Séminaire Lotharingien de Combinatoire **89B** (2023) Article #66, 12 pp.

Shifted key polynomials

Eric Marberg^{*1} and Travis Scrimshaw^{†2}

¹Department of Mathematics, Hong Kong University of Science and Technology ²Department of Mathematics, Hokkaido University

Abstract. We introduce shifted analogues of key (resp. atom) polynomials that we call P- and Q-key (resp. atom) polynomials. These families are defined in terms of isobaric divided difference operators applied to dominant symplectic and orthogonal Schubert polynomials. We establish a number of fundamental properties of these functions, formally similar to classical results on key polynomials. For example, we show that our shifted key polynomials are partial versions of Schur P- and Q-functions in a precise sense. We conjecture that symplectic/orthogonal Schubert polynomials expand positively in terms of P/Q-key polynomials. As evidence for this conjecture, we also show that shifted key polynomials are the characters of certain shifted analogues of Demazure crystals.

Keywords: Schur P/Q-function, key polynomial, Lie superalgebra, Demazure crystal

1 Introduction

Fix a positive integer *n*. Set $G = GL_n(\mathbb{C})$ and write $B \subseteq G$ for the Borel subgroup of upper triangular matrices. Let K be either the orthogonal group $O_n(\mathbb{C})$ or symplectic group $Sp_n(\mathbb{C})$ (when *n* is even). For brevity, we omit the rank and field. The *(complete) flag variety* G/B decomposes into finitely many *B*-orbits indexed by the symmetric group S_n . The closures of these orbits give rise to the *Schubert classes* in $H^*(G/B)$. The cohomology ring $H^*(G/B)$ is naturally a quotient of $\mathbb{Z}[\mathbf{x}] = \mathbb{Z}[x_1, x_2, ...]$ and the well-known *Schubert polynomials* $\mathfrak{S}_w \in \mathbb{Z}[\mathbf{x}]$ for $w \in S_n$ provide representatives for the Schubert classes.

The flag variety G/B also decomposes into finitely many K-orbits, indexed by involutions in S_n when K = O and by fixed-point-free involutions in S_n when K = Sp and n is even. The closures of the K-orbits give rise to cohomology classes in $H^*(G/B)$ that are positive sums of Schubert classes. Polynomial representatives for these classes are provided by the *orthogonal* and *symplectic Schubert polynomials* (which we abbreviate as K-*Schubert polynomials*) characterized in [22]. A precise expansion of K-Schubert polynomials into usual Schubert polynomials was given in [3]; see also [5, 8].

It is known [15, Ex. 2.2.2] that $\mathfrak{S}_w = \mathbf{x}^{\lambda}$ whenever $w \in S_n$ has *Rothe diagram* equal to the Young diagram of a partition $\lambda = \lambda(w)$. Such *w* are called *dominant* and correspond

^{*}emarberg@ust.hk. Partially supported by Hong Kong RGC grant GRF 16306120.

[†]tcscrims@gmail.com. Partially supported by Grant-in-Aid for JSPS Fellows 21F51028.

to GL dominant weights. There exists a stable limit F_w of \mathfrak{S}_w known as a *Stanley symmetric function* [21], and when w is dominant, it holds that $F_w = s_{\lambda(w)}$ is a Schur function. Combining the *Billey–Jockusch–Stanley* (*BJS*) *formula* [2] for \mathfrak{S}_w with the stable limit shows that if $w \in S_n$ is dominant, then $s_{\lambda(w)}$ is the weight-generating function for the set RF(w) of factorizations of reduced words for w into decreasing subwords. (We refer to elements of RF(w) as *reduced factorizations*.) Morse and Schilling showed this directly in [19] by constructing a (*Kashiwara*) *crystal* [12] on the set RF(w).

The BJS formula for \mathfrak{S}_w is a sum over a certain class of *bounded reduced factorizations* BRF(w) \subset RF(w), and so we can restrict the crystal structure on RF(w) to this subset and consider the resulting connected components. These connected components were shown in [1] to be the crystals for *B*-representations called *Demazure modules* that are constructed as "partial" versions of highest weight GL-representations. The characters of these \mathfrak{gl}_n -*Demazure crystals* are the so-called *key polynomials* $\kappa_{u\lambda}$; here $u \in S_n$ and λ is a partition with at most n parts.

The precise definition of a key polynomial is $\kappa_{u\lambda} = \pi_u \mathfrak{S}_w$ where π_u is an *isobaric divided difference operator* and w is a dominant permutation with $\lambda(w) = \lambda$. For each choice of $K \in \{0, Sp\}$, there is an analogous notion of a K-*dominant* involution z. These elements index the K-Schubert polynomials that are products of binomials $x_i + x_j$ indexed by positions in the associated Rothe diagram. By considering all expressions of the form $\pi_u \mathfrak{S}_z^K$ where z is a K-dominant involution in S_n , we obtain a new family of objects that we refer to as *P*- and *Q*-key polynomials, or collectively as *shifted key polynomials*.

Using the fact that each $\mathfrak{S}_z^{\mathsf{K}}$ is an \mathbb{N} -linear combination of Schubert polynomials, we can show that each shifted key polynomial is an \mathbb{N} -linear combination of key polynomials (see Theorem 3.4). This suggests that shifted key polynomials may form a combinatorially interesting family. Key polynomials are partial versions of Schur functions, since if $w_0 \in S_n$ denotes the reverse permutation then $s_\lambda(x_1, x_2, \ldots, x_n) = \kappa_{w_0\lambda}$. Similarly, we show that *P*- and *Q*-key polynomials are partial versions of the Schur *P*- and *Q*-functions related to the projective representation theory of S_n (see Theorem 3.5).

Classical key polynomials form a \mathbb{Z} -basis for all polynomials, are uniquely indexed by *weak compositions*, and decompose every Schubert polynomial with positive coefficients. Shifted key polynomials are not so well-behaved: they are not linearly independent over \mathbb{Z} , nor is it clear how to index them uniquely. In spite of this, we conjecture (Conjecture 3.7) that K-Schubert polynomials also expand positively for some choice of shifted key polynomials.

In order to classify a good set of linear independent shifted key polynomials, we consider a certain "truncated" crystal structure on a set of bounded reduced factorizations associated to an involution z, analogous to constructions in [1, 19]. However, in our case, the crystal will not be for \mathfrak{gl}_n but for the queer Lie superalgebra \mathfrak{q}_n and its extended version \mathfrak{q}_n^+ recently introduced in [18]. The full set of reduced factorizations relevant to K-Schubert polynomials were given a $\mathfrak{q}_n/\mathfrak{q}_n^+$ crystal structure in [16, 18]. We show in

Theorem 3.8 that when this crystal structure is restricted to its bounded elements for a K-dominant involution, we obtain a connected object whose character is a shifted key polynomial. We conclude by describing a crystal-theoretic generalization of our conjecture that K-Schubert polynomials expand positively into shifted key polynomials.

This extended abstract is organized as follows. Section 2 gives some background on key polynomials. Section 3 contains our main results on shifted key polynomials. We have omitted all proofs to save space. Complete arguments can be found in two full-length articles associated to this abstract, this first of which is available as [17].

2 Key polynomials, Schubert calculus, and crystals

Throughout, *n* is a positive integer, $[n] = \{1, 2, ..., n\}$, $\mathbb{N} = \{0, 1, 2, ...\}$, and $\mathbb{P} = \{1, 2, 3, ...\}$. Let $\mathbf{x} = (x_1, x_2, ...)$ be commuting indeterminates.

Define $S_{\infty} = \langle s_1, s_2, s_3, ... \rangle$ to be the group permutations of \mathbb{P} fixing all but finitely many elements, with $s_i = (i \ i + 1)$ denoting a simple transposition. Set $S_n = \langle s_i : i \in [n-1] \rangle \subset S_{\infty}$. A *reduced word* for $w \in S_{\infty}$ a minimal length sequence $i_1 i_2 ... i_{\ell}$ such that $w = s_{i_1} s_{i_2} \cdots s_{i_{\ell}}$, where $\ell(w) = \ell$ is the length of w. The group S_{∞} acts on the polynomial ring $\mathbb{Z}[\mathbf{x}]$ by permuting variables. The *Rothe diagram* of $w \in S_{\infty}$ is $D(w) = \{(i, w(j)) : i < j \text{ and } w(i) > w(j)\} \subset \mathbb{P} \times \mathbb{P}$.

A *word* is a possibly empty sequence of positive integers. For $w \in S_{\infty}$, let RF(w) denote the set of sequences $a = (a^1, a^2, a^3, \cdots)$ where each a^i is a strictly decreasing word such that the concatenation $a^1a^2a^3\cdots$ is a reduced word for w. We refer to elements of this set as *reduced factorizations* and define $RF_n(w)$ to be the set of such a with a^i empty for all i > n. In examples we express elements of $RF_n(w)$ as n-tuples rather than as infinite sequences. Let $BRF_n(w)$ denote the set of reduced factorizations in $RF_n(w)$ that are *bounded* in the sense that $i \le \min(a^i)$ for all nonempty a^i . Set $BRF(w) := \bigsqcup_{n=1}^{\infty} BRF_n(w)$.

A *weak composition* is a nonnegative integer sequence $\alpha = (\alpha_i \in \mathbb{N})_{i=1}^{\infty}$ with finite sum $|\alpha| := \sum_{i=1}^{\infty} \alpha_i$, and a *partition* is a weakly decreasing weak composition. We frequently omit the trailing 0's when writing weak compositions in examples. Given a weak composition α , let $\lambda(\alpha)$ be the partition sorting α and define $\mathbf{x}^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots$. There is a unique $u(\alpha) \in S_{\infty}$ such that $u(\alpha)\alpha$ is a partition $\lambda(\alpha)$, where the permutation acts on α by permuting indices; *e.g.*, if $\alpha = 1021$, then $\lambda(\alpha) = 2110$ and $u(\alpha) = 3142 = s_2 s_1 s_3$.

For $i \in \mathbb{P}$, let ∂_i be the *divided difference operator* on $f \in \mathbb{Z}[\mathbf{x}]$ defined by $\partial_i f = (f - s_i f)/(x_i - x_{i+1})$. The *isobaric divided difference operators* are then given by $\pi_i f := \partial_i(x_i f)$ and $\overline{\pi}_i := \pi_i - 1$. For $w \in S_\infty$ with reduced word $i_1 \cdots i_\ell$, define $\pi_w = \pi_{i_1} \cdots \pi_{i_\ell}$ and $\overline{\pi}_w = \overline{\pi}_{i_1} \cdots \overline{\pi}_{i_\ell}$; these formulas do not depend on the choice of reduced word. The *key polynomial* of a weak composition α is then $\kappa_\alpha := \pi_{u(\alpha)} \mathbf{x}^{\lambda(\alpha)}$ while the *atom polynomial* of α is $\overline{\kappa}_\alpha = \overline{\pi}_{u(\alpha)} \mathbf{x}^{\lambda(\alpha)}$. It is well-known that $\{\kappa_\alpha :$ weak compositions $\alpha\}$ is a basis for $\mathbb{Z}[\mathbf{x}]$ and that key polynomials are unitriangular with $\kappa_\alpha = \mathbf{x}^\alpha + (\text{lower order terms})$ with respect to lexicographic order [20, Cor. 7]. Key polynomials are related to atom polynomials by the identity $\kappa_{\alpha} = \sum_{\beta \leq \alpha} \overline{\kappa}_{\beta}$, where we write $\alpha \leq \beta$ if $\lambda(\alpha) = \lambda(\beta)$ and $u(\alpha) \leq u(\beta)$ in Bruhat order. For more background on key polynomials, see [20].

A permutation $w \in S_{\infty}$ is *dominant* if its Rothe diagram D(w) is the Young diagram $D_{\lambda} = \{(i, j) \in \mathbb{P} \times \mathbb{P} : j \leq \lambda_i\}$ of a partition $\lambda = \lambda(w)$. This occurs precisely when w is 132-avoiding [15, Ex. 2.2.2]. The *Schubert polynomial* of $w \in S_{\infty}$ is defined recursively by setting $\mathfrak{S}_w = \mathbf{x}^{\lambda(w)}$ when w is dominant and requiring that $\mathfrak{S}_{ws_i} = \partial_i \mathfrak{S}_w$ for w(i) > w(i+1) [13]. For any $w \in S_{\infty}$ the Billey–Jockusch–Stanley formula [2] asserts that

$$\mathfrak{S}_w = \sum_{a \in \mathrm{BRF}(w)} \mathbf{x}^{\mathrm{wt}(a)}, \qquad \text{where } \mathrm{wt}(a) := (\ell(a^1), \ell(a^2), \dots). \tag{2.1}$$

Key polynomials can be defined in terms of Schubert polynomials, since if $w \in S_{\infty}$ is dominant of shape $\lambda(\alpha)$ then $\kappa_{\alpha} = \pi_{u(\alpha)} \mathfrak{S}_{w}$. On the other hand, every Schubert polynomial expands as a positive linear combination of key polynomials with an explicit combinatorial description [20, Thm. 4].

The BJS formula (2.1) can be interpreted as a character formula for certain *Demazure* crystals which we describe below. A crystal [12] for \mathfrak{gl}_n is a set \mathcal{B} with crystal operators $e_i, f_i: \mathcal{B} \to \mathcal{B} \sqcup \{\mathbf{0}\}$ for $i \in [n-1]$ and a weight function wt: $\mathcal{B} \to \mathbb{Z}^n$ that satisfy certain conditions. We can encode this data as a weighted directed graph called a crystal graph with vertices \mathcal{B} and edges $b \xrightarrow{i} f_i b$ whenever $b \in \mathcal{B}$ and $f_i b \neq 0$. For each $w \in S_{\infty}$, the set $\mathrm{RF}_n(w)$ already has a weight function as used in (2.1). Morse and Schilling [19] identified a natural \mathfrak{gl}_n -crystal structure on $\mathrm{RF}_n(w)$, using a certain bracketing rule to describe the crystal operators. See [4, §10] for more information on these crystals.

Suppose $w \in S_{\infty}$ is dominant of shape $\lambda = \lambda(w)$. Assume λ has at most n nonzero parts. Then $\text{RF}_n(w)$ contains a single bounded reduced factorization $b_{\lambda} \in \text{BRF}_n(w)$. This element has weight λ and is *highest weight* in the sense that $e_i b_{\lambda} = 0$ for all $i \in [n - 1]$. If α is a weak composition with $\lambda = \lambda(\alpha)$ and $u(\alpha) \in S_n$ then we define

$$\operatorname{Dem}_{n}(\alpha) := \left\{ a \in \operatorname{RF}_{n}(w) : \frac{e_{i_{1}}^{m_{1}} e_{i_{2}}^{m_{2}} \cdots e_{i_{\ell}}^{m_{\ell}} a = b_{\lambda} \text{ for some reduced word} \\ i_{1}i_{2}\cdots i_{\ell} \text{ of } u(\alpha) \text{ and some } m_{1}, m_{2}, \ldots, m_{\ell} \in \mathbb{N} \right\}.$$
 (2.2)

We refer to this subset as a \mathfrak{gl}_n -*Demazure crystal*. We identify it with the (connected) subgraph induced from the crystal graph of $\operatorname{RF}_n(w)$. See Figure 1 for an example. The *character* of any finite subset \mathcal{X} of a crystal \mathcal{B} is $\operatorname{ch}(\mathcal{X}) := \sum_{b \in \mathcal{X}} \mathbf{x}^{\operatorname{wt}(b)} \in \mathbb{Z}[\mathbf{x}]$.

Theorem 2.1 (See [4]). If α is a weak composition with $u(\alpha) \in S_n$ such that $\lambda(\alpha)$ has at most n parts then $ch(Dem_n(\alpha)) = \kappa_{\alpha}$.

On the other hand, Assaf and Schilling [1] have shown the following:

Theorem 2.2 ([1]). For any $w \in S_{\infty}$, the set $BRF_n(w)$ is a disjoint union of \mathfrak{gl}_n -Demazure crystals, in the sense that there is a weight-preserving isomorphism from each connected component of the subgraph of the crystal graph of $RF_n(w)$ induced on $BRF_n(w)$ to $Dem_n(\alpha)$ for some α .

Figure 1: For the dominant $w = 3142 = s_2s_1s_3 \in S_{\infty}$ of shape $\lambda(w) = (2, 1, 0)$, the \mathfrak{gl}_3 -crystal RF₃(w). The unique reduced factorization is $b_{\lambda(w)} = (21, 3, \emptyset)$. The elements in the \mathfrak{gl}_n -Demazure crystal Dem₃(α) for $\alpha = (2, 0, 1)$, which are all in BRF(w), are boxed.

Since $ch(BRF_n(w)) = \mathfrak{S}_w$ if *n* is sufficiently large, taking characters in this theorem recovers the nontrivial fact noted above that every Schubert polynomial expands as a positive linear combination of key polynomials [20, Thm. 4].

3 Shifted key polynomials

In this section, we introduce two shifted analogues of key and atom polynomials. We then present our main results about these polynomials and state a number of conjectures.

A partition λ is *strict* if its nonzero parts are all distinct; alternatively, if $\lambda = (\lambda_1 > \cdots > \lambda_{\ell} > 0)$. We say λ is *symmetric* if $\lambda^{\top} = \lambda$, where λ^{\top} is the conjugate shape. A partition λ is *skew-symmetric* if $\lambda^{\top} = \lambda$ and if *i* maximal such that $(i, i) \in D_{\lambda}$, then we cannot add or remove the box (i, i + 1) from D_{λ} and still have the diagram of a partition. When λ is symmetric, we define its *shifted diagram* to be $S(\lambda) = \{(i, j) \in D_{\lambda} : i \leq j\}$ and *strict shifted diagram* to be $\widehat{S}(\lambda) = \{(i, j) \in D_{\lambda} : i \leq j\}$.

Let $H(\lambda)$ (resp. $\hat{H}(\lambda)$) be the (*strict*) half diagram formed by sliding all boxes to the left of $S(\lambda)$ (resp. $\hat{S}(\lambda)$). This is the diagram of the strict partition λ^H (resp. $\lambda^{\hat{H}}$) whose parts count the number of boxes in the distinct rows of $S(\lambda)$ (resp. $\hat{S}(\lambda)$). The map $\lambda \mapsto \lambda^H$ (resp. $\lambda \mapsto \lambda^{\hat{H}}$) is a bijection from symmetric (resp. skew-symmetric) partitions to strict partitions. We say a weak composition α is (*skew-)symmetric* if $\lambda(\alpha)$ is (skew-)symmetric.

Definition 3.1. Let α be a symmetric weak composition, and set $\lambda = \lambda(\alpha)$. Define

$$\kappa_{\alpha}^{\mathsf{Q}} = \pi_{u(\alpha)} \left(\prod_{(i,j)\in S(\lambda)} (x_i + x_j) \right) \text{ and } \overline{\kappa}_{\alpha}^{\mathsf{Q}} = \overline{\pi}_{u(\alpha)} \left(\prod_{(i,j)\in S(\lambda)} (x_i + x_j) \right)$$

We refer to these functions as *Q-key polynomials* and *Q-atom polynomials*. Similarly, when

 α is skew-symmetric we define

$$\kappa_{\alpha}^{\mathsf{P}} = \pi_{u(\alpha)} \left(\prod_{(i,j)\in\widehat{S}(\lambda)} (x_i + x_j) \right) \text{ and } \overline{\kappa}_{\alpha}^{\mathsf{P}} = \overline{\pi}_{u(\alpha)} \left(\prod_{(i,j)\in\widehat{S}(\lambda)} (x_i + x_j) \right).$$

We refer to these functions as *P-key polynomials* and *P-atom polynomials*.

The definitions of κ_{α}^{P} and $\overline{\kappa}_{\alpha}^{P}$ make sense if α is symmetric but not skew-symmetric, but in this case there is always a skew-symmetric β with $\kappa_{\alpha}^{P} = \kappa_{\beta}^{P}$ and $\overline{\kappa}_{\alpha}^{P} = \overline{\kappa}_{\beta}^{P}$.

Example 3.2. If $\alpha = 3143$ then $\lambda(\alpha) = 4211$ is skew-symmetric with $\lambda^{\hat{H}} = 3100$ and $u(\alpha) = 3142 = s_2 s_1 s_3$, so we have

$$\kappa_{3143}^{\mathsf{P}} = \pi_2 \pi_1 \pi_3 \big((x_1 + x_2)(x_1 + x_3)(x_1 + x_4)(x_2 + x_3) \big) = \kappa_{0022} + \kappa_{0031} + \kappa_{0112}, \\ \overline{\kappa}_{3143}^{\mathsf{P}} = \overline{\pi}_2 \overline{\pi}_1 \overline{\pi}_3 \big((x_1 + x_2)(x_1 + x_3)(x_1 + x_4)(x_2 + x_3) \big) = \overline{\kappa}_{0022} + \overline{\kappa}_{0031}.$$

If $\alpha = 2031$ then $\lambda(\alpha) = 3210$ is symmetric with $\lambda(\alpha)^H = 3100$ and $u(\alpha) = s_2 s_1 s_3$, so

$$\begin{aligned} \kappa_{2031}^{\mathsf{Q}} &= \pi_2 \pi_1 \pi_3 \big(4x_1 x_2 (x_1 + x_2) (x_1 + x_3) \big) = 4\kappa_{103} + 4\kappa_{202} + 4\kappa_{1021}, \\ \overline{\kappa}_{2031}^{\mathsf{Q}} &= \overline{\pi}_2 \overline{\pi}_1 \overline{\pi}_3 \big(4x_1 x_2 (x_1 + x_2) (x_1 + x_3) \big) = 0. \end{aligned}$$

We refer to κ_{α}^{P} and κ_{α}^{Q} collectively as *shifted key polynomials*, and to $\overline{\kappa}_{\alpha}^{P}$ and $\overline{\kappa}_{\alpha}^{Q}$ as *shifted atom polynomials*. Shifted atom polynomials are related to shifted key polynomials via the *Bruhat order* \leq on S_{∞} . Recall that $\beta \leq \alpha$ if $\lambda(\beta) = \lambda(\alpha)$ and $u(\beta) \leq u(\alpha)$.

Proposition 3.3. We have $\kappa_{\alpha}^{\mathsf{P}} = \sum_{\beta \leq \alpha} \overline{\kappa}_{\beta}^{\mathsf{P}}$ and $\kappa_{\alpha}^{\mathsf{Q}} = \sum_{\beta \leq \alpha} \overline{\kappa}_{\beta}^{\mathsf{Q}}$. Moreover, $\kappa_{\alpha}^{\mathsf{Q}}$ and $\overline{\kappa}_{\alpha}^{\mathsf{Q}}$ are divisible by 2^{ℓ} , where ℓ is the length of $\lambda(\alpha)^{H}$.

Our first substantial result about shifted key and atom polynomials is the following.

Theorem 3.4. Let α be a symmetric composition. Then $\kappa_{\alpha}^{\mathsf{P}}$ and $\kappa_{\alpha}^{\mathsf{Q}}$ (resp. $\overline{\kappa}_{\alpha}^{\mathsf{P}}$ and $\overline{\kappa}_{\alpha}^{\mathsf{Q}}$) are linear combinations of key (resp. atom) polynomials with nonnegative integer coefficients. Consequently, the polynomials $\kappa_{\alpha}^{\mathsf{P}}$, $\overline{\kappa}_{\alpha}^{\mathsf{P}}$, $\kappa_{\alpha}^{\mathsf{Q}}$, and $\overline{\kappa}_{\alpha}^{\mathsf{Q}}$ are all in $\mathbb{N}[\mathbf{x}]$.

Key polynomials are partial Schur functions in the sense that if $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge 0)$ is a partition with at most *n* nonzero parts then $\kappa_{\alpha} = s_{\lambda}(x_1, x_2, \dots, x_n)$ for $\alpha = (\lambda_n, \dots, \lambda_2, \lambda_1)$ [20, §2]. Analogously, we can prove that shifted key polynomials are partial *Schur P/Q-functions* (see, [14, §III.8] for background on these functions):

Theorem 3.5. *If* $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge 0)$ *is a symmetric partition with* $\lambda_1 \le n$ *then*

$$\kappa_{\alpha}^{\mathsf{P}} = P_{\mu}(x_1, x_2, \dots, x_n) \quad and \quad \kappa_{\alpha}^{\mathsf{Q}} = Q_{\nu}(x_1, x_2, \dots, x_n)$$

for $\alpha = (\lambda_n, \ldots, \lambda_2, \lambda_1, 0, 0, \ldots)$, $\mu = \lambda^{\widehat{H}}$, and $\nu = \lambda^H$.

We have conjectural formulas for the leading terms of $\kappa_{\alpha}^{\mathsf{P}}$ and $\kappa_{\alpha}^{\mathsf{Q}}$. Assume α is a symmetric composition with $\lambda = \lambda(\alpha)$ and $u = u(\alpha)$. Define $D(\alpha) = \{(u(i), u(j)) : (i, j) \in D_{\lambda}\}$. Let $\rho(\alpha) = (\rho_1, \rho_2, ...)$ and $\theta(\alpha) = (\theta_1, \theta_2, ...)$ where $\rho_i = |\{(a, b) \in D(\alpha) : i = a \ge b\}|$ and $\theta_i = |\{(a, b) \in D(\alpha) : a \ge b = i\}|$. Also define $\tilde{\rho}(\alpha) = (\tilde{\rho}_1, \tilde{\rho}_2, ...)$ and $\tilde{\theta}(\alpha) = (\tilde{\theta}_1, \tilde{\theta}_2, ...)$ where $\tilde{\rho}_i = |\{(a, b) \in D(\alpha) : i = a > b\}|$ and $\tilde{\theta}_j = |\{(a, b) \in D(\alpha) : a \ge b = i\}|$. These are the row/column counts of $D(\alpha)$ below the main diagonal.

Conjecture 3.6. Suppose α and β are symmetric compositions with β skew-symmetric. Then

$$\kappa_{\alpha}^{\mathsf{Q}} \in 2^{\ell(\lambda(\alpha)^{H})} \left(\mathbf{x}^{\rho(\alpha)} + \mathbf{x}^{\theta(\alpha)} + \sum_{\gamma \neq \rho(\alpha)} \mathbb{N} \mathbf{x}^{\gamma} \right) \quad and \quad \kappa_{\beta}^{\mathsf{P}} \in \mathbf{x}^{\widetilde{\rho}(\beta)} + \mathbf{x}^{\widetilde{\theta}(\beta)} + \sum_{\gamma \neq \widetilde{\rho}(\beta)} \mathbb{N} \mathbf{x}^{\gamma}.$$

Moreover, $\mathbf{x}^{\rho(\alpha)}$ and $\mathbf{x}^{\tilde{\rho}(\beta)}$ are the leading terms of $\kappa_{\alpha}^{\mathsf{Q}}$ and $\kappa_{\beta}^{\mathsf{P}}$ in lexicographic order.

We can prove that if α and β are as above then $D(\alpha)$ (hence, also α) is uniquely determined by $\rho(\alpha)$ and $\theta(\alpha)$, while $D(\beta)$ (hence, also β) is uniquely determined by $\tilde{\rho}(\beta)$ and $\tilde{\theta}(\beta)$. This does not hold for general symmetric subsets of $\mathbb{P} \times \mathbb{P}$. Shifted key/atom polynomials are not as well-behaved as their classical analogues in a few other ways:

- Shifted atom polynomials are zero for some indices *α*. They can also coincide for different indices. For example, *κ*^Q₃₀₀₂₃ = *κ*^Q₂₁₀₁₄ ≠ 0 and *κ*^P₄₀₂₄₀₂ = *κ*^P₃₁₃₅₀₁ ≠ 0.
- *P*-key polynomials are not uniquely indexed by skew-symmetric compositions: for example, κ^P₄₃₁₃ = κ^P₄₁₃₃ ≠ 0.
- However, we have not yet been able to find a pair of distinct symmetric compositions $\alpha \neq \beta$ such that $\kappa_{\alpha}^{Q} = \kappa_{\beta}^{Q}$. It is possible that the *Q*-key polynomials are uniquely indexed by symmetric compositions.
- Even if this is the case, the *Q*-key polynomials are still not linearly independent. For example, we have $\kappa_{123}^{Q} + \kappa_{0321}^{Q} = \kappa_{132}^{Q} + \kappa_{0231}^{Q}$.

Shifted key polynomials are closely related to certain "orthogonal" and "symplectic" versions of type A Schubert polynomials. Let $I_{\infty}^{O} = \{z \in S_{\infty} : z = z^{-1}\}$ and let I_{∞}^{Sp} be the S_{∞} -conjugacy class of $1_{\text{fpf}} = (1 \ 2)(3 \ 4)(5 \ 6) \cdots$. If λ is a symmetric partition, then the unique dominant element of S_{∞} of shape λ already belongs to I_{∞}^{O} . If λ is a skew-symmetric partition, then there is a unique $z \in I_{\infty}^{Sp}$ with $\{(i, j) \in D(z) : i \neq j\} = \{(i, j) \in D_{\lambda} : i \neq j\}$, which we call the *dominant* element of I_{∞}^{Sp} with shape λ .

Let $K \in \{Sp, 0\}$. By results in [22], there are unique polynomials $\{\mathfrak{S}_z^{\mathsf{K}}\}_{z \in I_\infty^{\mathsf{K}}}$ with $\mathfrak{S}_z^{\mathsf{K}} = \kappa_{\lambda}^{\mathsf{P}}$ when $\mathsf{K} = \mathsf{Sp}$ (resp. $\mathfrak{S}_z^{\mathsf{K}} = \kappa_{\lambda}^{\mathsf{Q}}$ when $\mathsf{K} = \mathsf{O}$) and $z \in I_{\infty}^{\mathsf{K}}$ is dominant of shape λ ,

and which satisfy

$$\partial_i \mathfrak{S}_z^{\mathsf{Sp}} = \begin{cases} 0 & \text{if } z(i) < z(i+1), \\ 0 & \text{if } z(i) = i+1, \\ \mathfrak{S}_{s_i z s_i}^{\mathsf{Sp}} & \text{otherwise,} \end{cases} \text{ and } \partial_i \mathfrak{S}_z^{\mathsf{O}} = \begin{cases} 0 & \text{if } z(i) < z(i+1), \\ 2\mathfrak{S}_{z s_i}^{\mathsf{O}} & \text{if } z(i) = i+1, \\ \mathfrak{S}_{s_i z s_i}^{\mathsf{O}} & \text{otherwise,} \end{cases}$$

for all $z \in I_{\infty}^{\mathsf{K}}$ and $i \in \mathbb{P}$. We refer to the $\mathfrak{S}_{z}^{\mathsf{K}'s}$ as K -Schubert polynomials. These elements, called *involution Schubert polynomials* in [9, 10, 11], represent cohomology classes of the closures of the Sp- and O-orbits in the complete flag variety [22]. The following conjecture is one of our primary motivations for studying shifted key polynomials:

Conjecture 3.7. Each polynomial $\mathfrak{S}_z^{\mathsf{Sp}}$ for $z \in I_{\infty}^{\mathsf{Sp}}$ (resp. $\mathfrak{S}_z^{\mathsf{O}}$ for $z \in I_{\infty}^{\mathsf{O}}$) is an \mathbb{N} -linear combination of *P*-key polynomials (resp. *Q*-key polynomials).

This conjecture is supported by many computational examples and closely parallels the classical case. Below, we will outline a shifted analogue of Theorem 2.1 that also provides some heuristic support for the conjecture.

Like ordinary Schubert polynomials, K-Schubert polynomials can be expressed via a BJS-type formula as $\mathfrak{S}_z^{\mathsf{K}} = \sum_{a \in \mathsf{BRF}^{\mathsf{K}}(z)} \mathbf{x}^{\mathsf{wt}(a)}$ for an analogue $\mathsf{BRF}^{\mathsf{K}}(z)$ of the set $\mathsf{BRF}(z)$ [9]. For each choice of K, $\mathsf{BRF}^{\mathsf{K}}(z)$ consists of the bounded elements in a larger set of K-*reduced factorizations* $\mathsf{RF}^{\mathsf{K}}(z)$. If $\mathsf{K} = \mathsf{Sp}$ then $\mathsf{RF}^{\mathsf{K}}(z)$ is explicitly given as the disjoint union of $\mathsf{RF}(w)$ over all minimal length $w \in S_{\infty}$ with $z = w^{-1} \mathbf{1}_{\mathsf{fpf}} w$. The definition of $\mathsf{RF}^{\mathsf{O}}(z)$ for $z \in I_{\infty}^{\mathsf{O}}$ is more involved: this is formed by taking another disjoint union of sets $\mathsf{RF}(w)$ for certain $w \in S_{\infty}$, and then optionally annotating some letters in each reduced factorization by primes; see [18] for the precise details.

Define $BRF_n^{\mathsf{K}}(z) \subseteq RF_n^{\mathsf{K}}(z)$ to be the respective subsets of $BRF^{\mathsf{K}}(z) \subseteq RF^{\mathsf{K}}(z)$ consisting of the tuples $a = (a^1, a^2, ...)$ with a^i empty for i > n. Like $RF_n(w)$, the sets $RF_n^{\mathsf{K}}(z)$ have natural crystal structures. Results in [16] identify a crystal structure on $RF_n^{\mathsf{Sp}}(z)$ corresponding to the *queer Lie superalgebra* \mathfrak{q}_n (as described axiomatically in [7]), extending the \mathfrak{gl}_n crystal in [19]. The set $RF_n^{\mathsf{O}}(z)$ similarly is the prototypical example of what is called an *extended queer supercrystal* or \mathfrak{q}_n^+ -*crystal* in [18].

Crystals for q_n are \mathfrak{gl}_n crystals with *odd crystal operators* $e_{\overline{i}}, f_{\overline{i}}$ for $\overline{i} \in [\overline{n-1}] := \{\overline{1}, \dots, \overline{n-1}\}$ satisfying certain axioms. It is sufficient to define $e_{\overline{1}}, f_{\overline{1}}$ as the other odd crystal operators come from inductively twisting the root system [6, Lemma 2.2]:

$$e_{\bar{i}} = s_{i-1}s_ie_{\bar{i}-1}s_is_{i-1}$$
 and $f_{\bar{i}} = s_{i-1}s_if_{\bar{i}-1}s_is_{i-1}$. (3.1)

Here s_i acts as the crystal operator that reverses each *i-string*. We remark that $e_{\overline{1}}$ is not defined by a usual bracketing rule but by a weight condition. For \mathfrak{q}_n^+ crystals, there are additional crystal operators e_0 , f_0 . Similar to \mathfrak{gl}_n crystals, we encode $\mathfrak{q}_n/\mathfrak{q}_n^+$ crystals as crystal graphs. In view of (3.1), we omit $\overline{2}, \overline{3}, \ldots$ when drawing the crystal graphs.

Figure 2: The q₄-crystal on RF^{Sp}(*z*) corresponding to $\kappa_{\lambda}^{\mathsf{P}}$ for $z = s_1 s_2 s_4 \cdot 1_{\mathsf{fpf}} \cdot s_4 s_2 s_1$ and $\lambda = (4, 1, 1, 1)$. The boxed elements are in BRF^{Sp}(*z*). Solid blue, red, and green arrows indicate 1-, 2-, and 3-edges, respectively, while dashed blue arrows are $\overline{1}$ -edges.

Figure 3: The \mathfrak{q}_3^+ -crystal on $\operatorname{RF}^{\mathsf{O}}(z)$ corresponding to $\kappa_{\lambda}^{\mathsf{Q}}$ for $z = (1 \ 3)(2 \ 4)$ and $\lambda = (3,3,3)$. The boxed elements are in $\operatorname{BRF}^{\mathsf{O}}(z)$. Solid blue, solid red, dotted green, and dashed blue arrows are *i*-edges for $i = 1, 2, 0, \overline{1}$, respectively.

Now suppose $z \in I_{\infty}^{\mathsf{K}}$ is dominant with (skew-)symmetric shape λ having $\lambda_1 \leq n$. In general, the set $\mathsf{BRF}_n^{\mathsf{K}}(z)$ contains more than one element in $\mathsf{RF}_n^{\mathsf{K}}(z)$. Nevertheless, there is an interesting shifted analogue of the \mathfrak{gl}_n -Demazure crystal (2.2).

Fix a (skew-)symmetric composition α with $\lambda = \lambda(\alpha)$ and $u(\alpha) \in S_n$. Then define

$$\operatorname{Dem}_{n}^{\mathsf{K}}(\alpha) := \left\{ a \in \operatorname{RF}_{n}^{\mathsf{K}}(z) : \frac{e_{i_{1}}^{m_{1}}e_{i_{2}}^{m_{2}}\cdots e_{i_{\ell}}^{m_{\ell}}a \in \operatorname{BRF}_{n}^{\mathsf{K}}(z) \text{ for some reduced word} }{i_{1}i_{2}\cdots i_{\ell} \text{ for } u(\alpha) \text{ and some } m_{1}, m_{2}, \dots, m_{\ell} \in \mathbb{N} \right\}$$

We refer to this subset as a K-*Demazure crystal*; see Figures 2 and 3 for examples. We identify $\text{Dem}_n^{\mathsf{K}}(\alpha)$ with the subgraph that it induces in the *extended* $\mathfrak{q}_n/\mathfrak{q}_n^+$ -*crystal graph* of $\mathrm{RF}_n^{\mathsf{K}}(z)$ (formed by drawing arrows corresponding to all even and odd crystal operators). This directed subgraph is connected, although this is not at all obvious:

Theorem 3.8. Assume $u(\alpha) \in S_n$ and $\lambda(\alpha)$ has at most *n* parts. Then the K-Demazure crystal $\text{Dem}_n^{\mathsf{K}}(\alpha)$ is connected with character equal to $\kappa_{\alpha}^{\mathsf{P}}$ when $\mathsf{K} = \mathsf{Sp}$ and to $\kappa_{\alpha}^{\mathsf{Q}}$ when $\mathsf{K} = \mathsf{O}$.

Our second main conjecture is the following analogue of Theorem 2.2:

Conjecture 3.9. If $z \in I_{\infty}^{\mathsf{K}}$ then $\mathsf{BRF}_{n}^{\mathsf{K}}(z)$ is a disjoint union of K-Demazure crystals, in the sense that there is a weight-preserving isomorphism from each connected component of the subgraph of the extended crystal graph of $\mathsf{RF}_{n}^{\mathsf{K}}(z)$ induced on $\mathsf{BRF}_{n}^{\mathsf{K}}(z)$ to $\mathsf{Dem}_{n}^{\mathsf{K}}(\alpha)$ for some α .

As $ch(BRF_n^{\mathsf{K}}(z)) = \mathfrak{S}_z^{\mathsf{K}}$ if $n \gg 0$, Conjecture 3.7 would follow from this conjecture on taking characters. This conjecture is again supported by extensive computer calculations. Conjectures 3.7 and 3.9 also have more refined versions involving K-reduced factorizations that are bounded by arbitrary *flags*, which would generalize [20, Thm. 21].

An interesting discrepancy with the classical case is that the subsets $\text{Dem}_n^{\mathsf{K}}(\alpha)$ are not closed under $e_{\overline{i}}$ for all $\overline{i} \in [\overline{n-1}]$. Contrast this with the situation for \mathfrak{gl}_n -Demazure crystals: if b_{β} is the unique element of weight $\beta \leq \alpha$ in a \mathfrak{gl}_n -Demazure crystal, then while we cannot obtain all elements from b_{α} through applying $\{e_i : i \in [n-1]\}$, we can obtain everything by applying these operators to the closure of $\{b_{\beta} : \beta \leq \alpha\}$.

Example 3.10. Consider the q₄-crystal RF^{Sp}(z) in Figure 2. For $b = (2/3/4/\cdot) \in BRF^{Sp}(z)$, we have $e_{\overline{2}}(2/3/4/\cdot) = s_1s_2e_{\overline{1}}s_2s_1(2/3/4/\cdot) = s_1s_2e_{\overline{1}}(2/3/4/\cdot) = s_1s_2(21/\cdot/4/\cdot) = s_1(21/4/\cdot/\cdot) = (2/41/\cdot/\cdot) \notin BRF^{Sp}(z)$.

Acknowledgements

The authors thank T. Matsumura, A. Schilling, and A. Yong for useful discussions.

References

- [1] S. Assaf and A. Schilling. "A Demazure crystal construction for Schubert polynomials". *Algebr. Comb.* **1**.2 (2018), pp. 225–247. DOI.
- [2] S. C. Billey, W. Jockusch, and R. P. Stanley. "Some combinatorial properties of Schubert polynomials". J. Algebraic Combin. 2.4 (1993), pp. 345–374. DOI.
- [3] M. Brion. "The behaviour at infinity of the Bruhat decomposition". Comment. Math. Helv. 73 (1998), pp. 137–174. DOI.
- [4] D. Bump and A. Schilling. *Crystal bases*. Representations and combinatorics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, pp. xii+279. DOI.
- [5] M. B. Can, M. Joyce, and B. Wyser. "Chains in weak order posets associated to involutions". *J. Combin. Theory Ser. A* 137 (2016), pp. 207–225. DOI.

- [6] M. Gillespie, G. Hawkes, W. Poh, and A. Schilling. "Characterization of queer supercrystals". J. Combin. Theory Ser. A **173** (2020), pp. 105235, 53. DOI.
- [7] D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, and M. Kim. "Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux". *Trans. Amer. Math. Soc.* 366.1 (2014), pp. 457–489. DOI.
- [8] Z. Hamaker, E. Marberg, and B. Pawlowski. "Involution words II: braid relations and atomic structures". *J. Algebraic Combin.* **45**.3 (2017), pp. 701–743. DOI.
- [9] Z. Hamaker, E. Marberg, and B. Pawlowski. "Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures". J. Combin. Theory Ser. A 160 (2018), pp. 217–260. DOI.
- [10] Z. Hamaker, E. Marberg, and B. Pawlowski. "Schur *P*-positivity and involution Stanley symmetric functions". *Int. Math. Res. Not. IMRN* 17 (2019), pp. 5389–5440. DOI.
- [11] Z. Hamaker, E. Marberg, and B. Pawlowski. "Fixed-point-free involutions and Schur Ppositivity". J. Comb. 11.1 (2020), pp. 65–110. DOI.
- [12] M. Kashiwara. "On crystal bases of the *q*-analogue of universal enveloping algebras". *Duke Math. J.* **63**.2 (1991), pp. 465–516. DOI.
- [13] A. Lascoux and M.-P. Schützenberger. "Polynômes de Schubert". C. R. Acad. Sci. Paris Sér. I Math. 294.13 (1982), pp. 447–450.
- [14] I. G. Macdonald. Symmetric functions and Hall polynomials. Second. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York, 2015, pp. xii+475.
- [15] L. Manivel. *Symmetric functions, Schubert polynomials and degeneracy loci.* Vol. 6. SMF/AMS Texts and Monographs. Amer. Math. Soc., Providence, RI, 2001, pp. viii+167.
- [16] E. Marberg. "Bumping operators and insertion algorithms for queer supercrystals". *Selecta Math.* (*N.S.*) **28**.2 (2022), Paper No. 36, 62. DOI.
- [17] E. Marberg and T. Scrimshaw. "Key and Lascoux polynomials for symmetric orbit closures". 2023. arXiv:2302.04226.
- [18] E. Marberg and K. H. Tong. "Highest weight crystals for Schur Q-functions". 2021. arXiv: 2112.02848.
- [19] J. Morse and A. Schilling. "Crystal approach to affine Schubert calculus". *Int. Math. Res. Not. IMRN* 8 (2016), pp. 2239–2294. DOI.
- [20] V. Reiner and M. Shimozono. "Key Polynomials and a Flagged Littlewood-Richardson Rule". J. Combin. Theory Ser. A 137 (1995), pp. 107–143.
- [21] R. P. Stanley. "On the number of reduced decompositions of elements of Coxeter groups". *European J. Combin.* **5**.4 (1984), pp. 359–372. DOI.
- [22] B. Wyser and A. Yong. "Polynomials for symmetric orbit closures in the flag variety". *Transform. Groups* **22**.1 (2017), pp. 267–290. **DOI**.