Shifted key polynomials

Eric Marberg ${ }^{* 1}$ and Travis Scrimshaw ${ }^{\dagger 2}$
${ }^{1}$ Department of Mathematics, Hong Kong University of Science and Technology
${ }^{2}$ Department of Mathematics, Hokkaido University

Abstract

We introduce shifted analogues of key (resp. atom) polynomials that we call P - and Q-key (resp. atom) polynomials. These families are defined in terms of isobaric divided difference operators applied to dominant symplectic and orthogonal Schubert polynomials. We establish a number of fundamental properties of these functions, formally similar to classical results on key polynomials. For example, we show that our shifted key polynomials are partial versions of Schur P - and Q-functions in a precise sense. We conjecture that symplectic/orthogonal Schubert polynomials expand positively in terms of P / Q-key polynomials. As evidence for this conjecture, we also show that shifted key polynomials are the characters of certain shifted analogues of Demazure crystals.

Keywords: Schur P / Q-function, key polynomial, Lie superalgebra, Demazure crystal

1 Introduction

Fix a positive integer n. Set $G=G L_{n}(\mathbb{C})$ and write $B \subseteq G$ for the Borel subgroup of upper triangular matrices. Let K be either the orthogonal group $\mathrm{O}_{n}(\mathbb{C})$ or symplectic group $S p_{n}(\mathbb{C})$ (when n is even). For brevity, we omit the rank and field. The (complete) flag variety G / B decomposes into finitely many B-orbits indexed by the symmetric group S_{n}. The closures of these orbits give rise to the Schubert classes in $H^{*}(G / B)$. The cohomology ring $H^{*}(G / B)$ is naturally a quotient of $\mathbb{Z}[\mathbf{x}]=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ and the well-known Schubert polynomials $\mathfrak{S}_{w} \in \mathbb{Z}[\mathbf{x}]$ for $w \in S_{n}$ provide representatives for the Schubert classes.

The flag variety G / B also decomposes into finitely many K-orbits, indexed by involutions in S_{n} when $\mathrm{K}=\mathrm{O}$ and by fixed-point-free involutions in S_{n} when $\mathrm{K}=\mathrm{Sp}_{\mathrm{p}}$ and n is even. The closures of the K-orbits give rise to cohomology classes in $H^{*}(G / B)$ that are positive sums of Schubert classes. Polynomial representatives for these classes are provided by the orthogonal and symplectic Schubert polynomials (which we abbreviate as K-Schubert polynomials) characterized in [22]. A precise expansion of K-Schubert polynomials into usual Schubert polynomials was given in [3]; see also [5, 8].

It is known [15, Ex. 2.2.2] that $\mathfrak{S}_{w}=\mathbf{x}^{\lambda}$ whenever $w \in S_{n}$ has Rothe diagram equal to the Young diagram of a partition $\lambda=\lambda(w)$. Such w are called dominant and correspond

[^0]to GL dominant weights. There exists a stable limit F_{w} of \mathfrak{S}_{w} known as a Stanley symmetric function [21], and when w is dominant, it holds that $F_{w}=s_{\lambda(w)}$ is a Schur function. Combining the Billey-Jockusch-Stanley (BJS) formula [2] for \mathfrak{S}_{w} with the stable limit shows that if $w \in S_{n}$ is dominant, then $s_{\lambda(w)}$ is the weight-generating function for the set $\operatorname{RF}(w)$ of factorizations of reduced words for w into decreasing subwords. (We refer to elements of $\mathrm{RF}(w)$ as reduced factorizations.) Morse and Schilling showed this directly in [19] by constructing a (Kashiwara) crystal [12] on the set $\operatorname{RF}(w)$.

The BJS formula for \mathfrak{S}_{w} is a sum over a certain class of bounded reduced factorizations $\operatorname{BRF}(w) \subset \operatorname{RF}(w)$, and so we can restrict the crystal structure on $\operatorname{RF}(w)$ to this subset and consider the resulting connected components. These connected components were shown in [1] to be the crystals for B-representations called Demazure modules that are constructed as "partial" versions of highest weight GL-representations. The characters of these $\mathfrak{g l}_{n}$-Demazure crystals are the so-called key polynomials $\kappa_{u \lambda}$; here $u \in S_{n}$ and λ is a partition with at most n parts.

The precise definition of a key polynomial is $\kappa_{u \lambda}=\pi_{u} \mathfrak{S}_{w}$ where π_{u} is an isobaric divided difference operator and w is a dominant permutation with $\lambda(w)=\lambda$. For each choice of $K \in\{O, S p\}$, there is an analogous notion of a K-dominant involution z. These elements index the K-Schubert polynomials that are products of binomials $x_{i}+x_{j}$ indexed by positions in the associated Rothe diagram. By considering all expressions of the form $\pi_{u} \mathfrak{S}_{z}^{K}$ where z is a K-dominant involution in S_{n}, we obtain a new family of objects that we refer to as P - and Q-key polynomials, or collectively as shifted key polynomials.

Using the fact that each \mathfrak{S}_{z}^{K} is an \mathbb{N}-linear combination of Schubert polynomials, we can show that each shifted key polynomial is an \mathbb{N}-linear combination of key polynomials (see Theorem 3.4). This suggests that shifted key polynomials may form a combinatorially interesting family. Key polynomials are partial versions of Schur functions, since if $w_{0} \in S_{n}$ denotes the reverse permutation then $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\kappa_{w_{0} \lambda}$. Similarly, we show that P - and Q-key polynomials are partial versions of the Schur P - and Q-functions related to the projective representation theory of S_{n} (see Theorem 3.5).

Classical key polynomials form a \mathbb{Z}-basis for all polynomials, are uniquely indexed by weak compositions, and decompose every Schubert polynomial with positive coefficients. Shifted key polynomials are not so well-behaved: they are not linearly independent over \mathbb{Z}, nor is it clear how to index them uniquely. In spite of this, we conjecture (Conjecture 3.7) that K-Schubert polynomials also expand positively for some choice of shifted key polynomials.

In order to classify a good set of linear independent shifted key polynomials, we consider a certain "truncated" crystal structure on a set of bounded reduced factorizations associated to an involution z, analogous to constructions in $[1,19]$. However, in our case, the crystal will not be for $\mathfrak{g l}_{n}$ but for the queer Lie superalgebra \mathfrak{q}_{n} and its extended version \mathfrak{q}_{n}^{+}recently introduced in [18]. The full set of reduced factorizations relevant to K-Schubert polynomials were given a $\mathfrak{q}_{n} / \mathfrak{q}_{n}^{+}$crystal structure in $[16,18]$. We show in

Theorem 3.8 that when this crystal structure is restricted to its bounded elements for a K-dominant involution, we obtain a connected object whose character is a shifted key polynomial. We conclude by describing a crystal-theoretic generalization of our conjecture that K-Schubert polynomials expand positively into shifted key polynomials.

This extended abstract is organized as follows. Section 2 gives some background on key polynomials. Section 3 contains our main results on shifted key polynomials. We have omitted all proofs to save space. Complete arguments can be found in two full-length articles associated to this abstract, this first of which is available as [17].

2 Key polynomials, Schubert calculus, and crystals

Throughout, n is a positive integer, $[n]=\{1,2, \ldots, n\}, \mathbb{N}=\{0,1,2, \ldots\}$, and $\mathbb{P}=$ $\{1,2,3, \ldots\}$. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ be commuting indeterminates.

Define $S_{\infty}=\left\langle s_{1}, s_{2}, s_{3}, \ldots\right\rangle$ to be the group permutations of \mathbb{P} fixing all but finitely many elements, with $s_{i}=(i i+1)$ denoting a simple transposition. Set $S_{n}=\left\langle s_{i}\right.$: $i \in[n-1]\rangle \subset S_{\infty}$. A reduced word for $w \in S_{\infty}$ a minimal length sequence $i_{1} i_{2} \ldots i_{\ell}$ such that $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}$, where $\ell(w)=\ell$ is the length of w. The group S_{∞} acts on the polynomial ring $\mathbb{Z}[\mathbf{x}]$ by permuting variables. The Rothe diagram of $w \in S_{\infty}$ is $D(w)=\{(i, w(j)): i<j$ and $w(i)>w(j)\} \subset \mathbb{P} \times \mathbb{P}$.

A word is a possibly empty sequence of positive integers. For $w \in S_{\infty}$, let $\operatorname{RF}(w)$ denote the set of sequences $a=\left(a^{1}, a^{2}, a^{3}, \cdots\right)$ where each a^{i} is a strictly decreasing word such that the concatenation $a^{1} a^{2} a^{3} \ldots$ is a reduced word for w. We refer to elements of this set as reduced factorizations and define $\operatorname{RF}_{n}(w)$ to be the set of such a with a^{i} empty for all $i>n$. In examples we express elements of $\mathrm{RF}_{n}(w)$ as n-tuples rather than as infinite sequences. Let $\operatorname{BRF}_{n}(w)$ denote the set of reduced factorizations in $\mathrm{RF}_{n}(w)$ that are bounded in the sense that $i \leq \min \left(a^{i}\right)$ for all nonempty a^{i}. Set $\operatorname{BRF}(w):=\bigsqcup_{n=1}^{\infty} \operatorname{BRF}_{n}(w)$.

A weak composition is a nonnegative integer sequence $\alpha=\left(\alpha_{i} \in \mathbb{N}\right)_{i=1}^{\infty}$ with finite sum $|\alpha|:=\sum_{i=1}^{\infty} \alpha_{i}$, and a partition is a weakly decreasing weak composition. We frequently omit the trailing 0's when writing weak compositions in examples. Given a weak composition α, let $\lambda(\alpha)$ be the partition sorting α and define $\mathbf{x}^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots$. There is a unique $u(\alpha) \in S_{\infty}$ such that $u(\alpha) \alpha$ is a partition $\lambda(\alpha)$, where the permutation acts on α by permuting indices; e.g., if $\alpha=1021$, then $\lambda(\alpha)=2110$ and $u(\alpha)=3142=s_{2} s_{1} s_{3}$.

For $i \in \mathbb{P}$, let ∂_{i} be the divided difference operator on $f \in \mathbb{Z}[\mathbf{x}]$ defined by $\partial_{i} f=(f-$ $\left.s_{i} f\right) /\left(x_{i}-x_{i+1}\right)$. The isobaric divided difference operators are then given by $\pi_{i} f:=\partial_{i}\left(x_{i} f\right)$ and $\bar{\pi}_{i}:=\pi_{i}-1$. For $w \in S_{\infty}$ with reduced word $i_{1} \cdots i_{\ell}$, define $\pi_{w}=\pi_{i_{1}} \cdots \pi_{i_{\ell}}$ and $\bar{\pi}_{w}=\bar{\pi}_{i_{1}} \cdots \bar{\pi}_{i_{\ell}}$; these formulas do not depend on the choice of reduced word. The key polynomial of a weak composition α is then $\kappa_{\alpha}:=\pi_{u(\alpha)} \mathbf{x}^{\lambda(\alpha)}$ while the atom polynomial of α is $\bar{\kappa}_{\alpha}=\bar{\pi}_{u(\alpha)} \mathbf{x}^{\lambda(\alpha)}$. It is well-known that $\left\{\kappa_{\alpha}\right.$: weak compositions $\left.\alpha\right\}$ is a basis for $\mathbb{Z}[\mathbf{x}]$ and that key polynomials are unitriangular with $\kappa_{\alpha}=\mathbf{x}^{\alpha}+$ (lower order terms)
with respect to lexicographic order [20, Cor. 7]. Key polynomials are related to atom polynomials by the identity $\kappa_{\alpha}=\sum_{\beta \leq \alpha} \bar{\kappa}_{\beta}$, where we write $\alpha \leq \beta$ if $\lambda(\alpha)=\lambda(\beta)$ and $u(\alpha) \leq u(\beta)$ in Bruhat order. For more background on key polynomials, see [20].

A permutation $w \in S_{\infty}$ is dominant if its Rothe diagram $D(w)$ is the Young diagram $D_{\lambda}=\left\{(i, j) \in \mathbb{P} \times \mathbb{P}: j \leq \lambda_{i}\right\}$ of a partition $\lambda=\lambda(w)$. This occurs precisely when w is 132 -avoiding [15, Ex. 2.2.2]. The Schubert polynomial of $w \in S_{\infty}$ is defined recursively by setting $\mathfrak{S}_{w}=\mathbf{x}^{\lambda(w)}$ when w is dominant and requiring that $\mathfrak{S}_{w s_{i}}=\partial_{i} \mathfrak{S}_{w}$ for $w(i)>$ $w(i+1)$ [13]. For any $w \in S_{\infty}$ the Billey-Jockusch-Stanley formula [2] asserts that

$$
\begin{equation*}
\mathfrak{S}_{w}=\sum_{a \in \operatorname{BRF}(w)} \mathbf{x}^{\mathrm{wtt}(a)}, \quad \text { where } \mathrm{wt}(a):=\left(\ell\left(a^{1}\right), \ell\left(a^{2}\right), \ldots\right) . \tag{2.1}
\end{equation*}
$$

Key polynomials can be defined in terms of Schubert polynomials, since if $w \in S_{\infty}$ is dominant of shape $\lambda(\alpha)$ then $\kappa_{\alpha}=\pi_{u(\alpha)} \mathfrak{S}_{w}$. On the other hand, every Schubert polynomial expands as a positive linear combination of key polynomials with an explicit combinatorial description [20, Thm. 4].

The BJS formula (2.1) can be interpreted as a character formula for certain Demazure crystals which we describe below. A crystal [12] for $\mathfrak{g l}_{n}$ is a set \mathcal{B} with crystal operators $e_{i}, f_{i}: \mathcal{B} \rightarrow \mathcal{B} \sqcup\{0\}$ for $i \in[n-1]$ and a weight function wt: $\mathcal{B} \rightarrow \mathbb{Z}^{n}$ that satisfy certain conditions. We can encode this data as a weighted directed graph called a crystal graph with vertices \mathcal{B} and edges $b \xrightarrow{i} f_{i} b$ whenever $b \in \mathcal{B}$ and $f_{i} b \neq 0$. For each $w \in S_{\infty}$, the set $\mathrm{RF}_{n}(w)$ already has a weight function as used in (2.1). Morse and Schilling [19] identified a natural $\mathfrak{g l}_{n}$-crystal structure on $\mathrm{RF}_{n}(w)$, using a certain bracketing rule to describe the crystal operators. See $[4, \S 10]$ for more information on these crystals.

Suppose $w \in S_{\infty}$ is dominant of shape $\lambda=\lambda(w)$. Assume λ has at most n nonzero parts. Then $\mathrm{RF}_{n}(w)$ contains a single bounded reduced factorization $b_{\lambda} \in \operatorname{BRF}_{n}(w)$. This element has weight λ and is highest weight in the sense that $e_{i} b_{\lambda}=0$ for all $i \in[n-1]$. If α is a weak composition with $\lambda=\lambda(\alpha)$ and $u(\alpha) \in S_{n}$ then we define

$$
\operatorname{Dem}_{n}(\alpha):=\left\{a \in \operatorname{RF}_{n}(w): \begin{array}{l}
e_{i_{1}}^{m_{1}} e_{i_{2}}^{m_{2}} \cdots e_{i_{\ell}}^{m_{\ell}} a=b_{\lambda} \text { for some reduced word } \tag{2.2}\\
i_{1} i_{2} \cdots i_{\ell} \text { of } u(\alpha) \text { and some } m_{1}, m_{2}, \ldots, m_{\ell} \in \mathbb{N}
\end{array}\right\}
$$

We refer to this subset as a $\mathfrak{g l}_{n}$-Demazure crystal. We identify it with the (connected) subgraph induced from the crystal graph of $\mathrm{RF}_{n}(w)$. See Figure 1 for an example. The character of any finite subset \mathcal{X} of a crystal \mathcal{B} is $\operatorname{ch}(\mathcal{X}):=\sum_{b \in \mathcal{X}} \mathbf{x}^{\mathrm{wt}(b)} \in \mathbb{Z}[\mathbf{x}]$.

Theorem 2.1 (See [4]). If α is a weak composition with $u(\alpha) \in S_{n}$ such that $\lambda(\alpha)$ has at most n parts then $\operatorname{ch}\left(\operatorname{Dem}_{n}(\alpha)\right)=\kappa_{\alpha}$.

On the other hand, Assaf and Schilling [1] have shown the following:
Theorem 2.2 ([1]). For any $w \in S_{\infty}$, the set $\operatorname{BRF}_{n}(w)$ is a disjoint union of $\mathfrak{g l}_{n}$-Demazure crystals, in the sense that there is a weight-preserving isomorphism from each connected component of the subgraph of the crystal graph of $\operatorname{RF}_{n}(w)$ induced on $\operatorname{BRF}_{n}(w)$ to $\operatorname{Dem}_{n}(\alpha)$ for some α.

Figure 1: For the dominant $w=3142=s_{2} s_{1} s_{3} \in S_{\infty}$ of shape $\lambda(w)=(2,1,0)$, the $\mathfrak{g l}_{3}-$ crystal $\mathrm{RF}_{3}(w)$. The unique reduced factorization is $b_{\lambda(w)}=(21,3, \varnothing)$. The elements in the $\mathfrak{g l}_{n}$-Demazure crystal $\operatorname{Dem}_{3}(\alpha)$ for $\alpha=(2,0,1)$, which are all in $\operatorname{BRF}(w)$, are boxed.

Since $\operatorname{ch}\left(\operatorname{BRF}_{n}(w)\right)=\mathfrak{S}_{w}$ if n is sufficiently large, taking characters in this theorem recovers the nontrivial fact noted above that every Schubert polynomial expands as a positive linear combination of key polynomials [20, Thm. 4].

3 Shifted key polynomials

In this section, we introduce two shifted analogues of key and atom polynomials. We then present our main results about these polynomials and state a number of conjectures.

A partition λ is strict if its nonzero parts are all distinct; alternatively, if $\lambda=\left(\lambda_{1}>\right.$ $\cdots>\lambda_{\ell}>0$). We say λ is symmetric if $\lambda^{\top}=\lambda$, where λ^{\top} is the conjugate shape. A partition λ is skew-symmetric if $\lambda^{\top}=\lambda$ and if i maximal such that $(i, i) \in D_{\lambda}$, then we cannot add or remove the box $(i, i+1)$ from D_{λ} and still have the diagram of a partition. When λ is symmetric, we define its shifted diagram to be $S(\lambda)=\left\{(i, j) \in D_{\lambda}: i \leq j\right\}$ and strict shifted diagram to be $\widehat{S}(\lambda)=\left\{(i, j) \in D_{\lambda}: i<j\right\}$.

Let $H(\lambda)$ (resp. $\widehat{H}(\lambda)$) be the (strict) half diagram formed by sliding all boxes to the left of $S(\lambda)$ (resp. $\widehat{S}(\lambda)$). This is the diagram of the strict partition λ^{H} (resp. $\lambda^{\hat{H}}$) whose parts count the number of boxes in the distinct rows of $S(\lambda)$ (resp. $\widehat{S}(\lambda)$). The map $\lambda \mapsto \lambda^{H}$ (resp. $\lambda \mapsto \lambda^{\widehat{H}}$) is a bijection from symmetric (resp. skew-symmetric) partitions to strict partitions. We say a weak composition α is (skew-)symmetric if $\lambda(\alpha)$ is (skew-)symmetric.

Definition 3.1. Let α be a symmetric weak composition, and set $\lambda=\lambda(\alpha)$. Define

$$
\kappa_{\alpha}^{\mathrm{Q}}=\pi_{u(\alpha)}\left(\prod_{(i, j) \in S(\lambda)}\left(x_{i}+x_{j}\right)\right) \quad \text { and } \quad \bar{\kappa}_{\alpha}^{\mathrm{Q}}=\bar{\pi}_{u(\alpha)}\left(\prod_{(i, j) \in S(\lambda)}\left(x_{i}+x_{j}\right)\right) .
$$

We refer to these functions as Q-key polynomials and Q-atom polynomials. Similarly, when
α is skew-symmetric we define

$$
\kappa_{\alpha}^{\mathrm{P}}=\pi_{u(\alpha)}\left(\prod_{(i, j) \in \widehat{S}(\lambda)}\left(x_{i}+x_{j}\right)\right) \quad \text { and } \quad \bar{\kappa}_{\alpha}^{\mathrm{P}}=\bar{\pi}_{u(\alpha)}\left(\prod_{(i, j) \in \widehat{S}(\lambda)}\left(x_{i}+x_{j}\right)\right)
$$

We refer to these functions as P-key polynomials and P-atom polynomials.
The definitions of κ_{α}^{P} and $\bar{\kappa}_{\alpha}^{P}$ make sense if α is symmetric but not skew-symmetric, but in this case there is always a skew-symmetric β with $\kappa_{\alpha}^{P}=\kappa_{\beta}^{P}$ and $\bar{\kappa}_{\alpha}^{P}=\bar{\kappa}_{\beta}^{P}$.
Example 3.2. If $\alpha=3143$ then $\lambda(\alpha)=4211$ is skew-symmetric with $\lambda^{\hat{H}}=3100$ and $u(\alpha)=3142=s_{2} s_{1} s_{3}$, so we have

$$
\begin{aligned}
& \kappa_{3143}^{\mathrm{P}}=\pi_{2} \pi_{1} \pi_{3}\left(\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{1}+x_{4}\right)\left(x_{2}+x_{3}\right)\right)=\kappa_{0022}+\kappa_{0031}+\kappa_{0112} \\
& \bar{\kappa}_{3143}^{\mathrm{P}}=\bar{\pi}_{2} \bar{\pi}_{1} \bar{\pi}_{3}\left(\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{1}+x_{4}\right)\left(x_{2}+x_{3}\right)\right)=\bar{\kappa}_{0022}+\bar{\kappa}_{0031} .
\end{aligned}
$$

If $\alpha=2031$ then $\lambda(\alpha)=3210$ is symmetric with $\lambda(\alpha)^{H}=3100$ and $u(\alpha)=s_{2} s_{1} s_{3}$, so

$$
\begin{aligned}
& \kappa_{2031}^{\mathrm{Q}}=\pi_{2} \pi_{1} \pi_{3}\left(4 x_{1} x_{2}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\right)=4 \kappa_{103}+4 \kappa_{202}+4 \kappa_{1021}, \\
& \bar{\kappa}_{2031}^{\mathrm{Q}}=\bar{\pi}_{2} \bar{\pi}_{1} \bar{\pi}_{3}\left(4 x_{1} x_{2}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\right)=0 .
\end{aligned}
$$

We refer to $\kappa_{\alpha}^{\mathrm{P}}$ and $\kappa_{\alpha}^{\mathrm{Q}}$ collectively as shifted key polynomials, and to $\bar{\kappa}_{\alpha}^{\mathrm{P}}$ and $\bar{\kappa}_{\alpha}^{\mathrm{Q}}$ as shifted atom polynomials. Shifted atom polynomials are related to shifted key polynomials via the Bruhat order \leq on S_{∞}. Recall that $\beta \leq \alpha$ if $\lambda(\beta)=\lambda(\alpha)$ and $u(\beta) \leq u(\alpha)$.
Proposition 3.3. We have $\kappa_{\alpha}^{P}=\sum_{\beta \leq \alpha} \bar{\kappa}_{\beta}^{P}$ and $\kappa_{\alpha}^{Q}=\sum_{\beta \leq \alpha} \bar{\kappa}_{\beta}^{\mathrm{Q}}$. Moreover, $\kappa_{\alpha}^{\mathrm{Q}}$ and $\bar{\kappa}_{\alpha}^{\mathrm{Q}}$ are divisible by 2^{ℓ}, where ℓ is the length of $\lambda(\alpha)^{H}$.

Our first substantial result about shifted key and atom polynomials is the following.
Theorem 3.4. Let α be a symmetric composition. Then κ_{α}^{P} and $\kappa_{\alpha}^{\mathrm{Q}}$ (resp. $\bar{\kappa}_{\alpha}^{\mathrm{P}}$ and $\bar{\kappa}_{\alpha}^{\mathrm{Q}}$) are linear combinations of key (resp. atom) polynomials with nonnegative integer coefficients. Consequently, the polynomials $\kappa_{\alpha}^{P}, \bar{\kappa}_{\alpha}^{P}, \kappa_{\alpha}^{\mathrm{Q}}$, and $\bar{\kappa}_{\alpha}^{\mathrm{Q}}$ are all in $\mathbb{N}[\mathbf{x}]$.

Key polynomials are partial Schur functions in the sense that if $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq\right.$ $\cdots \geq 0)$ is a partition with at most n nonzero parts then $\kappa_{\alpha}=s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for $\alpha=\left(\lambda_{n}, \ldots, \lambda_{2}, \lambda_{1}\right)$ [20, §2]. Analogously, we can prove that shifted key polynomials are partial Schur P/Q-functions (see, [14, §III.8] for background on these functions):

Theorem 3.5. If $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right)$ is a symmetric partition with $\lambda_{1} \leq n$ then

$$
\kappa_{\alpha}^{\mathrm{P}}=P_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \text { and } \quad \kappa_{\alpha}^{\mathrm{Q}}=Q_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for $\alpha=\left(\lambda_{n}, \ldots, \lambda_{2}, \lambda_{1}, 0,0, \ldots\right), \mu=\lambda^{\hat{H}}$, and $v=\lambda^{H}$.

We have conjectural formulas for the leading terms of κ_{α}^{P} and κ_{α}^{Q}. Assume α is a symmetric composition with $\lambda=\lambda(\alpha)$ and $u=u(\alpha)$. Define $D(\alpha)=\{(u(i), u(j))$: $\left.(i, j) \in D_{\lambda}\right\}$. Let $\rho(\alpha)=\left(\rho_{1}, \rho_{2}, \ldots\right)$ and $\theta(\alpha)=\left(\theta_{1}, \theta_{2}, \ldots\right)$ where $\rho_{i}=\mid\{(a, b) \in D(\alpha)$: $i=a \geq b\} \mid$ and $\theta_{i}=|\{(a, b) \in D(\alpha): a \geq b=i\}|$. Also define $\widetilde{\rho}(\alpha)=\left(\widetilde{\rho}_{1}, \widetilde{\rho}_{2}, \ldots\right)$ and $\widetilde{\theta}(\alpha)=\left(\widetilde{\theta}_{1}, \widetilde{\theta}_{2}, \ldots\right)$ where $\widetilde{\rho}_{i}=|\{(a, b) \in D(\alpha): i=a>b\}|$ and $\widetilde{\theta}_{j}=\mid\{(a, b) \in D(\alpha):$ $a>b=i\} \mid$. These are the row/column counts of $D(\alpha)$ below the main diagonal.

Conjecture 3.6. Suppose α and β are symmetric compositions with β skew-symmetric. Then

$$
\kappa_{\alpha}^{\mathrm{Q}} \in 2^{\ell\left(\lambda(\alpha)^{H}\right)}\left(\mathbf{x}^{\rho(\alpha)}+\mathbf{x}^{\theta(\alpha)}+\sum_{\gamma \neq \rho(\alpha)} \mathbb{N}^{\gamma}\right) \quad \text { and } \quad \kappa_{\beta}^{\mathrm{P}} \in \mathbf{x}^{\widetilde{\rho}(\beta)}+\mathbf{x}^{\widetilde{\theta}(\beta)}+\sum_{\gamma \neq \widetilde{\rho}(\beta)} \mathbb{N} \mathbf{x}^{\gamma} .
$$

Moreover, $\mathbf{x}^{\rho(\alpha)}$ and $\mathbf{x}^{\widetilde{\rho}(\beta)}$ are the leading terms of κ_{α}^{Q} and κ_{β}^{P} in lexicographic order.
We can prove that if α and β are as above then $D(\alpha)$ (hence, also α) is uniquely determined by $\rho(\alpha)$ and $\theta(\alpha)$, while $D(\beta)$ (hence, also β) is uniquely determined by $\widetilde{\rho}(\beta)$ and $\widetilde{\theta}(\beta)$. This does not hold for general symmetric subsets of $\mathbb{P} \times \mathbb{P}$. Shifted key/atom polynomials are not as well-behaved as their classical analogues in a few other ways:

- Shifted atom polynomials are zero for some indices α. They can also coincide for different indices. For example, $\bar{\kappa}_{30023}^{\mathrm{Q}}=\bar{\kappa}_{21014}^{\mathrm{Q}} \neq 0$ and $\bar{\kappa}_{402402}^{\mathrm{P}}=\bar{\kappa}_{313501}^{\mathrm{P}} \neq 0$.
- P-key polynomials are not uniquely indexed by skew-symmetric compositions: for example, $\kappa_{4313}^{\mathrm{P}}=\kappa_{4133}^{\mathrm{P}} \neq 0$.
- However, we have not yet been able to find a pair of distinct symmetric compositions $\alpha \neq \beta$ such that $\kappa_{\alpha}^{Q}=\kappa_{\beta}^{Q}$. It is possible that the Q-key polynomials are uniquely indexed by symmetric compositions.
- Even if this is the case, the Q-key polynomials are still not linearly independent. For example, we have $\kappa_{123}^{\mathrm{Q}}+\kappa_{0321}^{\mathrm{Q}}=\kappa_{132}^{\mathrm{Q}}+\kappa_{0231}^{\mathrm{Q}}$.

Shifted key polynomials are closely related to certain "orthogonal" and "symplectic" versions of type A Schubert polynomials. Let $I_{\infty}^{O}=\left\{z \in S_{\infty}: z=z^{-1}\right\}$ and let I_{∞}^{Sp} be the S_{∞}-conjugacy class of $1_{\mathrm{fpf}}=(12)(34)(56) \cdots$. If λ is a symmetric partition, then the unique dominant element of S_{∞} of shape λ already belongs to I_{∞}^{O}. If λ is a skewsymmetric partition, then there is a unique $z \in I_{\infty}^{\mathrm{Sp}}$ with $\{(i, j) \in D(z): i \neq j\}=\{(i, j) \in$ $\left.D_{\lambda}: i \neq j\right\}$, which we call the dominant element of I_{∞}^{Sp} with shape λ.

Let $K \in\{S p, O\}$. By results in [22], there are unique polynomials $\left\{\mathfrak{S}_{z}^{K}\right\}_{z \in I_{\infty}^{K}}$ with $\mathfrak{S}_{z}^{\mathrm{K}}=\kappa_{\lambda}^{\mathrm{P}}$ when $\mathrm{K}=\operatorname{Sp}$ (resp. $\mathfrak{S}_{z}^{\mathrm{K}}=\kappa_{\lambda}^{\mathrm{Q}}$ when $\mathrm{K}=0$) and $z \in I_{\infty}^{\mathrm{K}}$ is dominant of shape λ,
and which satisfy

$$
\partial_{i} \mathfrak{S}_{z}^{\mathrm{Sp}}=\left\{\begin{array}{ll}
0 & \text { if } z(i)<z(i+1), \\
0 & \text { if } z(i)=i+1, \\
\mathfrak{S}_{s_{i} z s_{i}}^{\mathrm{Sp}_{i}} & \text { otherwise },
\end{array} \quad \text { and } \quad \partial_{i} \mathfrak{S}_{z}^{\mathrm{O}}= \begin{cases}0 & \text { if } z(i)<z(i+1) \\
2 \mathfrak{S}_{z s_{i}}^{O} & \text { if } z(i)=i+1 \\
\mathfrak{S}_{s_{i} z s_{i}}^{O} & \text { otherwise }\end{cases}\right.
$$

for all $z \in I_{\infty}^{K}$ and $i \in \mathbb{P}$. We refer to the \mathfrak{S}_{z}^{K} 's as K -Schubert polynomials. These elements, called involution Schubert polynomials in [9, 10, 11], represent cohomology classes of the closures of the Sp - and O -orbits in the complete flag variety [22]. The following conjecture is one of our primary motivations for studying shifted key polynomials:

Conjecture 3.7. Each polynomial $\mathfrak{S}_{z}^{\mathrm{Sp}}$ for $z \in I_{\infty}^{\mathrm{Sp}}$ (resp. $\mathfrak{S}_{z}^{\mathrm{O}}$ for $z \in I_{\infty}^{\mathrm{O}}$) is an \mathbb{N}-linear combination of P-key polynomials (resp. Q-key polynomials).

This conjecture is supported by many computational examples and closely parallels the classical case. Below, we will outline a shifted analogue of Theorem 2.1 that also provides some heuristic support for the conjecture.

Like ordinary Schubert polynomials, K-Schubert polynomials can be expressed via a BJS-type formula as $\mathfrak{S}_{z}^{\mathrm{K}}=\sum_{a \in \operatorname{BRF}^{\mathrm{K}}(z)} \mathbf{x}^{\mathrm{wt}(a)}$ for an analogue $\operatorname{BRF}^{\mathrm{K}}(z)$ of the set $\operatorname{BRF}(z)$ [9]. For each choice of $K, \operatorname{BRF}^{K}(z)$ consists of the bounded elements in a larger set of K -reduced factorizations $\mathrm{RF}^{\mathrm{K}}(z)$. If $\mathrm{K}=\mathrm{Sp}$ then $\mathrm{RF}^{\mathrm{K}}(z)$ is explicitly given as the disjoint union of $\operatorname{RF}(w)$ over all minimal length $w \in S_{\infty}$ with $z=w^{-1} 1_{\mathrm{fpf}} w$. The definition of $\operatorname{RF}^{\mathrm{O}}(z)$ for $z \in I_{\infty}^{\mathrm{O}}$ is more involved: this is formed by taking another disjoint union of sets $\operatorname{RF}(w)$ for certain $w \in S_{\infty}$, and then optionally annotating some letters in each reduced factorization by primes; see [18] for the precise details.

Define $\operatorname{BRF}_{n}^{\mathrm{K}}(z) \subseteq \operatorname{RF}_{n}^{\mathrm{K}}(z)$ to be the respective subsets of $\operatorname{BRF}^{\mathrm{K}}(z) \subseteq \operatorname{RF}^{\mathrm{K}}(z)$ consisting of the tuples $a=\left(a^{1}, a^{2}, \ldots\right)$ with a^{i} empty for $i>n$. Like $\operatorname{RF}_{n}(w)$, the sets $\mathrm{RF}_{n}^{\mathrm{K}}(z)$ have natural crystal structures. Results in [16] identify a crystal structure on $\operatorname{RF}_{n}^{\mathrm{Sp}}(z)$ corresponding to the queer Lie superalgebra \mathfrak{q}_{n} (as described axiomatically in [7]), extending the $\mathfrak{g l}_{n}$ crystal in [19]. The set $\mathrm{RF}_{n}^{\mathrm{O}}(z)$ similarly is the prototypical example of what is called an extended queer supercrystal or \mathfrak{q}_{n}^{+}-crystal in [18].

Crystals for \mathfrak{q}_{n} are $\mathfrak{g l}_{n}$ crystals with odd crystal operators $e_{\bar{\imath}}, f_{\bar{\imath}}$ for $\bar{\imath} \in[\overline{n-1}]:=$ $\{\overline{1}, \ldots, \overline{n-1}\}$ satisfying certain axioms. It is sufficient to define $e_{\overline{1}}, f_{\overline{1}}$ as the other odd crystal operators come from inductively twisting the root system [6, Lemma 2.2]:

$$
\begin{equation*}
e_{\bar{\imath}}=s_{i-1} s_{i} e_{\overline{\imath-1}} s_{i} s_{i-1} \quad \text { and } \quad f_{\bar{\imath}}=s_{i-1} s_{i} f_{\overline{\imath-1}} s_{i} s_{i-1} . \tag{3.1}
\end{equation*}
$$

Here s_{i} acts as the crystal operator that reverses each i-string. We remark that $e_{\overline{1}}$ is not defined by a usual bracketing rule but by a weight condition. For \mathfrak{q}_{n}^{+}crystals, there are additional crystal operators e_{0}, f_{0}. Similar to $\mathfrak{g l}_{n}$ crystals, we encode $\mathfrak{q}_{n} / \mathfrak{q}_{n}^{+}$crystals as crystal graphs. In view of (3.1), we omit $\overline{2}, \overline{3}, \ldots$ when drawing the crystal graphs.

Figure 2: The \mathfrak{q}_{4}-crystal on $\operatorname{RF}^{S_{p}}(z)$ corresponding to $\kappa_{\lambda}^{\mathrm{P}}$ for $z=s_{1} s_{2} s_{4} \cdot 1_{\mathrm{fpf}} \cdot s_{4} s_{2} s_{1}$ and $\lambda=(4,1,1,1)$. The boxed elements are in $\operatorname{BRF}^{\mathrm{SP}}(z)$. Solid blue, red, and green arrows indicate $1-2$-, and 3 -edges, respectively, while dashed blue arrows are $\overline{1}$-edges.

Figure 3: The \mathfrak{q}_{3}^{+}-crystal on $\operatorname{RF}^{\mathrm{O}}(z)$ corresponding to $\kappa_{\lambda}^{\mathrm{Q}}$ for $z=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)$ and $\lambda=$ $(3,3,3)$. The boxed elements are in $\operatorname{BRF}^{\mathrm{O}}(z)$. Solid blue, solid red, dotted green, and dashed blue arrows are i-edges for $i=1,2,0, \overline{1}$, respectively.

Now suppose $z \in I_{\infty}^{K}$ is dominant with (skew-)symmetric shape λ having $\lambda_{1} \leq n$. In general, the set $\operatorname{BRF}_{n}^{\mathrm{K}}(z)$ contains more than one element in $\operatorname{RF}_{n}^{\mathrm{K}}(z)$. Nevertheless, there is an interesting shifted analogue of the $\mathfrak{g l}_{n}$-Demazure crystal (2.2).

Fix a (skew-)symmetric composition α with $\lambda=\lambda(\alpha)$ and $u(\alpha) \in S_{n}$. Then define

$$
\operatorname{Dem}_{n}^{\mathrm{K}}(\alpha):=\left\{a \in \operatorname{RF}_{n}^{\mathrm{K}}(z): \begin{array}{l}
e_{i_{1}}^{m_{1}} e_{i_{2}}^{m_{2}} \cdots e_{i_{\ell}}^{m_{\ell}} a \in \operatorname{BRF}_{n}^{\mathrm{K}}(z) \text { for some reduced word } \\
i_{1} i_{2} \cdots i_{\ell} \text { for } u(\alpha) \text { and some } m_{1}, m_{2}, \ldots, m_{\ell} \in \mathbb{N}
\end{array}\right\}
$$

We refer to this subset as a K-Demazure crystal; see Figures 2 and 3 for examples. We identify $\operatorname{Dem}_{n}^{K}(\alpha)$ with the subgraph that it induces in the extended $\mathfrak{q}_{n} / \mathfrak{q}_{n}^{+}$-crystal graph of $\mathrm{RF}_{n}^{\mathrm{K}}(z)$ (formed by drawing arrows corresponding to all even and odd crystal operators). This directed subgraph is connected, although this is not at all obvious:

Theorem 3.8. Assume $u(\alpha) \in S_{n}$ and $\lambda(\alpha)$ has at most n parts. Then the K-Demazure crystal $\operatorname{Dem}_{n}^{\mathrm{K}}(\alpha)$ is connected with character equal to $\kappa_{\alpha}^{\mathrm{P}}$ when $\mathrm{K}=\mathrm{Sp}$ and to $\kappa_{\alpha}^{\mathrm{Q}}$ when $\mathrm{K}=\mathrm{O}$.

Our second main conjecture is the following analogue of Theorem 2.2:
Conjecture 3.9. If $z \in I_{\infty}^{K}$ then $\operatorname{BRF}_{n}^{K}(z)$ is a disjoint union of K -Demazure crystals, in the sense that there is a weight-preserving isomorphism from each connected component of the subgraph of the extended crystal graph of $\operatorname{RF}_{n}^{\mathrm{K}}(z)$ induced on $\operatorname{BRF}_{n}^{\mathrm{K}}(z)$ to $\operatorname{Dem}_{n}^{\mathrm{K}}(\alpha)$ for some α.

As $\operatorname{ch}\left(\operatorname{BRF}_{n}^{K}(z)\right)=\mathfrak{S}_{z}^{K}$ if $n \gg 0$, Conjecture 3.7 would follow from this conjecture on taking characters. This conjecture is again supported by extensive computer calculations. Conjectures 3.7 and 3.9 also have more refined versions involving K-reduced factorizations that are bounded by arbitrary flags, which would generalize [20, Thm. 21].

An interesting discrepancy with the classical case is that the subsets $\operatorname{Dem}_{n}^{\mathrm{K}}(\alpha)$ are not closed under $e_{\bar{\imath}}$ for all $\bar{\imath} \in[\overline{n-1}]$. Contrast this with the situation for $\mathfrak{g l}_{n}$-Demazure crystals: if b_{β} is the unique element of weight $\beta \leq \alpha$ in a $\mathfrak{g l}_{n}$-Demazure crystal, then while we cannot obtain all elements from b_{α} through applying $\left\{e_{i}: i \in[n-1]\right\}$, we can obtain everything by applying these operators to the closure of $\left\{b_{\beta}: \beta \leq \alpha\right\}$.
Example 3.10. Consider the \mathfrak{q}_{4}-crystal $\operatorname{RF}^{\mathrm{Sp}}(z)$ in Figure 2. For $b=(2 / 3 / 4 / \cdot) \in \operatorname{BRF}^{S \mathrm{p}}(z)$, we have $e_{\overline{2}}(2 / 3 / 4 / \cdot)=s_{1} s_{2} e_{\overline{1}} s_{2} s_{1}(2 / 3 / 4 / \cdot)=s_{1} s_{2} e_{\overline{1}}(2 / 3 / 4 / \cdot)=s_{1} s_{2}(21 / \cdot / 4 / \cdot)=$ $s_{1}(21 / 4 / \cdot / \cdot)=(2 / 41 / \cdot / \cdot) \notin \operatorname{BRF}^{S_{p}}(z)$.

Acknowledgements

The authors thank T. Matsumura, A. Schilling, and A. Yong for useful discussions.

References

[1] S. Assaf and A. Schilling. "A Demazure crystal construction for Schubert polynomials". Algebr. Comb. 1.2 (2018), pp. 225-247. Doi.
[2] S. C. Billey, W. Jockusch, and R. P. Stanley. "Some combinatorial properties of Schubert polynomials". J. Algebraic Combin. 2.4 (1993), pp. 345-374. Dor.
[3] M. Brion. "The behaviour at infinity of the Bruhat decomposition". Comment. Math. Helv. 73 (1998), pp. 137-174. DoI.
[4] D. Bump and A. Schilling. Crystal bases. Representations and combinatorics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, pp. xii+279. Doi.
[5] M. B. Can, M. Joyce, and B. Wyser. "Chains in weak order posets associated to involutions". J. Combin. Theory Ser. A 137 (2016), pp. 207-225. DoI.
[6] M. Gillespie, G. Hawkes, W. Poh, and A. Schilling. "Characterization of queer supercrystals". J. Combin. Theory Ser. A 173 (2020), pp. 105235, 53. Doi.
[7] D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, and M. Kim. "Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux". Trans. Amer. Math. Soc. 366.1 (2014), pp. 457-489. Dor.
[8] Z. Hamaker, E. Marberg, and B. Pawlowski. "Involution words II: braid relations and atomic structures". J. Algebraic Combin. 45.3 (2017), pp. 701-743. Doi.
[9] Z. Hamaker, E. Marberg, and B. Pawlowski. "Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures". J. Combin. Theory Ser. A 160 (2018), pp. 217-260. Doi.
[10] Z. Hamaker, E. Marberg, and B. Pawlowski. "Schur P-positivity and involution Stanley symmetric functions". Int. Math. Res. Not. IMRN 17 (2019), pp. 5389-5440. Doi.
[11] Z. Hamaker, E. Marberg, and B. Pawlowski. "Fixed-point-free involutions and Schur Ppositivity". J. Comb. 11.1 (2020), pp. 65-110. Dor.
[12] M. Kashiwara. "On crystal bases of the q-analogue of universal enveloping algebras". Duke Math. J. 63.2 (1991), pp. 465-516. Doi.
[13] A. Lascoux and M.-P. Schützenberger. "Polynômes de Schubert". C. R. Acad. Sci. Paris Sér. I Math. 294.13 (1982), pp. 447-450.
[14] I. G. Macdonald. Symmetric functions and Hall polynomials. Second. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York, 2015, pp. xii +475 .
[15] L. Manivel. Symmetric functions, Schubert polynomials and degeneracy loci. Vol. 6. SMF/AMS Texts and Monographs. Amer. Math. Soc., Providence, RI, 2001, pp. viii+167.
[16] E. Marberg. "Bumping operators and insertion algorithms for queer supercrystals". Selecta Math. (N.S.) 28.2 (2022), Paper No. 36, 62. Doi.
[17] E. Marberg and T. Scrimshaw. "Key and Lascoux polynomials for symmetric orbit closures". 2023. arXiv:2302.04226.
[18] E. Marberg and K. H. Tong. "Highest weight crystals for Schur Q-functions". 2021. arXiv: 2112.02848.
[19] J. Morse and A. Schilling. "Crystal approach to affine Schubert calculus". Int. Math. Res. Not. IMRN 8 (2016), pp. 2239-2294. Doi.
[20] V. Reiner and M. Shimozono. "Key Polynomials and a Flagged Littlewood-Richardson Rule". J. Combin. Theory Ser. A 137 (1995), pp. 107-143.
[21] R. P. Stanley. "On the number of reduced decompositions of elements of Coxeter groups". European J. Combin. 5.4 (1984), pp. 359-372. doi.
[22] B. Wyser and A. Yong. "Polynomials for symmetric orbit closures in the flag variety". Transform. Groups 22.1 (2017), pp. 267-290. DoI.

[^0]: *emarberg@ust.hk. Partially supported by Hong Kong RGC grant GRF 16306120.
 ${ }^{\dagger}$ tcscrims@gmail.com. Partially supported by Grant-in-Aid for JSPS Fellows 21F51028.

