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Abstract. We provide a combinatorial formula for the expansion of immaculate non-
commutative symmetric functions into complete homogeneous noncommutative sym-
metric functions. To do this, we introduce generalizations of Ferrers diagrams which
we call GBPR diagrams. We define tunnel hooks, which play a role similar to that of
the special rim hooks appearing in the Eğecioğlu-Remmel formula for the symmetric
inverse Kostka matrix. We extend this interpretation to skew shapes and fully gener-
alize to define immaculate functions indexed by integer sequences skewed by integer
sequences. Finally, as an application of our combinatorial formula, we extend Camp-
bell’s results on ribbon decompositions of immaculate functions to a larger class of
shapes.
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1 Background and Introduction

The ring Sym of symmetric functions on a set of commuting variables consists of all poly-
nomials invariant under the action of the symmetric group. Symmetric functions play
an important role in representation theory, combinatorics, and other areas of mathemat-
ics and the physical and natural sciences. The Schur function basis for Sym, which can
be defined combinatorially as the generating function for semi-standard Young tableaux
or algebraically through Bernstein creation operators, corresponds to irreducible repre-
sentations of the symmetric group. Schur function multiplication corresponds to the
cohomology of the Grassmannian [6, 10, 11].

The inverse Kostka matrix is the transition matrix from the Schur basis {sλ}λ of Sym
to the complete homogeneous basis {hλ}λ. The Jacobi-Trudi Formula [10] is a determinantal
formula sλ/ν = det(hλi−i−(νj−j)) for decomposing Schur functions sλ/ν into complete
homogeneous symmetric functions hλ. Eğecioğlu and Remmel’s combinatorical inter-
pretation of the inverse Kostka matrix [5] provides a method for writing Schur functions
in terms of complete homogeneous symmetric functions using decompositions of the
indexing shapes into special rim hooks.

The Hopf algebra NSym of noncommutative symmetric functions can be thought
of as the free associative algebra K⟨H1, H2, . . .⟩ generated by algebraically independent,
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noncommuting complete homogeneous symmetric functions Hi over a fixed commuta-
tive field K of characteristic zero. Set Ha := 0 if a is a negative integer and H0 := 1. The
function H(α1,α2,...,αℓ) = Hα1 Hα2 · · · Hαℓ maps to the complete homogeneous symmetric
function hα under the “forgetful map” from NSym to Sym.

The creation operator construction of the Schur functions can be extended to NSym
to produce a new basis for NSym called the immaculate basis [2], corresponding to in-
decomposable modules of the 0-Hecke algebra [3]. We use the equivalent Jacobi-Trudi
style formula [2] to define the immaculate basis and we also extend this construction to
introduce the skew immaculate functions.

Definition 1.1. Let µ, ν ∈ Zk be sequences of integers. Define (Mµ/ν)i,j = H(µi−i)−(νj−j).
Then Sµ/ν = det(Mµ/ν), where the noncommutative determinant in NSym is obtained by
performing the Laplace expansion row by row, starting from the top row.

Example 1.2. With µ = (4, 5, 2) and ν = (3, 1, 1), then

Sµ/ν =det(Mµ/ν) = det

 H1 H4 H5
H1 H4 H5

H−3 H0 H1


=H1H4H1 − H1H5H0 − H4H1H1 + H4H5H−3 + H5H1H0 − H5H4H−3

=H1,4,1 − H1,5 − H4,1,1 + H5,1

since H0 = 1 and H−1 = 0.

In this extended abstract, we provide a combinatorial formula for the expansion of
the immaculate basis into the complete homogeneous basis for NSym using ribbon-like
objects we call tunnel hooks, generalizing the combinatorial inverse Kostka formula to
NSym. A complete discussion of these results including detailed proofs and additional
examples can be found in [1].

Theorem 1.3. The decomposition of the skew immaculate noncommutative symmetric functions
Sµ/ν (with µ ∈ Zk and ν a partition with at most k parts, possibly the empty partition) into the
complete homogeneous noncommutative symmetric functions is given by the following formula.

Sµ/ν = ∑
γ∈THCµ/ν

k

∏
r=1

ϵ(h(r, τr)) H∆(h(r,τr)), (1.1)

where THCµ/ν denotes the tunnel hook coverings of a diagram of shape µ/ν, and a sign
ϵ(h(r, τr)) and integer value ∆(h(r, τr)) are assigned to each tunnel hook h(r, τr) in each THC
γ.

Note that the product ∏k
r=1 ϵ(h(r, τr)) H∆(h(r,τr)) in Eq. (1.1) is taken in order from r = 1

to k since the functions H∆(h(r,τr)) do not commute.
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Loehr and Niese recently published a combinatorial interpretation of the immaculate
inverse Kostka matrix [9]. Their approach uses transitive tournaments and recursively
defined sums, which is quite different from our diagrammatic approach. Loehr and
Niese also provide a diagrammatic method for computing the decomposition of an im-
maculate function into the complete homogeneous basis when the indexing shape is a
partition. Our diagrammatic approach works for all indexing shapes, including all se-
quences of integers. Our decomposition can be determined directly by looking at the
diagram and recording the values associated to the tunnel hooks.

2 GBPR diagrams and tunnel cells

Let µ = (µ1, . . . , µk) be a sequence and ν = (ν1, . . . , νk) be a partition. The Grey-Blue-
Purple-Red (GBPR) diagram Dµ/ν for the skew shape µ/ν is obtained as follows.

1. Place νi grey cells in row i of the diagram (for 1 ≤ i ≤ k), working from bottom to
top (to stay consistent with French notation).

2. For each 1 ≤ i ≤ k, divide into cases to place red and blue cells into row i as
follows.

(a) If µi > 0 and νi ≤ µi, place µi − νi blue cells in row i immediately to the right
of the grey cells.

(b) If µi > 0 and µi < νi, place νi − µi red cells in row i immediately to the right
of the grey cells.

(c) If µi ≤ 0, place |µi|+ νi red cells in row i immediately to the right of the grey
cells.

3. Any cell in the first quadrant not colored grey, red, or blue is purple, but we do not
typically color these in illustrations since there are infinitely many purple cells.

See Example 2.8 for an example of a GBPR diagram. Although the GBPR diagram
does not necessarily contain exactly µi cells in row i, the value of µi can be determined
from the number of grey, blue, and red cells. Let ai be the number of grey cells, bi be
the number of blue cells, and ci be the number of red cells in row i of a GBPR diagram.
Then

ai + bi − ci = µi.

Definition 2.1. Cells (p, q) and (r, s) are adjacent if and only if |p − r| + |q − s| = 1. A
collection C of cells is connected if for any cells c, d ∈ C, there is a sequence c = τ1, τ2, . . . , τj =
d where τi ∈ C and τi and τi+1 are adjacent for 1 ≤ i ≤ j − 1. Cells (p, q) and (r, s) are
diagonally adjoining if both r = p + 1 and s = q + 1 or both p = r + 1 and q = s + 1.
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At times, it will be convenient to construct diagrams for shapes obtained via prefix
removal. Note that any diagram can be considered as a partial diagram by setting r = 0.

Definition 2.2. Let r ∈ Z≥0, µ ∈ Zk, and ν ∈ Zk
≥0 such that νr+1 ≥ νr+2 ≥ . . . ≥ νk. The

partial diagram D(r)
µ/ν is obtained by constructing the GBPR diagram D(µr+1,...,µk)/(νr+1,...,νk)

and shifting the resulting diagram up by r rows, so that the first nonempty row is in row r + 1.

This construction allows us to compute the GBPR diagram for row r + 1 through row
k even when the first r parts of ν are not necessarily weakly decreasing.

Example 2.3. Let µ = (−3, 1,−1, 0, 3,−2) and ν = (2, 4, 1, 0, 0). Then D(2)
µ/ν is given by

6, 1 6, 2
5, 1 5, 2 5, 3
4, 1
3, 1 3, 2 3, 3

We now define boundary cells, which intuitively are the cells which lie on the boundary
of ν. Boundary cells will be used to construct hooks that will play a role similar to that of
rim hooks in the combinatorial interpretation of the symmetric inverse Kostka matrix [5].

Definition 2.4. Let µ ∈ Zk and let r be a positive integer such that 1 ≤ r ≤ k. Let ν ∈ Zk
≥0

such that (νr, νr+1, . . . , νk) is a partition and r ≤ p ≤ k. A cell in location (p, q) is a boundary
cell of D(r−1)

µ/ν iff
νp + 1 ≤ q ≤ νp−1 + 1,

for p > r and
νr + 1 ≤ q ≤ max{νr + 1, ar + br + cr}

if p = r. A tunnel cell (p, q) of D(r−1)
µ/ν is a boundary cell such that

q = νp + 1.

The inequality νr + 1 ≤ q ≤ max{νr + 1, ar + br + cr} for row r forces the cell (r, νr + 1),
as well as all red or blue cells in row r, to be boundary cells. Also note that a cell (p, q)
with p < r cannot be a boundary cell of D(r)

µ/ν. Let B(r)
µ/ν and T (r)

µ/ν respectively denote the

collections of boundary cells and tunnel cells of D(r)
µ/ν. Set N (r)

µ/ν = B(r)
µ/ν − T (r)

µ/ν.

Definition 2.5. Let τr = (p, q) ∈ T (r−1)
µ/ν be a tunnel cell in D(r−1)

µ/ν . The tunnel hook deter-
mined by τr is the collection h(r, τr) consisting of all boundary cells in rows r through p. The
cell τr (the farthest northwest cell of h(r, τr)) is called the terminal cell of h(r, τr). The sign of
the tunnel hook h(r, τr), denoted by ϵ(h(r, τr)), equals (−1)p−r. If cell ĉ ∈ h(r, τ) then we say
that h(r, τ) covers ĉ.
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There are many similar objects in the literature such as skew hooks, ribbons, and
border strips [10], and the rim hooks [5] appearing in the combinatorial interpretation of
the inverse Kostka matrix in Sym. To generalize these combinatorial objects to the NSym
setting, tunnel hooks need to "tunnel" into the diagram instead of remaining on the rim.

With h(r, τr) a tunnel hook in the partial diagram D(r)
µ/ν terminating at cell τ = (p, q),

set
∆(h(r, τr)) = br − cr + (νr + 1 − q) + (p − r). (2.1)

Note that in Equation (2.1), since ν is a partition (whose parts might be 0), the cell
(p, q) ∈ T (r)

µ/ν will be weakly west of (r, νr + 1).
The proof of the following lemma is immediate since there is only one tunnel cell in

each row and moving up a row strictly increases the value of ∆(h(r, τr)).

Lemma 2.6. Given a partial diagram D(r)
µ/ν with µ a sequence and ν a partition, for any fixed

j ∈ Z, there is at most one tunnel cell τ such that j = ∆(h(r, τr)).

The following iterative procedure provides a method for constructing a tunnel hook
covering (THC) of the diagram Dµ/ν.

Procedure 2.7. Consider µ = (µ1, µ2, . . . , µk) ∈ Zk and a partition ν = (ν1, ν2, . . . , νk).

1. Construct the partial GBPR diagram D(0)
µ/ν of shape µ/ν. Set ν(0) = ν.

2. Repeat the following steps, once for each value of r from 1 to k.

(a) Choose a tunnel hook h(r, τr) in D(r−1)
µ/ν(r−1) and set αr := ∆(h(r, τr)).

(b) For each 1 ≤ i ≤ k, let η
(r)
i be the number of cells in row i of h(r, τr) and let ν(r) be

the partition defined by ν
(r)
i = ν

(r−1)
i + η

(r)
i for 1 ≤ i ≤ k.

(c) Construct the partial GBPR diagram D(r)
µ/ν(r)

.

3. Set α = (α1, . . . , αk). This will become a subscript appearing in the H-expansion of Sµ.

It is not hard to show that if ν(r) is the sequence of nonnegative integers produced
during Step 2b of Procedure 2.7, then (ν

(r)
r+1, ν

(r)
r+2, . . . , ν

(r)
k ) is a partition.

Example 2.8. Letting µ/ν = (−3, 5, 5, 0, 5,−2, 4, 6)/(2, 1), we construct a tunnel hook cover-
ing of Dµ/ν. First, we give the GBPR diagram of D(0)

µ/ν with cells labelled by (row,column). We
then use a table to provide details for a particular tunnel hook covering. Finally, we illustrate this
THC on the GBPR diagram itself.
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8, 1 8, 2 8, 3 8, 4 8, 5 8, 6
7, 1 7, 2 7, 3 7, 4
6, 1 6, 2
5, 1 5, 2 5, 3 5, 4 5, 5
4, 1
3, 1 3, 2 3, 3 3, 4 3, 5
2, 1 2, 2 2, 3 2, 4 2, 5
1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7

The following table records the process of decomposing the GBPR diagram Dµ/ν into tunnel
hooks. Each row r indicates the situation before the rth tunnel hook is placed. Here τr is the
tunnel cell at which the tunnel hook beginning in the rth row of the partial diagram terminates.

r (µr, µr+1, . . . , µk) ν(r−1) τr ∆(h(r, τr))
1 (−3, 5, 5, 0, 5,−2, 4, 6) (2, 1, 0, 0, 0, 0, 0, 0) (5, 1) −5 + 6 = 1
2 (5, 5, 0, 5,−2, 4, 6) (7, 3, 2, 1, 1, 0, 0, 0) (2, 4) 2 + 0 = 2
3 (5, 0, 5,−2, 4, 6) (7, 5, 2, 1, 1, 0, 0, 0) (4, 2) 3 + 2 = 5
4 (0, 5,−2, 4, 6) (7, 5, 5, 3, 1, 0, 0, 0) (5, 2) −3 + 3 = 0
5 (5,−2, 4, 6) (7, 5, 5, 6, 4, 0, 0, 0) (5, 5) 1 + 0 = 1
6 (−2, 4, 6) (7, 5, 5, 6, 5, 0, 0, 0) (8, 1) −2 + 2 = 0
7 (4, 6) (7, 5, 5, 6, 5, 2, 1, 1) (8, 2) 3 + 1 = 4
8 (6) (7, 5, 5, 6, 5, 2, 4, 2) (8, 3) 4 + 0 = 4

The following illustration of the THC of D(0)
µ/ν depicts all the tunnel hooks at once and omits the

step of converting the colors of the cells to grey as they are covered by tunnel hooks.

∆ = 1, ϵ = 1
∆ = 2, ϵ = 1
∆ = 5, ϵ = −1

∆ = 0, ϵ = −1
∆ = 1, ϵ = 1

∆ = 0, ϵ = 1
∆ = 4, ϵ = −1

∆ = 4, ϵ = 1

3 Proof of Theorem 1.3 for non-skewed sequences

In this section, we give an overview of the proof Theorem 1.3 when the indexing shape
is not a skew shape. Recall Definition 1.1 [2] states that

Sµ = det(Mµ) = ∑
σ∈Sk

ϵ(σ)(Mµ)i,σi .
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Theorem 1.3 provides a combinatorial interpretation of the decomposition of immaculate
functions into complete homogeneous functions using tunnel hook coverings. The main
idea behind our proof is a bijection between tunnel hook coverings and permutations
(Proposition 3.5). Furthermore, each tunnel hook is associated to a number equal to the
subscript of the corresponding complete homogeneous function appearing in the matrix
Mµ (Lemma 3.6). Finally, we show that the product of the signs of the tunnel hooks in a
tunnel hook covering is equal to the sign of the corresponding permutation.

The first lemma needed for the proof of the non-skew case of Theorem 1.3 provides
foundational insight into how tunnel cells are related to the diagonals parallel to the line
y = x. Let

Lj := {(p, q) : p − q + 1 = j} = {(j + m, 1 + m)|m ∈ Z≥0} (3.1)

be the collection of cells in the jth diagonal of the first quadrant of the plane, for 1 ≤
j ≤ k. These diagonals (whose properties are described in the following lemma) will
correspond to the entries in the permutations used when computing the determinant of
the matrix Mµ.

Lemma 3.1. Let D(r−1)
µ/ν(r−1) be a partial GBPR diagram for µ ∈ Zk and ν(r−1) ∈ Zk

≥0 such that

(ν
(r−1)
r , ν

(r−1)
r+1 , . . . , ν

(r−1)
k ) is a partition. Suppose τr, t ∈ T (r−1)

µ/ν(r−1) , τr ̸= t, and ξ ∈ N (r−1)
µ/ν(r−1) .

Furthermore, suppose τr = (p1, q1), t = (p2, q2), and ξ = (p3, q3). Finally, let h(r, τr) be a
tunnel hook in the diagram D(r−1)

µ/ν(r−1) . Then

A. (p1 + 1, q1 + 1) ∈ N (r)
µ/ν(r)

.

B. If h(r, τr) does not cover t then t ∈ T (r)
µ/ν(r)

.

C. If h(r, τr) covers t then (p2 + 1, q2 + 1) ∈ T (r)
µ/ν(r)

.

D. If h(r, τr) does not cover ξ then ξ ∈ N (r)
µ/ν(r)

.

E. If h(r, τr) covers ξ then (p3 + 1, q3 + 1) ∈ N (r)
µ/ν(r)

.

Lemma 3.1 implies an algorithm for identifying the cells in T (r−1)
µ/ν(r−1) available to be-

come terminal cells at each step r in the construction of a THC. Along the way, we
uncover a permutation associated with each THC. This algorithm to identify tunnel
cells and produce the associated permutation is described below.

Procedure 3.2. The following algorithm constructs a sequence of cells (which we will see are
terminal cells for a tunnel hook covering) and also produces a permutation associated to each
choice of cells.
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1. Let T(0) = {(1, 1), (2, 1), . . . , (k, 1)}.

2. Select a cell τ1 = (p, 1) from T(0) and set

T
{τ1}
(1) = {(2, 2), (3, 2), . . . , (p, 2), (p + 1, 1), . . . , (k, 1)};

T
{τ1}
(1) is the set constructed from T(0) by removing (p, 1) and adding (1, 1) to each of the

cells from rows lower than row p.

3. Let σ1 = p − 1 + 1 = p. Note that Lσ1 is the diagonal containing (p, 1).

4. Repeat the following steps, once for each value of r from 2 to k.

(a) Select a cell τr = (pr, qr) from T
{τ1,...,τr−1}
(r−1) .

(b) Construct T
{τ1,...,τr}
(r) from T

{τ1,...,τr−1}
(r−1) by removing τr and adding (1, 1) to each of the

cells from rows lower than row pr.
(c) Set σr = pr − qr + 1. Note that Lσr is the diagonal containing (pr, qr).

5. Set σ = (σ1, σ2, . . . , σk).

The following lemma shows that Procedure 3.2 provides a method for selecting the
terminal cells of a tunnel hook covering of any non-skew shape µ. Although the cells
chosen do not depend on the diagram µ (provided µ is non-skew), the value ∆ of each
tunnel hook selected will vary based on the diagram µ.

Lemma 3.3. Let µ be an arbitrary integer sequence with k parts and ν be the empty partition.
Let µ/ν(r−1) be the shape obtained after r − 1 iterations of the second step in Procedure 2.7 with
terminal cells {τ1, τ2, . . . τr−1}. Then the cells contained in T

{τ1,...,τr−1}
(r−1) are precisely the tunnel

cells in T (r−1)
µ/ν(r−1) for 1 ≤ r − 1 ≤ k. Furthermore, the sequence σ = (σ1, . . . , σk) produced in

step (5) of the procedure is a permutation in Sk.

Lemma 3.3 proves that Procedure 3.2 is equivalent to the THC construction proce-
dure, since selecting a tunnel hook starting in row r can be done by simply selecting its
terminal cell. Every possible terminal cell for a tunnel hook starting in row r (for the
diagram D(r−1)

µ/ν(r−1)) is included in T
{τ1,...,τr−1}
(r−1) .

Example 3.4. Let σ be a permutation of length k = 10 and consider step i = 6 in a tunnel hook
covering construction of µ. Assume the first 5 tunnel hooks have been constructed with terminal
cells τ1, . . . , τ5 and σi ∈ {2, 3, 6, 7, 9} for 1 ≤ i ≤ 5. Then the tunnel cells in T

{τ1,...,τ5}
(5) are in

diagonals L1, L4, L5, L8, and L10, and, moreover,

T
{τ1,...,τ5}
(5) = {(6, 6), (7, 4), (8, 4), (9, 2), (10, 1)}.
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If, for example, the cell (8, 4) is selected as the terminal cell τ6 for the next tunnel hook, then the
new collection of tunnel cells will become

T
{τ1,...,τ6}
(6) = {(7, 7), (8, 5), (9, 2), (10, 1)},

since (1, 1) is added to the first two entries of T
{τ1,...,τ5}
(5) and (8, 4) is removed.

The following proposition is a direct consequence of Procedure 3.2 and Lemma 3.3.

Proposition 3.5. Let µ = (µ1, . . . , µk) be a sequence. There is a bijection between tunnel hook
coverings of the GBPR diagram for µ and permutations σ ∈ Sk.

Additionally, given a permutation σ = (σ1, σ2, . . . , σk) in one-line notation, consider
the subscripts of the entries of the submatrix of (Mµ)i,j = Hµi−i+j obtained by removing
row i and column σi for 1 ≤ i ≤ r − 1. These subscripts equal the ∆ values of the
tunnel hooks in the partial diagram obtained after r − 1 tunnel hooks (corresponding to
σ1, σ2, . . . , σr−1) have been constructed.

Lemma 3.6. Let µ be a sequence of length k and let Mµ be defined as above. Assume the first
r − 1 tunnel hooks have been constructed so that their terminal cells do not lie in Lj. Then

(Mµ)r,j = H∆(h(r,τr)), where τr is the unique cell in the diagonal Lj that is also in T
{τ1,...,τr−1}
(r−1) .

We now have all the pieces we need to complete the proof of Theorem 1.3.

Sketch of Theorem 1.3 proof (non-skew case). Recall that Sµ = det(Mµ) = ∑
σ∈Sk

ϵ(σ)(Mµ)i,σi .

Proposition 3.5 gives a bijection between permutations and tunnel hook coverings. In
Lemma 3.6 we show that the subscripts on the entries of the matrix Mµ equal the ∆
values for the corresponding tunnel hooks. All that remains is to show that ϵ(σ) equals
the product of the signs of the tunnel hooks. This is done using a connection between the
Lehmer code [8], the sign of a permutation, and the number of rows covered by a tunnel
hook.

The following three examples demonstrate how to construct the tunnel hook cover-
ings for three different indexing shapes. Notice that the 6 configurations of terminal cells
are the same in all three examples, but the shapes of the actual tunnel hooks (as well as
the resulting ∆ values) differ based on the initial diagram µ.

Example 3.7. S(3,1,3) = H(3,1,3) − H(3,2,2) − H(4,0,3) + H(4,2,1) + H(5,0,2) − H(5,1,1)

H3, ϵ = 1
H1, ϵ = 1

H3, ϵ = 1

H3, ϵ = 1
H2, ϵ = −1

H2, ϵ = 1

H4, ϵ = −1
H0, ϵ = 1

H3, ϵ = 1

H4, ϵ = −1
H2, ϵ = −1

H1, ϵ = 1

H5, ϵ = 1
H0, ϵ = 1

H2, ϵ = 1

H5, ϵ = 1
H1, ϵ = −1

H1, ϵ = 1
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Example 3.8. S(3,0,3) = H(3,0,3) − H(3,1,2) + H(4,1,1) − H(5,0,1)

H3, ϵ = 1
H0, ϵ = 1

H3, ϵ = 1

H3, ϵ = 1
H1, ϵ = −1

H2, ϵ = 1

H4, ϵ = −1
H−1, ϵ = 1

H3, ϵ = 1

H4, ϵ = −1
H1, ϵ = −1

H1, ϵ = 1

H5, ϵ = 1
H−1, ϵ = 1

H2, ϵ = 1

H5, ϵ = 1
H0, ϵ = −1

H1, ϵ = 1

Example 3.9. S(3,−1,3) = −H(3,0,2) + H(4,0,1).

H3, ϵ = 1
H−1, ϵ = 1

H3, ϵ = 1

H3, ϵ = 1
H0, ϵ = −1

H2, ϵ = 1

H4, ϵ = −1
H−2, ϵ = 1
H3, ϵ = 1

H4, ϵ = −1
H0, ϵ = −1
H1, ϵ = 1

H5, ϵ = 1
H−2, ϵ = 1
H2, ϵ = 1

H5, ϵ = 1
H−1, ϵ = −1
H1, ϵ = 1

We now briefly discuss what happens when an immaculate is indexed by a sequence
skewed by partition. First note that the partial GBPR diagrams produced during the
construction of a tunnel hook covering are GBPR diagrams of skew shapes. Therefore
finding the tunnel hook coverings of a shape skewed by a partition amounts to choosing
an appropriate initial sequence and collection of initial tunnel hooks and then completing
the remaining tunnel hook coverings. See [1] for details.

4 Immaculate functions indexed by sequences skewed by
non-partition shapes

We now extend Theorem 1.3 to find the H-decomposition of Sµ/ν for any pair of integer
sequences µ, ν ∈ Zk. If all parts of ν are nonnegative, set ν̂ = (ν1, ν2, . . . , νp−1, νp+1 −
1, νp + 1, νp+2, . . . , νk) and (Mµ/ν̂)i,j = H(µi−i)−(ν̂j−j), so that (Mµ/ν)i,j = (Mµ/ν̂)i,j for j /∈
{p, p + 1}. Furthermore, since ν̂p+1 = νp + 1 and ν̂p = νp+1 − 1, we have Sµ/ν = −Sµ/ν̂,
since we obtain Mµ/ν̂ by swapping columns p and p + 1 of Mµ/ν. If the entries of ν

are not weakly decreasing, apply the straightening operator ν̂ (adjusting the sign each
time) until the result is a partition (in which case Theorem 1.3 applies) or a sequence
containing a one-step increase (in which case the skew immaculate function is zero). If
any terms of ν are negative, let νj be the smallest part of ν. Add −νj to every part of
µ and every part of ν; call the resulting sequences augνj

(µ) and augνj
(ν) respectively.

Then Maugνj
(µ)/ augνj

(ν) = Mµ/ν, so Sµ/ν = Saugνj
(µ)/ augνj

(ν) and we can apply the above
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techniques to Saugνj
(µ)/ augνj

(ν) to find the decomposition of Sµ/ν into the complete ho-

mogeneous noncommutative symmetric functions.

Example 4.1. Let µ = (2,−5, 0, 1) and ν = (2,−3, 1, 6). To find Sµ/ν, first add 3 to every
part of ν and every part of µ to get aug3(µ)/ aug3(ν) = (5,−2, 3, 4)/(5, 0, 4, 9). Next, since
aug3(ν) is not a partition, apply the straightening operator to get

Sµ/ν = −S(5,−2,3,4)/(5,0,8,5) = S(5,−2,3,4)/(5,7,1,5) = −S(5,−2,3,4)/(6,6,1,5) = S(5,−2,3,4)/(6,6,4,2) .

Corollary 4.2. For 1 ≤ m ≤ k, we have

Sµ = ∑
π∈Ak,m

ϵ(π)Hµ1−1+π1 · · · Hµm−1−(m−1)+πm−1
Sµ/ν(m) ,

where ν(m) is the partition obtained from the construction of the tunnel hooks corresponding to π

in the diagram Dµ and Ak,m is the set of all ordered m-element subsets of a k-element set.

For example, the skew immaculate S(5,−1,3,4)/(3,1,0,0) can be obtained by selecting the
terms appearing in S(3,3,3,5,−1,3,4) whose first three terms are H7H4H2. Applying the
forgetful map to this expansion produces the expansion of a Schur function in terms of
skew Schur functions with complete homogeneous symmetric functions as coefficients.

5 Ribbon decompositions of immaculate functions

Ribbons are a Schur-like basis for NSym related to Schur functions by the forgetful map;
there are a number of excellent sources for background on ribbons in Sym and NSym [7,
10]. The ribbon basis expands positively into the immaculate basis via standard immac-
ulate tableaux [2], but the expansion of the immaculate basis into the ribbon basis is only
known for certain special cases. Campbell [4] provides formulas for the ribbon expan-
sion of immaculate functions indexed by rectangles and immaculate functions indexed
by products of two rectangles satisfying certain size conditions as follows.

Theorem 5.1. [4] The ribbon expansion of an immaculate function indexed by either a rectangle
α = mℓ(α) or the product α = (ab, cd) of rectangles satisfying b ≤ c and b ≤ a is given by

Sα = ∑
σ∈Sℓ(α)

ϵ(σ)R(α1−1+σ1,α2−2+σ2,...,αℓ(α)−ℓ(α)+σℓ(α))
.

It is not true in general that the ribbon decomposition has the same indexing set
as the homogeneous decomposition. One open question is to classify the compositions
for which the indexing compositions are the same. We use tunnel hooks to extend
Campbell’s results to a much larger class of compositions.
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Theorem 5.2. Let α = (α1, α2, . . . , αk) be a composition for which there exists j with 1 ≤ j ≤ k
such that αi ≥ i for 1 ≤ i ≤ j, αj+1 ≥ j, and αℓ = αj+1 for j + 2 ≤ ℓ ≤ k. Then

Sα = ∑
σ∈Sk

ϵ(σ)R(α1−1+σ1,α2−2+σ2,...,αk−k+σk)
,

with the convention that Rα vanishes if α contains any nonpositive parts.
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