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Abstract. We compute the Poincaré polynomials of the compactified Jacobians for
plane curve singularities with Puiseaux exponents (nd, md, md+ 1), and relate them
to the combinatorics of q, t-Catalan numbers in the non-coprime case. We also
confirm a conjecture of Cherednik and Danilenko for such curves.
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1 Introduction

In this paper, we study the topology of compactified Jacobians of plane curve singu-
larities. We focus on the case where the curve is reduced and locally irreducible (or
unibranched), and it is known [1, 2] that in this case compactified Jacobian is irreducible
as well.

Compactified Jacobians play an important role in modern geometric representa-
tion theory. First, they are closely related to Hilbert schemes of points on singular
curves, singular fibers in the Hitchin fibration and affine Springer fibers. In particu-
lar, counting points in the compactified Jacobians over finite fields is related to certain
orbital integrals [21, 20, 30]. Recent works [8, 19, 11] relate them to the representation
theory of Coulomb branch algebras, defined by Braverman, Finkelberg and Nakajima
[4]. Second, a set of conjectures of the third author, Rasmussen and Shende [26, 25] re-
lates the homology of compactified Jacobians to the Khovanov-Rozansky homology of the
corresponding knots and links. In particular, the conjectures imply that the homology
of the compactified Jacobian is expected to be determined by the topology of the link
or, in the unibranched case, by the collection of Puiseaux pairs of the singularity.

The progress in explicit computations of the homology of compactified Jacobians
has been quite slow. For the quasi-homogeneous curves C = {xm = yn}, GCD(m, n) =
1, the homology was computed in many sources, starting with Lusztig and Smelt [22].
The key observation is that in this case JC admits a paving by affine cells. These cells
and their dimensions have been given a number of combinatorial interpretations in
[12, 13, 15, 18], where they were related to q, t-Catalan combinatorics. In [27, 28] the
third author and Yun determined the ring structure on the homology in this case.
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In a different direction, Piontkowski [29] have computed the homology of com-
pactified Jacobians for curves with one Puiseaux pair defined by the parameterization
(x, y) = (tn, tm + . . .), GCD(m, n) = 1. He showed that JC again admits an affine
paving, and the combinatorics of cells depends only on (m, n) and hence agrees with
the quasi-homogeneous case (x, y) = (tn, tm). Moreover, Piontkowski computed the
cell decompositions for some curves with two Puiseaux exponents, where the combi-
natorics becomes rather subtle. In our main theorem, we vastly generalize the results
of Piontkowski and prove the following.

Theorem 1.1. Suppose GCD(m, n) = 1 and d ≥ 1, consider the plane curve singularity C
defined by the parameterization

(x(t), y(t)) = (tnd, tmd + λtmd+1 + . . .), λ 6= 0 (1.1)

Then:

a) The compactified Jacobian JC admits an affine paving where the cells are in bijection
with Dyck paths D in an (nd)× (md) rectangle.

b) The Poincaré polynomial of JC is given by

PJC(t) = ∑
D∈Dyck(nd,md)

t2(δ−dinv(D))

where dinv is a certain statistics on Dyck paths defined in Section 4, and δ is the number
of boxes weakly under the diagonal in an (nd)× (md) rectangle.

c) In particular, the Poincaré polynomial does not depend on λ (as long as it is nonzero) or
on the higher order terms in (1.1).

We call the curves (1.1) generic curves, since a generic curve with the first Puiseaux
pair (nd, md) has this form. The affine paving in the statement of Theorem 1.1 is
obtained by intersecting the compactified Jacobian with the Schubert cell paving of
the affine Grassmannian. Thus one can define a partial order on the strata such that
the boundary of an affine cell lies in the union of the cells with smaller indices in this
order. Hence we conclude:

Corollary 1.2. For generic curves, the cohomology H∗(JC) is supported in even degrees and
the weight filtration on H∗(JC) is pure in the sense of [10, 9].

Very recently, Kivinen and Tsai [20] used completely different methods (p-adic
harmonic analysis) to count points in arbitrary compactified Jacobians over finite
fields Fq. They proved that the result is always a polynomial in q and hence recovers
the weight polynomial of JC. Given the above purity result, for generic curves the
Poincaré polynomial of JC agrees with the weight polynomial and our result agrees
with theirs.

As a corollary of Theorem 1.1, we get that the Euler characteristic of JC is given
by the number of Dyck paths in (nd) × (md) rectangle. For example, for the curve
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C = (t4, t6 + t7) the Euler characteristic χ(JC) = 23 is equal to the number of Dyck
paths in a 4× 6 rectangle, in agreement with [29].

Next, we address the conjectures of Cherednik, Danilenko and Philipp [6, 7], which
proposed an expression for the Poincaré polynomials of compactified Jacobians in
terms of certain matrix elements of certain operators in the double affine Hecke alge-
bra, see Section 5 for more details. We are able to prove this conjecture for generic
curves:

Theorem 1.3. Consider the two-variable polynomial

Cnd,md(q, t) = ∑
D∈Dyck(dn,dm)

qarea(D)tdinv(D) (1.2)

where area(D) is the number of full boxes between a Dyck path D and the diagonal. It satisfies
the following properties:

a) It is symmetric in q and t : Cnd,md(q, t) = Cnd,md(t, q)

b) At q = 1 it specializes to the Poincaré polynomial of JC (up to a linear change of the
variable).

c) It is given by the matrix element (γn,m(ed)(1), end) of the elliptic Hall algebra operator
γn,m(ed).

d) It agrees with the Cherednik-Danilenko conjecture (Conjecture 5.1).

Compositional Rational Shuffle Theorem [23] implies a different, manifestly sym-
metric in q, t, explicit formula for Cnd,md(q, t), which implies part (a). Part (c) also
follows from the Compositional Rational Shuffle Theorem, part (d) follows from (c).
Part (b) is a rephrasing of Theorem 1.1. Theorem 1.3(a) allows us to give a simple
formula for the Poincaré polynomial of the compactified Jacobian:

Corollary 1.4. The Poincaré polynomial of JC equals

t2δCnd,md(1, t−2) = t2δCnd,md(t−2, 1) = ∑
D∈Dyck(nd,md)

t2(δ−area(D)).

A more detailed version of the material presented in this extended abstract can be
found in [14].

2 Background

2.1 Compactified Jacobians and semigroups

Let C be an irreducible (and reduced) plane curve singularity at (0, 0). We can
parametrize C as (x(t), y(t)), and write the local ring of functions on C as OC =
C[[x(t), y(t)]] ⊂ C[[t]]. Given a function f (t) ∈ OC, we can write

f (t) = αktk + αk+1tk+1 + . . . , αk 6= 0
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and define the order of f (t) by Ord f (t) = k. The compactified Jacobian JC is de-
fined as the moduli space of rank one torsion free sheaves on C or, equivalently,
OC-submodules M ⊂ C[[t]]. Note that M is an OC–submodule if and only if x(t)M ⊂
M, y(t)M ⊂ M. Given such a subspace M, we define

∆M = {Ord f (t) : f (t) ∈ M} ⊂ Z≥0.

In particular, for M = OC we obtain the semigroup of C:

Γ = ∆OC = {Ord f (t) : f (t) ∈ OC}.

If M is an OC-submodule then ∆M is a Γ-module: ∆M + Γ ⊂ ∆M. This motivates the
following

Definition 2.1. Given a subset ∆ ⊂ Z≥0, we define the stratum in the compactified Jacobian:

J∆ := {M ⊂ C[[t]] : OC M ⊂ M, ∆M = ∆}.

Clearly, J∆ give a subdivision of JC and J∆ is empty if ∆ is not Γ-invariant. As a
warning to the reader, J∆ could be empty even if ∆ is Γ-invariant.

2.2 Generic curves

It is well known that any curve C can be parametrized using Puiseaux expansion:

x = tnd, y = tmd + λtmd+1 + . . . , GCD(m, n) = 1.

If d = 1 then C has one Puiseaux pair (n, m) and its link is the (n, m) torus knot. In
this paper, we will be mostly interested in the case d > 1.

Definition 2.2. Assume d > 1. A curve C is called generic if λ 6= 0.

It is easy to see that the definition of a generic curve is symmetric in n and m.
Indeed, we can choose the new parameter

t̃ = md
√

y(t) = t md
√

1 + λtmd+1 + . . . = t
(

1 +
λ

md
t + . . .

)
,

then
y = t̃md, x = t̃nd − nλ

md
t̃nd+1 + . . . .

If n = 1, then the curve has one Puiseaux pair (d, md + 1). Otherwise, it has two
Puiseaux pairs (nd, md) and (d, md + 1), which completely determine the topological
type of the corresponding knot as a (d, mnd + 1)-cable of the (n, m) torus knot.
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2.3 Invariant subsets

. A subset ∆ ⊂ Z≥0 is called 0-normalized if 0 ∈ ∆. We will mostly consider 0-
normalized subsets, as any subset of Z≥0 can be shifted to a unique 0-normalized
one. We call ∆ cofinite if Z≥0 \ ∆ is finite. For a cofinite subset ∆ and x ≥ 0 we write

Gaps(x) = Gaps∆(x) := [x,+∞) \ ∆.

Definition 2.3. We call ∆ an (nd)-invariant subset if nd + ∆ ⊂ ∆. A number a is called an
(nd)-generator of ∆ if a ∈ ∆ but a− nd /∈ ∆.

It is clear that for a cofinite (nd)-invariant subset ∆ there is exactly one (nd)-
generator in each remainder modulo nd. We will group them according to their
remainders modulo d, so that the generators aj,i, i = 0, . . . , n− 1 all have remainder j
modulo d. We will further reorder aj,i so that aj,i + m ≡ aj,i+1 modulo n. We write

∆j =
⋃

i=0,...,n−1

(aj,i + dnZ≥0), ∆ =
⋃

j=0,...,d

∆j.

We will call the integers aj,i + md the combinatorial syzygys of ∆. It is clear that in
each remainder modulo d there are n such syzygys.

3 Topology of compactified Jacobians

Throughout this section we fix a generic curve C with parametrization

(x(t), y(t)) = (tnd, tmd + λtmd+1 + . . .)

with λ 6= 0. We will use the notation OC = C[[x(t), y(t)]] for the ring of functions on
C.

We also fix a cofinite (nd, md)-invariant subset ∆ ⊂ Z≥0 with (nd)-generators aj,i
as in Section 2.3. We denote by A = {aj,i} the set of all (nd)-generators. The main
goal of this section is to describe the stratum J∆ in the compactified Jacobian JC.

3.1 Equations for J∆

Consider an OC-module M ∈ J∆.

Lemma 3.1. Then for all k ∈ ∆ there exist a unique canonical representative

fk = tk + ∑
l∈Gaps(k)

fk;l−ktl ∈ M.

The canonical generators form a topological basis in M.
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Vice versa, consider a collection of polynomialsga = ta + ∑
l∈Gaps(a)

ga;l−atl|a ∈ A

 .

It will be convenient to consider the coefficients ga;l−a for l ∈ Gaps(a) as parameters.
For l 6= Gaps(a) we use conventions

ga;0 = 1, ga;l−a = 0 if l ∈ ∆ \ {a}.
Let N be the OC-submodule generated by the collection, and let Ñ be the C[[tdn]]
submodule generated by the same collection. Then N ∈ J∆ iff N = Ñ, or, equivalently,

y(t)ga ∈ Ñ ∀ a ∈ A.

For every a ∈ A let sa+dm be a polynomial in t whose coefficients are polynomials in
ga′;r, a′ ∈ A, r ∈ Z>0 such that

y(t)ga − sa+dm ∈ Ñ

and
sa+dm = ∑

l∈Gaps(a+dm)

sa+dm;l−dm−atl.

The condition y(t)ga ∈ Ñ is equivalent to sa+dm = 0 for all a ∈ A. Thus J∆ is a subset
of the affine space Gen = CG(∆) defined by E(∆) equations:

G(∆) = ∑
i,j
|Gaps(aj,i)|, E(∆) = ∑

i,j
|Gaps(aj,i + dm)|.

In particular, the coefficients gaj,i;x for x ∈ Gaps(aj,i) are natural coordinates on Gen.
The equations are

saj,i+dm;x(g) = 0, aj,i + dm + x /∈ ∆.

3.2 Admissibility

Definition 3.2. We call x > 0 j-suspicious if aj,i + md + x /∈ ∆ for all i, and suspicious if it
is j-suspicious for at least one remainder j.

Lemma 3.3. A number x is j-suspicious if and only if ∆j+x ⊂ ∆j + md + nd + x.

Definition 3.4. We call ∆ admissible, if 1 is not suspicious for ∆.

Lemma 3.5. Suppose that J∆ 6= ∅. Then ∆ is admissible.

Proof. Suppose ∆ is not admissible, then there exists some j such that aj,i +md+ 1 /∈ ∆
for all i. This implies aj,i + 1 /∈ ∆ for all i, so we have canonical generators gaj,i =

taj,i + gaj,i;1taj,i+1 + . . . If aj,i + md = aj,i+1 + αnd then we get

tαndgaj,i+1 − y(t)gaj,i = tαndgaj,i+1 − (tmd + λtmd+1 + . . .)gaj,i

= (gaj,i+1;1 − gaj,i;1 − λ)taj,i+md+1 + . . .

hence gaj,i+1;1 − gaj,i;1 − λ = 0 for all i. By adding these for all i we get nλ = 0,
contradiction.
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3.3 Paving by affine spaces

Recall that Gen has coordinates gaj,i;x where aj,i + x /∈ ∆. Sometimes we will use the
notation gaj,i;x for all x, assuming

gaj,i;x = 0 if aj,i + x ∈ ∆. (3.1)

It is also convenient to consider Gen as a graded vector space Gen =
⊕∞

x=1 Genx,
where Genx is spanned by gaj,i;x with a fixed x. There are coordinates on Gen that are
most suitable for study of equations sk in the case ∆ is admissible. Let us define

g−j,i;x = gaj,i;x − gaj,i+1;x, i = 0, . . . , n− 1.

These functions are linearly dependent, for example ∑i g−j,i;x = 0. We choose a subset
of these as follows:

(1) If x is j-suspicious, we define I(j; x) = {0, . . . , n− 2}.

(2) If x is not j-suspicious, we can define I(j; x) to be a set of i such that aj,i + dm +
x /∈ ∆.

Lemma 3.6. The functions g−j,i;x, i ∈ I(j; x) are linearly independent.

Finally, if there exists at least one integer i such that aj,i + x /∈ ∆, then we set

g+j;x = ∑
i:aj,i+x/∈∆

gaj,i;x.

Thus if I(j; x) 6= ∅ then {g−j,i;x, g+j;x}, i ∈ I(j; x) are linearly independent linear coor-
dinates on the space of generators Genx. For each j, x such that I(j; x) 6= ∅ let us fix
a subset Ī(j; x) such that

{
g−j,i;x, g+j;x, gaj,i′ ;x

}
i ∈ I(j; x), i′ ∈ Ī(j; x) is a basis of linear

coordinates on Genx. For I(j; x) = ∅ set Ī(j; x) = {0, 1, . . . , n− 1}. As we will see later
the coordinates gaj,i′ ;x, i′ ∈ Ī(j; x) are not constrained by the equations for J∆, so we
call them free variables. On the rest of the coordinates g∗∗;∗ we introduce a partial order
generated as follows. Allowing ∗ to take any independent values,

g−∗,∗;x < g+∗;x < g−∗,∗,x+1,

coordinates g−∗,∗;x are ordered in any arbitrary way, and

g+j+1;x < g+j;x

(cyclic notation modulo d) for j 6= d− x− 1.

Lemma 3.7. For x such that aji + dm + x /∈ ∆ we have

saj,i+dm;x = g−j,i;x + polynomial in free variables and variables < g−j,i;x (3.2)

and if x is j-suspicious then

n−1

∑
i=0

saj,i+dm;x = λg+j;x−1 + polynomial in free variables and variables < g+j;x−1 (3.3)
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Proposition 3.8. If ∆ is admissible then

J∆ = Cdim(∆), dim(∆) = G(∆)− E(∆).

Proof. Recall that J∆ is defined by the equations saj,i+dm;x = 0 for j, i, x such that aj,i +
dm + x /∈ ∆. We can modify this system of equations as follows. Whenever x is j-

suspicious, replace saj,n−1+dm;x = 0 by
n−1
∑

i=0
saj,i+dm;x = 0. Clearly, the new system of

equations is equivalent to the old one. Furthermore, according to Lemma 3.7, the new
system of equations expresses some of the elements of a basis of the space Gen in
terms of the smaller variables with respect to the order < . Therefore, one can use the
equations to eliminate these variables one by one. Since dim Gen = G(∆) and there
are E(∆) equations, we obtain the required result.

4 Combinatorics

4.1 More on invariant subsets

Let ∆ be an (nd, md)-invariant subset. We call b an (md)-cogenerator for ∆ if b /∈ ∆
but b + md ∈ ∆.

Lemma 4.1. Let ∆ be an admissible cofinite (nd, md)-invariant subset. The dimension of
J∆ equals to the number of pairs (a, b) such that a is an (nd)-generator of ∆, b is an (md)-
cogenerator and a < b.

Let Θ be an n, m-invariant subset in Z. As before, n, m are relatively prime.

Definition 4.2. The skeleton S of Θ is the union of the n-generators and m-cogenerators of
Θ.

4.2 Equivalence classes of dn, dm-invariant subsets

Let us remind the definitions of the equivalence classes of invariant subsets from [16].
Let Θ =

{
Θ0

0, . . . , Θ0
d−1

}
be a collection of 0-normalized (n, m)-invariant subsets. For

every (x1, . . . , xd−1) ∈ Rd−1
≥0 consider

∆ = ∆(x1, . . . , xd−1) :=
d−1⋃
k=0

(dΘ0
k + xk),

where x0 = 0. If all shift parameters x0, . . . , xd−1 are integers with different remainders
modulo d, then ∆ is a cofinite 0-normalized (nd, md)-invariant subset.

For each Θ0
k let S0

k be its skeleton. Consider the space Rl
≥0 of all possible shifts

x1, . . . , xd−1. Consider the subset ΣΘ ⊂ Rd−1
≥0 consisting of all shifts x1, . . . , xd−1 for

which there exists i and j such that

dS0
i + xi ∩ dS0

j + xj 6= ∅.
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Clearly, ΣΘ is a hyperplane arrangement. We say that two (nd, md)-invariant subsets
are equivalent if the corresponding shifts belong to the same connected component of
the complement to ΣΘ. One can show that every connected component of the comple-
ment to ΣΘ contains at least one point corresponding to an (dn, dm)-invariant subset.
To summarize, in order to get all the equivalence classes of the cofinite (dn, dm)-
invariant subsets, one should consider all possible d-tuples of 0-normalized (n, m)-
invariant subsets Θ0

0, . . . , Θ0
d−1, and for each such d-tuple consider the set of connected

components of the complement to ΣΘ in the space of shifts. Furthermore, one should
consider these connected components up to symmetry: if two of the subsets are equal
Θ0

i = Θ0
j then switching the corresponding shift coordinates xi and xj interchanges

the connected components corresponding to the same equivalence class of (dn, dm)-
invariant subsets.

4.3 Admissible representatives

Let ∆ be a cofinite 0-normalized (dn, dm)-invariant subset. In the spirit of the above
notations, let ∆ =

⋃
k dΘ0

k + xk + k, where (x1, . . . , xd−1) ∈ dZd−1
≥0 ⊂ Rd−1

≥0 , x0 = 0, and
Θ0

0, . . . , Θ0
d−1 are 0-normalized (n, m)-invariant subsets. Denote Θk := Θ0

k +
xk
d for all

k ∈ {0, . . . , d− 1}.
In these notations we get that ∆ is admissible if for every k ∈ {0, . . . , d− 1} one

has
dΘk+1 + (k + 1) * dΘk + k + dn + dm + 1,

or, equivalently,
Θk+1 * Θk + n + m.

The following is our key combinatorial result:

Theorem 4.3. Every equivalence class contains a unique admissible representative.

Let Inv(dm, dn) be the set of cofinite 0-normalized (dm, dn)-invariant subsets. The
following Theorem is the main result of [16]:

Theorem 4.4 ([16]). There exists a bijection D : Inv(dm, dn)/∼ → Dyck(dm, dn), where
∼ is the equivalence relation defined above, and Dyck(dm, dn) is the set of (dm, dn)-Dyck
paths. Furthermore, dim ∆ = δ− dinv(D(∆)) for all ∆ ∈ Inv(nd, md).

4.4 Proof of Theorem 1.1

We combine all of the above results to prove Theorem 1.1. The compactified Jacobian
JC is stratified into locally closed subsets J∆ and by Proposition 3.8 they are isomor-
phic to affine spaces of dimension dim(∆) if ∆ is admissible and empty otherwise.
Therefore the Poincaré polynomial has the form

P(t) = ∑
∆ admissible

t2 dim(∆).
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Next, we consider the infinite set Inv(nd, md) of all (nd, md)-invariant subsets in Z≥0
and the equivalence relation on it. By Theorem 4.3 in each equivalence class there is
a unique admissible representative. Furthermore, by Lemma 4.1 the “combinatorial
dimension" dim(∆) depends only on the order of generators and cogenerators, and
hence is constant on each equivalence class. Therefore we can write

P(t) = ∑
∆∈Inv(nd,md)/∼

t2 dim(∆).

Finally, by Theorem 4.4 there is a bijection between the equivalence classes and Dyck
paths in (nd)× (md) rectangle, and the statistic dim(∆) on the former corresponds to
the statistic codinv = δ− dinv on the latter, so

P(t) = ∑
D∈Dyck(nd,md)

t2(δ−dinv(d)).

5 Rational Shuffle Theorem and generic curves

5.1 Elliptic Hall algebra

We briefly recall some notations for the elliptic Hall algebra [5], and refer the reader
to [3, 17, 23, 24] for more precise statements and details.

The elliptic Hall algebra E is generated by elements Pkn,km for all possible (kn, km).
The universal cover of the group SL(2, Z) acts on E by automorphisms. For coprime
m and n we denote by γn,m an element of SL(2, Z) such that γn,m(1, 0) = (n, m). Then
one gets Pkn,km = γn,m(Pk,0).

Let Λ be the ring of symmetric functions in infinitely many variables. The elliptic
Hall algebra E acts on Λ, and the multiplication operators by power sum symmetric
functions pk correspond (up to a scalar) to the generators Pk,0 of E . Furthermore, E is
graded, and the grading is compatible with the grading on Λ. The generator Pkn,km
has degree kn.

5.2 Cherednik-Danilenko conjecture

Consider a Puiseaux expansion of plane curve singularity:

y = b1x
m1
r1 + b2x

m2
r1r2 + b3x

m3
r1r2r3 + . . . , bi 6= 0.

Here we assume GCD(mi, r1 · · · ri) = 1. The exponents are related to characteristic
pairs (ri, si) by the equations m1 = s1, mi = si + rimi−1 (i > 1). Given a sequence of
characteristic pairs (r1, s1), . . . , (r`, s`), the authors of [6] define a sequence of symmet-
ric functions f`+1, f`, . . . , f1 by setting f`+1 = p1 and fk = γr`,s`( fk+1)(1), where fk+1
is viewed as a multiplication operator on Λ, and thus an element of E .

Conjecture 5.1 ([6]). Let f1 be the symmetric function of degree r1 · · · r` obtained by the above
procedure. The specialization of ( f1, er1···r`) at t = 1 agrees with the Poincaré polynomial of
the compactified Jacobian of an algebraic curve with characteristic pairs (r1, s1), . . . , (r`, s`).
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In the case of generic curves (1.1) we have

y = x
m
n + λx

md+1
nd + . . . , m1 = m, r1 = n, m2 = md + 1, r2 = d.

This means that s1 = m and s2 = 1. To follow the above procedure, we first need to
compute the operator γr2,s2(p1) and the corresponding symmetric function f2. By [17,
Corollary 6.5] we have f2 = γd,1(p1)(1) = Pd,1(1) = ed. Therefore the next symmetric
function is f1 = γn,m(ed)(1). Then ( f1, end) = Cnd,md(q, t) follows from Rational Shuffle
Theorem [23]. We conclude that for generic curves Conjecture 5.1 is true and follows
from Theorem 1.1.
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