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An Algebraic Perspective on Ramsey Numbers
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Abstract. We study the Ramsey numbers R(r, s) through Hilbert’s Nullstellensatz.
We give a polynomial encoding whose solutions correspond to Ramsey graphs, those
that do not contain a copy of Kr or K̄s. The Ramsey number is reached the first time
the system has no solution. We construct Nullstellensatz certificates of this fact whose
degrees are equal to the restricted online Ramsey numbers. These results generalize
to other numbers in Ramsey theory, such as Rado, van der Waerden, and Hales–Jewett
numbers.
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1 Introduction

Ramsey numbers are some of the most interesting and mysterious combinatorial num-
bers [19]. In its simplest, most popular form, the Ramsey number R(r, s) is the smallest
positive integer n such that every 2-coloring of the edges of Kn contains a copy of Kr in
the first color or Ks in the second color. Ramsey numbers can be generalized by allowing
more than two colors and graphs other than Kr and Ks. The number R(G1, G2, . . . , Gk)
is the smallest positive integer n such that every k-coloring of the edges of Kn contains a
copy of Gi in color i for some i. If Gi = Kri for all i, we simply write R(r1, r2, . . . , rk). All
of these numbers are finite by Ramsey’s theorem [38]. The goal of this article is to un-
cover further structure and complexity of Ramsey numbers through algebraic-geometric
means.

Our paper introduces algebraic interpretations of R(r, s) and related numbers and
graphs using polynomial ideals, varieties, and Nullstellensatz identities (see [9] for an
introduction). We tie the values and complexity of R(r, s) to systems of polynomial equa-
tions. We show that these encodings give interesting information in the computational
complexity of Ramsey numbers and Ramsey graphs. The precise models appear in Sec-
tion 2. Before we state our main results, let us recall some relevant prior context and
results:

Computing exact values for Ramsey numbers is a challenge. In fact there are only
nine values of R(r, s) with 3 ≤ r ≤ s whose exact values are known, and the only known
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nontrivial Ramsey numbers with more than two colors are R(3, 3, 3) = 17 and R(3, 3, 4)
= 30 [21, 7]. Ramsey numbers as small as R(5, 5) remain unknown, and the best known
bounds are 43 ≤ R(5, 5) ≤ 48. See [17, 1]. The numbers R(G1, G2) are known for some
families of graphs, but many cases remain open (see, for example, [37] for a survey
of small Ramsey numbers and their best known bounds). The best known asymptotic
lower and upper bounds for diagonal Ramsey numbers R(s, s) are given in [41] and [39],
respectively.

While we know in practice computing Ramsey numbers is extremely difficult (and
considered harder than fighting a war with an alien civilization), it is not clear what is
the appropriate computational complexity class to show hardness of computing Ramsey
numbers R(r, s). For example, the closely related arrowing decision problem asks whether
given three graphs F, G, H is there is a red-blue edge-coloring of F that contains neither
a red G or a blue H? This decision problem was shown to be in co-NP for fixed choices
of G, H [4]. Later Schaefer [40] showed that in general it is in the polynomial hierarchy
to answer this queries, but it is not clear what to do with this complexity question when
F, G, H are complete graphs KN, Kr, Ks because there is only one value R(r, s) for each
input N, r, s, hence it is not clear how it can be hard for any of the usual classes like NP.
See details in [40, 4, 22].

In recent years, Pak and collaborators [36, 25, 35] have proposed another way to
measure complexity is by looking at counting sequences. We propose that their point of
view could be another way to assert hardness of R(r, s) by counting of Ramsey graphs:
Ramsey (r, s)-graphs are graphs with no red clique of size r, and no independent set of
size s. Clearly, the number of vertices of a Ramsey (r, s)-graph is less than the Ramsey
number R(r, s). We are interested in the number of Ramsey (r, s)-graphs on n vertices
denoted by RG(n, r, s). What is the complexity of counting the sequence of numbers
{RG(n, r, s)}∞

n=1? From Ramsey’s theorem this sequence consists of R(r, s)− 1 positive
numbers and then an infinite tail of zeroes. We give some examples of RG(n, r, s) in
the columns of the table below, which are computed using the #SAT solver relsat [2],
following the work of successful computations in Ramsey theory using SAT solvers in,
for example, [23] and [6] (see also the database at [33]). The hardness of R(r, s) can then
be rephrased as the question of whether the counting function RG(n, r, s) is in #P.

n RG(n, 3, 3) RG(n, 3, 4) RG(n, 3, 5) RG(n, 3, 6) RG(n, 3, 7) RG(n, 4, 4)
2 2 2 2 2 2 2
3 6 7 7 7 7 8
4 18 40 41 41 41 62
5 12 322 387 388 388 892
6 0 2812 5617 5788 5789 22484
7 0 13842 113949 133080 133500 923012
8 0 17640 2728617 4569085 4681281 55881692
9 0 0 55650276 220280031 245743539 4319387624
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Our Contributions:

In Section 2, we reintroduce the sequence {RG(n, r, s)}∞
n=1 as the number of solutions

of certain zero-dimensional ideals over the polynomial ring F2[x1, . . . , xn]. The solutions
are indicator vectors that yield all Ramsey graphs (note, here they are not counted up to
symmetry or automorphism classes). Some simple properties of RG(n, r, s), such as the
fact that RG(n, r, s) ≤ RG(n, r + 1, s), follow immediately from Theorem 1.

Theorem 1. The Ramsey number R(G1, . . . , Gk) is at most n if and only if there is no solution to
the following system over F2, where Kn = (V, E) is the complete graph on n vertices. Moreover,
when the system has solutions, the number of solutions to this system is equal to the number of
graphs of order n that avoid copies of Gi in color i. In particular, when k = 2, G1 = Kr, and
G2 = Ks, this is the number of Ramsey graphs RG(n, r, s).

pH,i := ∏
e∈E(H)

xi,e = 0 ∀i, 1 ≤ i ≤ k, ∀H ⊆ Kn, H ∼= Gi, (1.1)

qe := 1 +
k

∑
i=1

xi,e = 0 ∀e ∈ E, (1.2)

ui,j,e := xi,exj,e = 0 ∀e ∈ E, ∀i, j, i ̸= j. (1.3)

When k = 2, G1 = Kr, and G2 = Ks, the Ramsey ideal RI(n, r, s) is ideal of the polynomial
ring F2[x1,e, x2,e]e∈E(Kn) generated by the polynomials pH, qe and ui,j,e. Then we have

RI(n, r, s) ⊇ RI(n, r + 1, s) ⊇ · · · ⊇ RI(n, n, s) ⊇ RI(n, n + 1, s) = RI(n, n + 2, s) = . . .

and

RI(n, r, s) ⊇ RI(n, r, s + 1) ⊇ · · · ⊇ RI(n, r, n) ⊇ RI(n, r, n + 1) = RI(n, r, n + 2) = . . .

A key interesting consequence of Theorem 1 is that the very first value of n for which
the system of equations has no solution is equal to the Ramsey number. One important
result for our purposes is the famous Hilbert’s Nullstellensatz, which states that a system
of polynomial equations f1 = · · · = fm = 0 over an algebraically closed field K has no
solution if and only if there exist coefficient polynomials β1, . . . , βm such that

m

∑
i=1

βi fi = 1. (1.4)

We call such an identity (1.4) a Nullstellensatz certificate. The degree of a certificate
is the largest degree of the polynomials βi. Note that in our case the existence of a
Nullstellensatz certificate is equivalent to an upper bound on the Ramsey number. The
strong connection between combinatorial problems and the Hilbert Nullstellensatz has
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been investigated in, for example, [5, 32, 12, 10, 16, 15, 29, 11]. Here we show a surprising
connection of Ramsey numbers to Nullstellensatz certificates.

In Theorem 2 we give a general construction for Nullstellensatz certificates of Ram-
sey number upper bounds using the polynomial encoding from Theorem 1. In other
words, assuming the number of vertices of a Ramsey ideal is n and n ≥ R(G1, . . . , Gk),
we give upper bounds for the degrees of the Nullstellensatz certificates. Surprisingly
our construction of Nullstellensatz certificates for the Ramsey ideals yields certificate
degrees given by the restricted online Ramsey numbers R̃(G1, . . . , Gk; n), first introduced by
Conlon et al. in [8]. These numbers are defined in terms of the following Builder-Painter
game. Each turn Builder selects one edge e of Kn, and Painter selects a color in [k] and
colors e with this color. Builder wins the game once a monochromatic Gi in color i is
constructed for some i. The number R̃(G1, . . . , Gk; n) is the minimum number of edges
Builder needs to guarantee a victory. We also use the simplified notation R̃(r1, . . . , rk; n)
for R̃(Kr1 , . . . , Krk ; n). It is trivial that R̃(G1, . . . , Gk) ≤ (R(G1,...,Gk)

2 ), but it was shown in
[18] that in the case of 2-color classical Ramsey numbers that R̃(r, r; n) ≤ (n

2)−Ω(n log n)
for n = R(r, r). While this degree bound is linear in the number of variables, k(n

2), it is
an improvement over the upper bounds given in, for instance, [26, 28].

Theorem 2. If n ≥ R(G1, . . . , Gk), then there is an explicit Nullstellensatz certificate of de-
gree R̃(G1, . . . , Gk; n) − 1 that the statement R(G1, . . . , Gk) > n is false using the encoding
in Theorem 1. In particular, in the case of 2-color classical Ramsey numbers, this implies that
if n ≥ R(r, s), then there exists a Nullstellensatz certificate of degree R̃(r, s; n) − 1 that the
statement R(r, s) > n is false.

The proof of Theorem 2 does not rely on the graph-theoretic properties of Ramsey
numbers, and in fact it applies to the whole of Ramsey theory. In particular, we can
modify the encoding in Theorem 1 to suit several well-known problems in Ramsey the-
ory (see, for example, [19, 27]). We express these problems using the general framework
below.

Definition 3. Let k be a positive integer, and let {Sn} be a sequence of sets. For c in [k], the set
of colors, let P c

n be a subset of Sn. A triple A := ({Sn}, {P c
n}; k) is a Ramsey-type problem if the

following hold:

(i) Si ⊆ Si+1 for i ≥ 1,

(ii) P c
i ⊆ P c

i+1 for i ≥ 1, 1 ≤ c ≤ k,

(iii) There exists an integer N such that for all i ≥ N and every k-coloring of Si there is a color
c and some element X ∈ P c

i where each element of X is assigned color c.

The smallest such N is called the Ramsey-type number for A, and is denoted R(A).
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We see that in the problem of computing classical Ramsey numbers R(r, s), we have
Sn = E(Kn) = {(i, j) : 1 ≤ i < j ≤ n}. The families P1

n and P2
n consist of all the sets of

edges of induced subgraphs of Kn containing r and s vertices, respectively. As another
example, the problem of computing Schur numbers asks for the smallest n such that every
k-coloring [n] contains a monochromatic solution to the equation x + y = z. In this case
we have Sn = [n], and for all c we have P c

n = {{x, y, z} : {x, y, z} ⊆ [n], x + y = z}.
As we see in Section 2, the encoding in Theorem 1 can be modified to give bounds

for many other Ramsey-type numbers, including Schur, Rado, van der Waerden, and
Hales–Jewett numbers [19, 27]. We can define numbers analogous to the restricted online
Ramsey numbers for Ramsey-type problems in terms of another Builder-Painter game.
We define this game for a fixed n as follows.

For each turn, Builder selects one object from Sn and Painter assigns it a color in [k].
Builder wins once there is a color c and an element X ∈ P c

n where every element of X
is assigned color c. Define the number R̃k(P1

n , . . . ,P k
n; Sn) to be the smallest number of

turns for which Builder is guaranteed a victory. In this notation, the restricted online
Ramsey number R̃(r, s; n) is equal to R̃2(P1

n ,P2
n ; Sn) with Pn and Sn defined as above for

the Ramsey number R(r, s). Theorem 4 generalizes Theorems 1 and 2.

Theorem 4. Let A = ({Sn}, {P c
n}; k) be a Ramsey-type problem. Then for each n, the Ramsey-

type number for A is strictly greater than n if and only if the following system of equations has
no solution over F2.

pX,c := ∏
s∈X

xc,s = 0 ∀X ∈ P c
n, 1 ≤ c ≤ k

qs := 1 +
k

∑
i=1

xi,s = 0 ∀s ∈ Sn,

ui,j,s := xi,sxj,s = 0 ∀s ∈ Sn, ∀i, j, 1 ≤ i < j ≤ k.

If n ≥ R(A), then the minimal degree of a Nullstellensatz certificate for this system is at
most R̃k(P1

n , . . . ,P k
n; Sn)− 1. Moreover, the number of solutions to this system is equal to the

number of k-colorings of Sn such that for every color c, each set X ∈ P c
n contains an object that

is not assigned color c.

For example, in the case of Schur numbers, the number of solutions to this system
is exactly the number of k-colorings of [n] that do not contain any monochromatic so-
lutions to x + y = z. In Section 2 we give some examples of values of R̃(r, s; n) and
R̃(P1

n , . . . ,P k
n; Sn) and discuss the Nullstellensatz certificates for the associated polyno-

mial systems.



6 Jesús A. De Loera and William J. Wesley

2 Ramsey and Hilbert’s Nullstellensatz

In this section we give several encodings of the problem of finding an upper bound for
R(r, s) in terms of the feasibility of a system of polynomial equations. In the simplest
version of the encoding, the variables correspond to edges in the graph Kn, and the
solutions of the system correspond to graph colorings that avoid monochromatic copies
of Kr and Ks. If the system is infeasible for some n, then no such coloring exists, hence
R(r, s) ≤ n.

Many combinatorial problems can be encoded as a system of polynomial equations,
including colorings, independence sets, partitions, etc. (see, e.g., [5, 3, 14, 12, 16, 24,
30, 32]). A Nullstellensatz certificate for such a combinatorial polynomial system is
therefore a proof that a combinatorial theorem is true. We are interested on bounding
the Nullstellensatz degree for our Ramsey systems.

There are known general “algebraic geometers” upper bounds for the degree of a
Nullstellensatz certificate, so the above procedure terminates, even when these bounds
are exponential and sharp in general [26]. However, the exponential bounds should not
be bad news for combinatorialists. First, it has been shown [28] that for “combinatorial
ideals", the bounds are much better, linear in the number of variables. Over finite fields
there are degree bounds that are independent of the number of variables [20], and a re-
cent paper [34] gives substantial improvements to these bounds. The bounds we give in
Theorems 2 and 4 for our systems of equations are better than the above bounds. More-
over, it has been documented that in practice the degrees of Nullstellensatz certificates
of NP-hard problems (e.g., non-3-colorability), tend to be small “in practice" (see, for
example, [31, 29, 15] and the references therein), especially when the polynomial encod-
ings are over finite fields. Note also that when we know the degree of the Nullstellensatz
certificate, one can compute explicit coefficients of the Nullstellensatz certificate using a
linear algebra system derived by equating the monomials of the identity. This has been
exploited in practical computation with great success, see [10, 15, 29].

We now prove Theorem 1 of our encoding for Ramsey numbers over F2 below.

Proof of Theorem 1. Suppose there is a solution x to the system over F2. For each edge e
of Kn and each color i, the system has a variable xi,e. The polynomials ui,j,e guarantee
that for a given e, at most one variable xi,e is nonzero. From the polynomials qe, we then
see that exactly one index i such that xi,e = 1, and let ϕ(x) be the coloring χ where χ(e)
is this index. Color each edge e of Kn with the color χ(e). In the equations involving the
polynomials pH, for each subgraph H of Kn with H ∼= Gi, there is at least one edge e in
H with xi,e = 0. Therefore χ(e) ̸= i, so there is no monochromatic copy of Gi in color i.

Conversely, if we have a coloring χ of the edges of Kn with no monochromatic Gi in
color i, then let ψ(χ) be the solution x where xi,e is 1 if χ(e) = i and 0 otherwise. One
can check easily that x satisfies the system of equations. The maps ϕ and ψ are inverses
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of each other, and so the number of solutions to the system is equal to the number of
colorings of Kn with no monochromatic Gi in color i.

For the first chain of ideals, observe that for a fixed i, the polynomial ∏e∈E(H) xi,e
divides ∏e∈E(H′) xi,e if and only if H is a subgraph of H′. Since every copy of Kr+1 in
Kn contains a copy of Kr as a subgraph, in the ideal RI(n, r + 1, s), every polynomial of
the form ∏e∈E(H′) xi,e with H′ ∼= Kr+1 is divisible by a generator ∏e∈E(H) xi,e of RI(n, r, s)
with H ∼= Kr. The ideals in the chain are equal for r > n since in this case Kr is not a
subgraph of Kn. The proof for the second chain of ideals is similar.

Before we prove Theorem 2, we show a special case as a warm-up example. There is
a simple certificate of the fact that R(r, 2) ≤ r.

Example 5. For all r, there exists a Nullstellensatz certificate of degree (r
2)− 1 of the statement

R(r, 2) ≤ r.

Proof. Label the edges of Kr from 1 to n = (r
2). The following identity is a certificate that

R(r, 2) ≤ r. Polynomials in parentheses are part of the system of equations in Theorem 1.

1 = (1 + x1,1 + x2,1) + x1,1(1 + x1,2 + x2,2) + x1,1x1,2(1 + x1,3 + x2,3) + . . .
+ x1,1x1,2 · · · x1,n−1(1 + x1,n + x2,n)

+ x2,1 + x1,1(x2,2) + x1,1x1,2(x2,3) + · · ·+ x1,1x1,2 · · · x1,n−1(x2,n)

+ (x1,1 · · · x1,n)

In the proof of Theorem 2, we show how to translate a strategy for Builder into a Null-
stellensatz certificate. This method can be used to construct a certificate for all (known)
upper bounds for R(G1, . . . , Gs). Notably, better strategies for Builder yield lower degree
certificates. In Example 5, this is not a concern since the order in which Builder selects
edges does not matter, and in fact R̃(r, 2; r) = (r

2). Painter simply colors every edge
Builder selects the first color, and Builder wins when all (r

2) edges are selected.
The proofs of Theorems 2 and 4 are similar, and in fact Theorem 2 follows from

Theorem 4, but for the sake of concreteness we begin with Theorem 2.

Proof of Theorem 2. Number the edges of Kn from 1 to (n
2). A t-turn game state g is a

set {(ei1 , c1), (ei2 , c2), . . . , (eit , ct)} of pairs of edges eij ∈ E chosen by Builder and colors
cj ∈ [k] chosen by Painter. A game is complete if there is some color c ∈ [k] where
Painter has colored a monochromatic Gc in color c. Let d := R̃(G1, . . . , Gk; n). If Builder
follows an optimal strategy for choosing edges, then the game lasts at most d turns, that
is t ≤ d.

For a t-turn game state g, define the monomial π(g) to be π(g) := ∏t
j=1 xcj,eij

. Simi-

larly, for any monomial f = ∏t
j=1 xcj,eij

with distinct eij , let σ( f ) denote the game state
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{(ei1 , c1), (ei2 , c2), . . . , (eit , ct)}. We will describe an algorithm to construct a Nullstellen-
satz certificate of the form

k

∑
i=1

∑
H∼=Gi

βH,i pH,i + ∑
e∈E

γeqe = 1. (2.1)

Denote the left-hand side of Equation (2.1) by L. For each i ∈ [k], initialize βH,i to 0
for all H ∼= Gi. Initialize γe to 0 for all edges e except e1, and set γe1 := 1. Then repeat
the following:

1. Expand and simplify L so that L is a sum of monomials. If L = 1, then we are
done. Otherwise, at least one term in L is a nonconstant monomial f .

2. If σ( f ) is a completed game state, then pH,i divides f for some color i and H ∼= Gi.
Then set βH,i ← βH,i +

f
pH,i

. This results in L← L + f , which cancels the original f

in the certificate since it is an expression over F2, which has characteristic 2.

3. If σ( f ) is not a completed game state, then let e be an edge that Builder should
choose in an optimal strategy from the game state σ( f ). Set γe ← γe + f . Since
f qe = f + ∑k

i=1 f xi,e, we obtain L ← L + f + ∑k
i=1 f xi,e. This results in the cancel-

lation of f in L, but adds k additional terms (one for each of Painter’s k choices
for coloring e) to L. Note that if σ( f ) is a t-turn game state, then σ( f xi,e) is a
(t + 1)-turn game state for all i.

By the symmetry of Kn, it is arbitrary which edge Builder selects first. Therefore each
nonconstant term that appears in L corresponds to a game state where Builder (but not
necessarily Painter) has followed an optimal strategy. Since terms that correspond to
completed games are cancelled out in step 3, this procedure terminates, resulting in
a Nullstellensatz certificate. Because Builder follows an optimal strategy, the maximal
degree of any term in any γe is d− 1, so the degree of the certificate is d− 1.

To illustrate the importance of Builder’s strategy in this method, observe that one can
construct a degree 7 certificate for the statement R(3, 3) ≤ 6 using the following strategy:
For the first five turns, Builder selects each edge incident to some vertex v. No matter
how Painter colors these edges, three must be colored the same color. Call these edges
vw1, vw2, vw3. For the next three turns, Builder selects the edges w1w2, w1w3, and w2w3,
and Painter must construct a monochromatic triangle. However, if Builder plays poorly
and selects, for example, the edges (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6), (1, 4), (2, 5), and
(3, 6), then no matter what Painter does there are no monochromatic triangles, and this
leads to a higher degree certificate.

The proof of Theorem 2 shows that the polynomials can “simulate" a tree of Builder-
Painter games. However, in general the degrees of certificates can be strictly smaller
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than the bounds given in Theorem 2. For example, by a computational search, it can be
shown that R̃(3, 3; 6) = 8. However, there exists a Nullstellensatz certificate of degree 5
using the encoding in Theorem 1, which is better than the bound given in Theorem 2.
Due to space constraints we skip the proof of Theorem 4 but it can be found in [13].

As an application of Theorem 4, let E be a linear equation, and let Rk(E) denote
the k-color Rado number for E , the smallest n such that every k-coloring of [n] contains
a monochromatic solution to E . Let Xn,E be the set of all solutions over [n] to E . Let
P c

n := Xn,E for all c. If Rk(E) exists, then ({[n]}, {P c
n}; k) is a Ramsey-type problem, and

we have the following corollary.

Corollary 6. Let E be the linear equation ∑t
j=1 aiyi = a0 with a finite Rado number Rk(E). Let

Xn,E = {(m1, . . . , mt) : ∑t
j=1 ajmj = a0, 1 ≤ mj ≤ n} be the set of solutions over [n] to E .

Then for every n, the following system has no solution over F2 if and only if n ≥ Rk(E).
t

∏
j=1

xi,mj = 0 ∀(m1, . . . , mt) ∈ Xn,E , 1 ≤ i ≤ k,

1 +
k

∑
i=1

xi,m = 0 1 ≤ m ≤ n,

xi,mxj,m = 0 1 ≤ m ≤ n, 1 ≤ i < j ≤ k.

The degree of a minimal Nullstellensatz certificate for this system has degree at most
R̃k(Xn,E , . . . , Xn,E ; [n])− 1.

As an example, let E denote the equation x + 3y = 3z, and let X9,E be the solutions
to E over [9] as above. It is known that R2(E) = 9 [27]. However, Builder can select,
in order, the integers 4,6,9,3, and 7 to win the Builder-Painter game in at most 5 turns:
since (6, 4, 6) is a solution, 4 and 6 must be different colors, and then since (9, 6, 9) and
(3, 3, 4) are solutions, 4 and 9 must be one color and 3 and 6 are the other color. But then
(3, 6, 7) and (9, 4, 7) are solutions, so there is a monochromatic solution no matter which
color Painter selects for 7. Therefore R̃2(X9,E , X9,E ; [9]) ≤ 5, and the minimal degree of a
Nullstellensatz certificate for the system of equations in Corollary 6 is at most 4. In fact,
some computations show the minimal degree is 2.

Similarly, the encoding in Theorem 1 for the Schur number S(2) = R2(x + y = z)
also gives an example of Nullstellensatz certificates that are smaller than the ones given
by games. It is well-known that S(2) = 5, and from the encoding in Theorem 4, we have
S(2) ≤ 5 if and only if the following system of equations has no solutions over F2.

1 + x1,i + x2,i = 0, 1 ≤ i ≤ 5,

xi,1xi,2 = 0, xi,2xi,4 = 0,
xi,1xi,3xi,4 = 0, xi,1xi,4xi,5 = 0, xi,2xi,3xi,5 = 0.

}
i = 1, 2



10 Jesús A. De Loera and William J. Wesley

A computer search shows that the number R̃2(X5,x+y=z, X5,x+y=z; [5]) = 5, where
X5,x+y=z is the set of positive integer solutions to x + y = z in [1, 5]. We computed a de-
gree 3 Nullstellensatz certificate for the above system of equations, which is an improve-
ment on the bound in Theorem 4. We omit the certificate here for space considerations,
but it can be found in [13]. Moreover, by Theorem 4 there are similar consequences for
van der Waerden numbers, Hales–Jewett numbers, and essentially any other Ramsey-
type quantity. We are unable to include them here due to space, but we invite readers to
see more in [13].
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