ω) is also nonempty. Indeed, one can always find a reduced acyclic
pipe dream from any pipe dream: first by removing pairs of crossings of the same two
pipes, and then by doing descending flips on the result until no such flip is possible; the
resulting pipe dream has idn ∈ Sn as a linear extension.

Moreover, even when considering a permutation sortable on a shape, the linear exten-
sions of acyclic pipe dreams behave significantly less nicely than in the triangular case.
The statement given by Theorem 2.1 does not translate as is to general pipe dreams:
some linear extensions lie outside of the weak order interval below the exit permutation.
The closest true statement is the following.

Theorem 3.1. Let F be an n-shape and ω ∈ Sn be a permutation sortable on F, we denote
by linF(ω) the set of all linear extensions of pipe dreams in ΣF(ω). Then:

• the set {lin(P) | P ∈ ΣF(ω)} is a partition of linF(ω);
• the set linF(ω) is a lower ideal of the weak order on Sn that contains the interval [id, ω].

While this theorem still allows for the definition of an equivalence relation and a map
similar to ≡ω and insω in the triangular case, their relationship with the lattice properties
of the weak order are limited by two aspects: one is that the maximal possible domain
of this function, which is linF(ω), is not always an interval and as such is not always a
lattice, and the second one is that if we only define our function on the interval [id, ω],
some acyclic pipe dreams may not have any preimage, as is the case in the example in
Figure 6: the pipe dream has only one linear extension 15234 and it is not below its exit
permutation 31524 in the weak order. We thus have to make a choice between lattice
properties of the map and surjectivity on acyclic facets.

Since our goal is to study lattice quotients of weak order intervals in pipe dreams,
we chose to limit ourselves to the interval [id, ω]. We thus define strongly acyclic pipe
dreams as pipe dreams with at least one linear extension below their exit permutation
in the weak order. The example in Figure 6 is an acyclic pipe dream that is not strongly
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acyclic. We denote by Σ′
F(ω) the set of strongly acyclic pipe dreams on the n-shape F

with exit permutation ω. We note that when F is a triangular shape like in the previous
section, since linF(ω) is [id, ω] for any permutation ω ∈ Sn, any acyclic pipe dream is
also strongly acyclic and Σ′

F(ω) = ΣF(ω).
We can now define the equivalence relation ≡F,ω on [id, ω] for any n-shape F and

any permutation ω ∈ Sn as the one defined on [id, ω] whose equivalence classes are the
sets of {lin(P) ∩ [id, ω] | P ∈ Σ′(ω)}. However, while the Cambrian congruences that
define Cambrian lattices as weak order quotients can be defined by rules similar as the
one in Theorem 2.2 (see section 6 of [12]), there is no known characterization of ≡F,ω
outside of triangular shapes, even on Cambrian shapes. We can nevertheless still study
the properties of ≡F,ω to obtain the following theorem.

Theorem 3.2. For any n-shape F and any permutation ω ∈ Sn sortable on F, the relation ≡F,ω
is a lattice congruence of the weak order interval [id, ω].

Therefore we can quotient [id, ω] by ≡F,ω to obtain a lattice quotient whose elements
are the fibers of insF,ω.

We can also define the map insF,ω : [id, ω] 7→ Σ′(ω) which associate to any permu-
tation in [id, ω] the pipe dream on F with exit permutation ω that has this permutation
as a linear extension of its contact graph. As illustrated in Figures 8 and 9, the sweeping
algorithm and the insertion algorithm can be adapted to work on n-shapes.

The application insF,ω still shows a link between the weak order and increasing flips
in Σ′

F(ω) in the sense that for any two permutations π, π′ in [id, ω], if π ⩽ π′ then there
is a path from insF,ω(π) to insF,ω(π

′) in the increasing flip graph. However, the converse
is not true and Theorem 2.6 does not hold for any n-shape. This is illustrated on Figure 7,
where the only linear extension 132 of the left pipe dream is not comparable to the only
linear extension 231 of the right pipe dream, while the two pipe dreams are connected by
the flip on the yellow cells. Therefore, the image of the weak order by insF,ω in general
is a suborder of the increasing flip order that cannot be determined by simply looking
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Figure 8: The sweeping algorithm on a 5-shape with ω = 23145 and π = 21345.

at the increasing flip graph of ΠF(ω); we call this order the acyclic flip order on Σ′(ω).
Combined with Theorem 3.2, we get the following result.

Theorem 3.3. The acyclic flip order on Σ′
F(ω) is isomorphic to the lattice quotient [id, ω]/ ≡F,ω.

Moreover, the map insF,ω is a lattice morphism from the weak order on [id, ω] to the acyclic flip
order on Σ′

F(ω).

While this acyclic flip order seems very artificial and ad-hoc, we can actually find its
covers in an object introduced first in [10] and extended to any subword complex in [5]:
the brick polyhedron of a subword complex. This object was behind the first introduction
of acyclic pipe dreams: the brick polytope is defined on some subword complexes as the
convex hull of the brick vectors associated with facets, and acyclic facets are the one
associated to vertices of this polytope. The brick polyhedron is a generalization to non-
spherical subword complexes. In both case, a flip between two strongly acyclic pipe
dreams is associated to a cover of the acyclic flip order if and only if the brick vectors of
those pipe dreams are linked by an edge of the brick polyhedron.

We can thus say that the quotient of the weak order interval obtained with ≡F,ω is
isomorphic to the restriction of an orientation of the skeleton of the brick polyhedron
to strongly acyclic facets. However, the removal of acyclic facets that are not strongly
acyclic makes this result weaker, leading to us trying to find some conditions under
which all acyclic facets are also strongly acyclic, like in the triangular case. This lead to
the following theorem.

Theorem 3.4. Let F be an n-shape such that the maximal permutation of size n is sortable on F,
then for any permutation ω ∈ Sn we have linF(ω) = [id, ω] and all acyclic pipe dreams on F
are strongly acyclic.

Therefore, if the n-shape is big enough, we can remove the distinction between acyclic
and strongly acyclic pipe dreams and consider the full brick polyhedron. This condition
on F is necessary to obtain that for any ω ∈ Sn, the linear extensions of pipe dreams
in ΣF(ω) are exactly [id, ω].
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Figure 9: The insertion algorithm on a 5-shape with ω = 23145 and π = 21345.

4 Extension to Coxeter groups

Let (W, S) be a finite Coxeter system and let (Φ, ∆) be a root system for (W, S). In the
following section, for any simple reflection s ∈ S we will denote by αs the simple root
associated to s. For any w ∈ W, we define the inversion set of w as inv(w) = w(Φ−)∩Φ+,
and the noninversion set of w as ninv(w) = Φ+ \ inv(w). The right weak order on W is
the order defined by inclusion on the inversion sets and it is a lattice.

Let Q be any word on the alphabet S and denote by m its length. For w ∈ W, we
denote by SC(Q, w) the subword complex defined by w on Q, i.e the simplicial complex
with ground set [m] and whose faces are the sets of indices of Q whose complement
contains a reduced expression of w. This object was introduced in [7] and developed in
[6] to study combinatorial properties of Schubert polynomials. The facets of SC(Q, w)
are the complements of subwords of Q that are reduced expressions of w. Two distinct
facets I and J of the same subword complex are linked by a flip if and only if there
exist i ∈ I and j ∈ J such that I = J \ {j} ∪ {i}, and this flip is increasing from I to J
if j < i and decreasing otherwise. The increasing flip graph of SC(Q, w) has the facets as
vertices and an edge from I to J if and only if there is an increasing flip from I to J, and
the transitive closure of this graph defines the increasing flip order on facets of SC(Q, w).

Let Q be a word on S and w be an element of W with SC(Q, w) nonempty. The root
function r(I, ·) : [m] 7→ Φ on a facet I of this subword complex, introduced in [3], is
defined by

r(I, k) =

 ∏
i∈{1,...,k−1}\I

Qi

 (αQk)

i.e it is the application of the prefix of w written by facet I up to index k − 1 on Q to
the root associated with the kth letter of Q. We note that for any facet I of SC(Q, w), the
values of the root function of the indices not in I are the inversions of w, each appearing
exactly once. Moreover, for i ∈ I, there exists a flip from I to a facet J with i /∈ J if
and only if r(I, i) ∈ ± inv(w), and this flip is increasing if r(I, i) ∈ Φ+ and decreasing
otherwise.

The root configuration of a facet I, denoted by R(I), is the set {r(I, k) | k ∈ I} of
the values of the root function on the other indices of Q. An element π of W is a
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linear extension of I if R(I) ⊆ π(Φ+). A facet is acyclic if the cone generated by its
root configuration is pointed, or, equivalently, if it has at least one linear extension, and
strongly acyclic if it has a linear extension in [e, w]. We note that the contact graph of pipe
dreams defined in parts 2 and 3 give a representation of the root configuration of the
facet of the associated subword complex, and therefore the following theorem is a direct
generalization of Theorem 2.1 and Theorem 3.1.

Theorem 4.1. Let Q be a word on S and w ∈ W be such that SC(Q, w) is nonempty. Let
linQ(w) be the set of linear extensions of facets of SC(Q, w). Then:

• the set {lin(I) | I ∈ SC(Q, w)} is a partition of linQ(w);
• the set linQ(w) is a lower ideal of the right weak order on W and contains [e, w].

As in Section 2 and Section 3, we can therefore define an equivalence relation ≡Q,w
whose equivalence classes are the lin(I) and a map insQ,w : [e, w] 7→ SC(Q, w) such
that π ∈ lin(insQ,w(π)) for any π ∈ [e, w]. Moreover, we can prove that if π < π′ are
two elements of [e, w], then insQ,w(π) ⩽ insQ,w(π

′) in the increasing flip order. However,
the restrictions on the properties of insF,ω defined in Section 3 are also true for insQ,ω:
it is not always surjective on the acyclic facets of SC(Q, w) and the image of the weak
order is included in the increasing flip order but can be strictly weaker. We can however
still prove that the flips that are covers of the image of the weak order are linked to the
edges of the brick polyhedron defined on SC(Q, w) in [5], and give a generalization of
the sweeping algorithm in type A that computes insQ,w(π) when it exists.

Algorithm 4.2. The sweeping algorithm on subword complexes computes insQ,w by consider-
ing the indices of Q from first to last and adding t or not to the facet according to the following
rules:

1. if r(insQ,w(π), t) ∈ w(Φ+) then t is added;
2. else if r(insQ,w(π), t) ∈ π(Φ−) then t is not added;
3. else t if and only if the result can be completed into a facet of SC(Q, w).

We have now defined the objects we need to conjecture a generalization to Theo-
rem 3.2 and Theorem 3.3. However, even in type A, the quotient of [e, w] by ≡Q,w is
not always a lattice quotient, as illustrated in Figure 9 of [11]. We thus need to restrict
the conjecture to a specific category of words. The generalization of n-shapes to general
Coxeter groups are alternating words, i.e words such that for any s ∈ S, if Qi = Qj = s
and i < j, then for any t ∈ S such that st ̸= ts, the letter t appears in Q between indices i
and j. In type A, the alternating words are equivalent to the n-shapes. This leads us to
the following conjecture, tested extensively on various finite Coxeter groups.

Conjecture 4.3. Let Q be an alternating word on S and w ∈ W be such that SC(Q, w)
is nonempty, then the relation ≡Q,w is a lattice congruence of the right weak order inter-
val [e, w]. The quotient of [e, w] is isomorphic to the strongly acyclic part of the brick polyhedron
of SC(Q, w) oriented by ascending flips, and insQ,w is a lattice morphism from [e, w] to this.
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Lastly, a generalization of Theorem 3.4 was proven in [5], where an algorithm very
similar to Algorithm 4.2 was also defined.

Theorem 4.4 ([5]). Let Q be a word on S and w be any element of W. If Q contains a reduced
word of w0 the longest element of W, then for any facet of SC(Q, w), the noninversions of w are
all in the cone generated by the root configuration of the facet, and thus any linear extension of
the facet is in [e, w].
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