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Abstract. A flag positroid of ranks r := (r1 < · · · < rk) on [n] is a flag matroid that can
be realized by a real rk × n matrix A such that the ri × ri minors of A involving rows
1, 2, . . . , ri are nonnegative for all 1 ≤ i ≤ k. In this abstract, we explore the polyhe-
dral and tropical geometry of flag positroids, particularly when r := (a, a + 1, . . . , b)
is a sequence of consecutive numbers. In this case we show that the nonnegative
tropical flag variety TrFl≥0

r,n equals the nonnegative flag Dressian FlDr≥0
r,n , and that the

points µ = (µa, . . . , µb) of TrFl≥0
r,n = FlDr≥0

r,n give rise to coherent subdivisions of flag
positroid polytopes into (smaller) flag positroid polytopes. Our results have applica-
tions to Bruhat interval polytopes. For example, we show that a complete flag matroid
polytope is a Bruhat interval polytope if and only if its (≤ 2)-dimensional faces are
Bruhat interval polytopes. Our results also have applications to realizability questions.
We define a positively oriented flag matroid to be a sequence of positively oriented ma-
troids (χ1, . . . , χk) which is also an oriented flag matroid. We then prove that every
positively oriented flag matroid of ranks r = (a, a + 1, . . . , b) is realizable.

Keywords: Flag varieties, Tropical varieties, Positroids, Polytopal subdivisons, Matroid
polytopes, Oriented flag matroids

1 Introduction

In recent years there has been a great deal of interest in the tropical Grassmannian [30,
19, 20, 14, 11], and subdivisions of matroid polytopes [33, 1, 15]. Further, there has been
research into “positive” [29, 31, 2, 24, 25, 32, 4] and “flag” [35, 13, 12, 21, 22, 8] versions of
the above objects. The aim of this paper is to illustrate the beautiful relationships between
the nonnegative tropical flag variety, the nonnegative flag Dressian, and subdivisions of
flag positroid polytopes, unifying and generalizing some of the existing results. We will
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particularly focus on the case of flag varieties (respectively, flag positroids) consisting of
subspaces (respectively, positroids) of consecutive ranks. This includes both Grassmanni-
ans and complete flag varieties.

For positive integers n and d with d < n, we let [n] denote the set {1, . . . , n} and
we let ([n]d ) denote the collection of all d-element subsets of [n]. Given a subset S ⊆ [n]
we let eS denote the sum of standard basis vectors ∑i∈S ei. For a collection B ⊂ ([n]d ),
we let P(B) = the convex hull of {eB : B ∈ B} in Rn. The collection B is said to define
a matroid M of rank d on [n] if every edge of the polytope P(B) is parallel to ei − ej for
some i ̸= j ∈ [n]. In this case, we call B the set of bases of M, and define the matroid
polytope P(M) of M to be the polytope P(B). When B indexes the nonvanishing Plücker
coordinates of an element A of the Grassmannian Grd,n(C), we say that A realizes M, and
it is well-known that P(B) is the moment map image of the closure of the torus orbit of
A in the Grassmannian [17]. We assume familiarity with the fundamentals of matroid
theory as in [28] and [10].

The above definition of a matroid in terms of its polytope is due to [17]. Flag matroids
are natural generalizations of matroids that admit the following polytopal definition.

Definition 1.1. [10, Corollary 1.13.5 and Theorem 1.13.6] Let r = (r1, . . . , rk) be a se-
quence of increasing integers in [n]. A flag matroid of ranks r on [n] is a sequence M =
(M1, . . . , Mk) of matroids of ranks (r1, . . . , rk) on [n] such that all vertices of the polytope

P(M) = P(M1) + · · ·+ P(Mk), the Minkowski sum of matroid polytopes,

are equidistant from the origin. This polytope is called the flag matroid polytope of M.

Flag matroids are exactly the type A objects in the theory of Coxeter matroids [18,
10]. Just as a realization of a matroid is a point in a Grassmannian, a realization of a flag
matroid is a point in a flag variety. More concretely, a realization of a flag matroid of ranks
(r1, . . . , rk) over a field is an rk × n matrix A over that field such that for each 1 ≤ i ≤ k,
the first ri rows of A is a realization of Mi. For an equivalent definition of flag matroids
in terms of Plücker relations on partial flag varieties, see [21, Proposition A]. There are
natural “positive” analogues of matroids, flag matroids, and their polytopes.

Definition 1.2. Let r = (r1, · · · , rk) be a sequence of increasing integers in [n]. We say that
a flag matroid (M1, . . . , Mk) of ranks r on [n] is a flag positroid if it has a realization by a
real matrix A such that the ri × n submatrix of A formed by the first ri rows of A has all
nonnegative minors for each 1 ≤ i ≤ k.

We refer to the flag matroid polytope of a flag positroid as a flag positroid polytope. It
follows from our definition above that flag positroids are realizable.

Setting k = 1 in Definition 1.2 gives the well-studied notion of positroids and positroid
polytopes [29, 2]. Therefore each flag positroid is a sequence of positroids.
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In recent years it has been gradually understood that the tropical geometry of the
Grassmannian and flag variety, and in particular, the Dressian and flag Dressian, are inti-
mately connected to (flag) matroid polytopes and their subdivisions [33, 19, 13, 27].

The tropical geometry of the positive Grassmannian and of the flag variety are particu-
larly nice: the positive tropical Grassmannian equals the positive Dressian, whose cones
in turn parameterize subdivisions of the hypersimplex into positroid polytopes [31, 32,
25, 4], while the positive tropical complete flag variety equals the positive complete flag
Dressian, whose cones parameterize subdivisions of the permutohedron into Bruhat in-
terval polytopes [8, 22].

Our main theorem, which follows, unifies and generalizes the above results. In par-
ticular, Theorem 1.3 applies to the nonnegative flag variety of rank r, where r consists of
any consecutive integers. This includes both the Grassmannian case, when r = (d) and
the complete flag case, when r = (1, 2 . . . , n). Much of the terminology appearing in this
theorem statement will be defined in Section 2.

Theorem 1.3. Suppose r is a sequence of consecutive integers (a, . . . , b) for some 1 ≤ a ≤
b ≤ n. Then, for µ = (µa, . . . , µb) ∈ ∏b

i=a P
(

T([n]i )
)

, the following are equivalent:

(a) µ ∈ TrFl≥0
r,n , the nonnegative tropicalization of the flag variety, i.e. the closure of the

coordinate-wise valuation of points in Flr,n(C≥0).
(b) µ ∈ FlDr≥0

r,n , the nonnegative flag Dressian, i.e. the “solutions" to the positive-
tropical Grassmann-Plücker and incidence-Plücker relations.

(c) Every face in the coherent subdivision Dµ of the polytope P(µ) = P(µ1) + · · · +
P(µk) induced by µ is a flag positroid polytope (of rank r), where µi is the support
of µi for 1 ≤ i ≤ k.

(d) Every face of dimension at most 2 in the subdivision Dµ of P(µ) is a flag positroid
polytope (of rank r).

(e) The support µ of µ is a flag matroid, and µ satisfies every three-term positive-tropical
incidence relation (respectively, Grassmann-Plücker relation) when a < b (respec-
tively, a = b).

We present here three useful corollaries of this result.

Corollary 1.4. Suppose r is a sequence of consecutive integers and let µ ∈ FlDr≥0
r,n . Then

P(µ) is a flag positroid polytope.

We note that in the Grassmannian case, that is, the case that r = (d) is a single integer,
Theorem 1.3 and Corollary 1.4 describe the relationship between the nonnegative tropical
Grassmannian, the nonnegative Dressian, and subdivisions of positroid polytopes (e.g.
the hypersimplex, if µ has no coordinates equal to ∞) into positroid polytopes. Moreover,
when r = (1, 2, . . . , n), Theorem 1.3 and Corollary 1.4 describe the relationship between
the nonnegative tropical complete flag variety, the nonnegative complete flag Dressian,
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and subdivisions of Bruhat interval polytopes (e.g. the permutohedron, if µ has no coor-
dinates equal to ∞) into Bruhat interval polytopes. We illustrate this relationship in the
case where µ has no coordinates equal to ∞ in Figure 1.

We now present an application of Theorem 1.3 to flag matroid polytopes.

Corollary 1.5. For a flag matroid M = (Ma, Ma+1, . . . , Mb) of consecutive ranks r, its flag
matroid polytope P(M) is a flag positroid polytope if and only if its (≤ 2)-dimensional
faces are flag positroid polytopes (of rank r).

In the Grassmannian case, the flag positroid polytopes of rank r = (d) are precisely
the positroid polytopes and Corollary 1.5 appeared as [25, Theorem 3.9].

It has been shown that all positively oriented matroids are positroids, which is to say,
realizable by a matrix with nonnegative maximal minors [3][32]. It is natural to ask when
a sequence of positroids is a flag positroid, which is to say, realizable as in Definition 1.2.
Note however that questions of realizability for flag matroids are rather subtle, as demon-
strated in Example 2.14. By working with oriented flag matroids, we give an answer to this
realizability question for flag positroids, in the case of consecutive ranks.

Corollary 1.6. Suppose (M1, . . . , Mk) is a sequence of positroids on [n] of consecutive
ranks. Then, considered as a sequence of positively oriented matroids, (M1, . . . , Mk) is a
flag positroid if and only if it is an oriented flag matroid.

We define a positively oriented flag matroid to be a sequence of positively oriented ma-
troids (χ1, . . . , χk) which is also an oriented flag matroid. Corollary 1.6 then says that
every positively oriented flag matroid of consecutive ranks is realizable. We do not know
whether Corollary 1.6 holds if r fails to satisfy the consecutive rank condition.

The structure of this abstract is as follows. In Section 2, we define the terms and con-
cepts appearing in Theorem 1.3. In Section 3, we present further results related to Theo-
rem 1.3, including an application to generalized Bruhat interval polytopes and comments
on what can be said about general r. This is an extended abstract of the full article [9].

2 Background and Definitions

2.1 Nonnegative Flag Varieties

Let n ∈ Z+ and let r = {r1 < · · · < rk} ⊆ [n]. For a field k, let G = GLn(k), and
let Pr;n(k) denote the parabolic subgroup of G of block upper-triangular matrices with
diagonal blocks of sizes r1, r2 − r1, . . . , rk − rk−1, n − rk. We define the partial flag variety

Flr;n(k) := GLn(k)/ Pr;n(k).

As usual, we identify Flr;n(k) with the variety of partial flags of subspaces in k
n:

Flr;n(k) = {(V1 ⊂ · · · ⊂ Vk) : Vi a linear subspace of kn of dimension ri for i = 1, . . . , k}
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Let n = 4, r = (2),

(µI) ∈ R([4]2 ) such that

µ13 + µ24 = µ23 + µ14 < µ12 + µ34.

e24e14

e23

e13

e12

e34

Let n = 3, r = (1, 2, 3),

(µI) ∈ R23
such that

µ2 + µ13 = µ1 + µ23 < µ3 + µ12.

(2, 3, 1)

(1, 3, 2)

(3, 2, 1)

(3, 1, 2)

(2, 1, 3)

(1, 2, 3)

Figure 1: Coherent subdivision of the n = 4, r = 2 hypersimplex into positroid poly-
topes induced by a point µ ∈ FlDr≥0

(2),4 (left) and coherent subdivision of the n = 3

permutohedron into flag positroid polytopes induced by a point µ ∈ FlDr≥0
(1,2,3),3 (right).

We write Fln(k) for the complete flag variety Fl1,2,...,n;n(k). Note that Fln(k) can be identi-
fied with GLn(k)/B(k), where B(k) is the subgroup of upper-triangular matrices. There
is a natural projection π from Fln(k) to any partial flag variety by simply forgetting some
of the subspaces.

If A is an rk × n matrix such that Vri is the span of the first ri rows, we say that A
is a realization of V := (V1 ⊂ · · · ⊂ Vk) ∈ Flr;n. Given any realization A of V and any
1 ≤ i ≤ k, we have the Plücker coordinates or flag minors pI(A) where I ∈ ([n]ri

); concretely,
pI(A) is the determinant of the submatrix of A occupying the first ri rows and columns

I. This gives the Plücker embedding of Flr;n(k) into P
([n]r1

)−1 × · · · × P
([n]rk

)−1 taking V to((
pI(A)

)
I∈([n]r1

)
, . . . ,

(
pI(A)

)
I∈([n]rk

)

)
.

Definition 2.1. For integers 0 < r ≤ s < n, the (single-exchange) Plücker relations of type
(r, s; n) are polynomials in variables {xI : I ∈ ([n]r ) ∪ ([n]s )} defined as

Pr,s;n =

 ∑
j∈J\I

sign(j, I, J)xI∪jxJ\j

∣∣∣∣I ∈ (
[n]

r − 1

)
, J ∈

(
[n]

s + 1

) ,

where sign(j, I, J) = (−1)|{k∈J|k<j}|+|{i∈I|j<i}|. When r = s, the elements of Pr,r;n are
called the Grassmann-Plücker relations (of type (r; n)), and when r < s, the elements of
Pr,s;n are called the incidence-Plücker relations (of type (r, s; n)).

As in the introduction, let r = (r1 < · · · < rk) be a sequence of increasing integers
in [n]. We let Pr;n =

⋃
r≤s

r,s∈r
Pr,s;n, and let ⟨Pr;n⟩ be the ideal generated by Pr;n. It is

well-known that for any field k the ideal ⟨Pr;n⟩ set-theoretically carves out the partial

flag variety Flr;n(k) embedded in ∏k
i=1 P

(
k
([n]ri

)
)

via the Plücker embedding [16, §9].
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We refer to the subset of relations in Pr;n which are polynomial relations containing
precisely three terms as the three-term Plücker relations. We will now often drop the k from
our notation, with the understanding that k = R.

Definition 2.2. We say that a real matrix is totally positive if all of its minors are positive.
We let GL>0

n denote the subset of GLn of totally positive matrices.

There are two natural ways to define positivity for partial flag varieties. The first
notion comes from work of Lusztig [26]. The second notion uses Plücker coordinates,
and was initiated in work of Postnikov [29].

Definition 2.3. We define the (Lusztig) positive part of Flr;n, denoted by Fl>0
r;n , as the image

of GL>0
n inside Flr;n = GLn / Pr;n. We define the (Lusztig) nonnegative part of Flr;n, denoted

by Fl≥0
r;n , as the closure of Fl>0

r;n in the Euclidean topology.
We define the Plücker positive part (respectively, Plücker nonnegative part) of Flr;n to be

the subset of Flr;n where all Plücker coordinates are positive (respectively, nonnegative).1

It is well-known that the Lusztig positive part of Flr;n is a subset of the Plücker positive
part of Flr;n, and that the two notions agree in the case of the Grassmannian [34, Corollary
1.2]. The two notions also agree in the case of the complete flag variety [8, Theorem 5.21].
More generally, we have the following.

Theorem 2.4. [7, Theorem 1.1] The Lusztig positive (respectively, Lusztig nonnegative)
part of Flr;n equals the Plücker positive (respectively, Plücker nonnegative) part of Flr;n if
and only if the set r consists of consecutive integers.

See [7, Section 1.4] for more references and a nice discussion of the history. Since in
this abstract we will be mainly studying the case where r consists of consecutive integers,
we will use the two notions interchangeably when there is no ambiguity.

2.2 Tropical Geometry

Before discussing tropical varieties, we introduce the tropical hyperfield and what it
means to find a solution of a tropical polynomial. For more details, see [27] and [31].

Definition 2.5. Let T = R ∪ {∞} be the set underlying the tropical hyperfield, endowed
with the topology such that − log : R≥0 → T is a homeomorphism. Given a point
w ∈ T([n]r ), we define the support of w to be w = {S ∈ ([n]r ) : wS ̸= ∞}. When w is the

set of bases of a matroid, we identify w with that matroid. Let P
(

T([n]r )
)

be the tropical

projective space of T([n]r ), which is defined as
(
T([n]r ) \ {(∞, . . . , ∞)}

)
/ ∼, where w ∼ w′ if

w = w′ + (c, . . . , c) for some c ∈ R.
1The reader who is concerned about the fact that we are working with projective coordinates can replace

“all Plücker coordinates are nonnegative” by “all nonzero Plücker coordinates have the same sign”.
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For a point w = (w1, . . . , wm) ∈ Tm \ {(∞, . . . , ∞)}, we write w for its image in P(Tm).
For a = (a1, . . . , an) ∈ Zm, write a • w = a1w1 + · · ·+ amwm.

Definition 2.6. For a real homogeneous polynomial

f = ∑
a∈A

caxa ∈ R[x1, . . . , xm], where A ⊂ Zm
≥0 is finite and ca ∈ R \ {0} for all a ∈ A,

the extended tropical hypersurface Vtrop( f ) and the nonnegative tropical hypersurface V≥0
trop( f )

are subsets of the tropical projective space P(Tm) defined by

Vtrop( f ) =
{

w ∈ P(Tm)

∣∣∣∣ the minimum in min
a∈A

(a • w), if finite, occurs at least twice
}

,

and

V≥0
trop( f ) =

{
w ∈ P(Tm)

∣∣∣∣∣ the minimum in min
a∈A

(a • w), if finite, occurs at least twice,

at some a, a′ ∈ A such that ca and ca′ have opposite signs

}
.

We say that a point satisfies the tropical relation of f if it is in Vtrop( f ), and that it satisfies the
positive-tropical relation of f if it is in V≥0

trop( f ).

When f is a multihomogeneous real polynomial, we define Vtrop( f ) and V≥0
trop( f ) sim-

ilarly as subsets of a product of tropical projective spaces. We will consider tropical hy-
persurfaces of Plücker relations, yielding tropical analogues of partial flag varieties.

Definition 2.7. The tropicalization TrFlr;n of Flr;n, the nonnegative tropicalization TrFl≥0
r;n of

Flr;n, the flag Dressian FlDrr;n, and the nonnegative flag Dressian FlDr≥0
r;n are subsets of

∏k
i=1 P

(
T
([n]ri

)
)

defined as

TrFlr;n =
⋂

f∈⟨Pr;n⟩
Vtrop( f ) and TrFl≥0

r;n =
⋂

f∈⟨Pr;n⟩
V≥0

trop( f ),

FlDrr;n =
⋂

f∈Pr;n

Vtrop( f ) and FlDr≥0
r;n =

⋂
f∈Pr;n

V≥0
trop( f ).

When r = (d) consists of a single integer, one obtains the (nonnegative) tropicalization
of the Grassmannian and the (nonnegative) Dressian studied in [30, 31, 32, 4].

Remark 2.8. We record a useful equivalent description of the (nonnegative) tropicaliza-
tion of a partial flag variety using Puiseux series.

Definition 2.9. Let C = C{{t}} be the field of Puiseux series with coefficients in C, with
the usual valuation map val : C → T. Concretely, for f ̸= 0, val( f ) is the exponent of the
initial term of f , and val(0) = ∞. Let

C>0 = { f ∈ C : the initial coefficient of f is real and positive} and C≥0 = C>0 ∪ {0}.

The valuation val can also be applied coordinate wise, yielding a map val : Cn → Tn,
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Proposition 2.10. [27, Theorems 3.2.3 & 6.2.15][31, Proposition 2.2] We have

TrFlr;n = the closure of {val(p) : {(0, . . . , 0)} ̸= p ∈ Flr;n(C)} in ∏k
i=1 P

(
T
([n]ri

)
)

and

TrFl≥0
r;n = the closure of {val(p) : {(0, . . . , 0)} ̸= p ∈ Flr;n(C≥0)} in ∏k

i=1 P

(
T
([n]ri

)
)

.

2.3 Coherent Subdivisions

Consider a point µ = (µ1, . . . , µk) ∈ ∏k
i=1 P

(
T
([n]ri

)
)

such that its support µ is a flag

matroid. By construction, the vertices of the flag matroid polytope P(µ) have the form
eB1 + · · ·+ eBk where Bi is a basis of the matroid µ

i
for each i = 1, . . . , k.

Definition 2.11. We define Dµ to be the coherent subdivision of P(µ) induced by assign-
ing each vertex eB1 + · · ·+ eBk of P(µ) the weight µ1(B1) + · · ·+ µk(Bk). That is, the faces
of Dµ correspond to the faces of the lower convex hull of the set of points

{(eB1 + · · ·+ eBk , µ1(B1) + · · ·+ µk(Bk)) ∈ Rn × R : eB1 + · · ·+ eBk a vertex of P(µ)}.

In [13, Theorem A], it is shown that a point µ ∈ ∏k
i=1 P

(
T
([n]ri

)
)

is in the flag Dressian

FlDrr;n if and only if the all faces of the subdivision Dµ are flag matroid polytopes.

2.4 Oriented Flag Matroids

Let S = {−1, 0, 1} be the hyperfield of signs, introduced in [5]. For a polynomial f =

∑a∈A caxa ∈ R[x1, . . . , xm], we say that an element χ ∈ Sm is in the null set of f if the set
{sign(ca)χa}a∈A is either {0} or contains {−1, 1}.

Definition 2.12. An oriented matroid of rank r on [n] is a point χ ∈ S([n]r ), called a chirotope,
which is in the null set of each f ∈ Pr,r;n. Similarly, an oriented flag matroid of ranks r is a

point χ = (χ1, . . . , χk) ∈ ∏k
i=1 S

([n]ri
) such that χ is in the null set of each f ∈ Pr;n.

While these definitions may seem different from those in the standard reference [6] on
oriented matroids, one can show that Definition 2.12 is equivalent to [6, Definition 3.5.3].

Definition 2.13. A positively oriented matroid is an oriented matroid χ such that χ only
takes values 0 or 1. Similarly, we define a positively oriented flag matroid to be an oriented
flag matroid χ such that χ only takes values 0 or 1.
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A positroid M defines a positively oriented matroid χ = χM where χ takes value 1
on its bases and 0 otherwise. Every positively oriented matroid χ is realizable, i.e. has
the form χM for some positroid M [3]. Thus, each positively oriented flag matroid is
a sequence of positroids which is also an oriented flag matroid. However, we remark
that imposing the oriented flag matroid condition, as in Corollary 1.6, is stronger than
imposing that we have a realizable flag matroid whose consistent matroids are positroids.

Example 2.14. We give an example of a realizable flag matroid that has positroids as
its constituent matroids but is not a flag positroid. This example also appeared in [22,
Example 5] and [7, Example 6]. Let (M, M′) be matroids of ranks 1 and 2 on [3] whose
sets of bases are {1, 3} and {12, 13, 23}, respectively. Both are positroids. We can realize
(M, M′) as a flag matroid using the matrix[

a 0 b
c d e

]
,

where the minors a, b, ad,−bd, ae − bc are nonzero. In order to realize (M, M′) as a flag
positroid, we need all these minors to be strictly positive, which is impossible. Since
(M, M′) does not form an oriented flag matroid, this is consistent with Corollary 1.6.

3 Further Results

We begin by presenting two results that are crucial to the proof Theorem 1.3, and
which are also interesting in their own rights.

Theorem 3.1. Suppose µ = (µ1, µ2) ∈ P
(

T([n]r )
)
× P

(
T( [n]r+1)

)
satisfies every three-term

positive-tropical incidence relation. If the support µ is a flag matroid, then µ ∈ FlDr≥0
r,r+1;n.

We also expect that our proof of Theorem 3.1 in [9] adapts well to arbitrary perfect hy-
perfields, in the language of [5]. The following result gives a characterization of positively
oriented flag matroids (and equivalently, by Corollary 1.6, of flag positroids).

Theorem 3.2. The set of positively oriented flag matroids of ranks r can be identified with
the set of points of the nonnegative flag Dressian FlDr≥0

r;n whose coordinates are all either
0 or ∞.

We continue with a further corollary of Theorem 1.3. A generalized Bruhat interval poly-
tope [35, Definition 7.8 and Lemma 7.9] can be defined as the moment map image of the
closure of the torus orbit of a point A in the nonnegative part (G/P)≥0 (in the sense of
Lusztig) of a flag variety G/P. When r is a sequence of consecutive integers, it then fol-
lows from [7] that generalized Bruhat interval polytopes for Fl≥0

r;n are precisely the flag
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positroid polytopes of ranks r. In the complete flag case, a generalized Bruhat interval
polytope is just a Bruhat interval polytope [23], that is, the convex hull of the permutation
vectors (z(1), . . . , z(n)) for all permutations z lying in some Bruhat interval [u, v]. Thus,
we can now restate Corollary 1.5 as follows.

Corollary 3.3. For a flag matroid on [n] of consecutive ranks r, its flag matroid polytope
is a generalized Bruhat interval polytope if and only if its (≤ 2)-dimensional faces are
generalized Bruhat interval polytopes. In particular, for a complete flag matroid on [n],
its flag matroid polytope is a Bruhat interval polytope if and only if its (≤2)-dimensional
faces are Bruhat interval polytopes.

As a final point, we comment on what happens when r does not consist of consecutive
integers. A key fact we use about flag positroids of consecutive ranks is that they can
be extended to complete flag positroids. This is no longer necessarily true if r does not
consist of consecutive integers.

Example 3.4. Let the sets of bases of M and M′ be {1, 2, 3, 4} and {123, 234}, respectively.
These form a flag positroid (M, M′) on [4] of ranks (1, 3). After row reduction, a realiza-
tion of this flag matroid can be written as1 a b c

0 x y 0
0 z w 0


where a, b, c > 0 and xw − yz > 0. The minors of the matrix formed by the first two rows
include x, y,−cx,−cy, which cannot be all nonnegative since c > 0 and not both of x and
y are zero. Thus, there is no flag positroid (M, M2, M′) with rank of M2 equal to 2.

Passing through complete flag positroids is a key step in our proof of Theorem 1.3 and,
in fact, most of Theorem 1.3 no longer holds if r does not consist of consecutive integers.
However, we still have the following:

Lemma 3.5. For any r, the modification of (c) of Theorem 1.3 to:

(c’) Every face in the coherent subdivision Dµ of P(µ) is the flag matroid polytope of a
positively oriented flag matroid.

is equivalent to (b) of Theorem 1.3.
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