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Alternating Sign Matrices and Descending Plane
Partitions: a linear number of equivalent statistics
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Abstract. There is the same number of alternating sign matrices as there is of cycli-
cally symmetric lozenge tilings of a hexagon with a central triangular hole of size 2,
but finding an explicit bijection has been an open problem for about 40 years now.
This is even more surprising in the view of the fact that, when restricting to vertically
symmetric alternating sign matrices, their number equals the number of such lozenge
tilings that also exhibit an additional reflective symmetry. To approach such bijections,
we present generalizations of these results that involve a linear number of equidis-
tributed statistics. Prior to this work, only a constant number of such statistics were
known.
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1 Introduction

An alternating sign matrix (ASM) is a square matrix with entries in {0,±1} such that, in
each row and each column, 1’s and −1’s alternate and sum to 1. All 3 × 3 ASMs are
given next.(

1 0 0
0 1 0
0 0 1

) (
1 0 0
0 0 1
0 1 0

) (
0 1 0
1 0 0
0 0 1

) (
0 1 0
0 0 1
1 0 0

) (
0 0 1
1 0 0
0 1 0

) (
0 0 1
0 1 0
1 0 0

) (
0 1 0
1 −1 1
0 1 0

)

ASMs had been introduced by Robbins and Rumsey in the 1980s [15] and they conjec-
tured that the number of n×n ASMs is ∏n−1

i=0
(3i+1)!
(n+i)! , which was proven after considerable

effort by Zeilberger [16] (in fact, he showed a more general result that includes an addi-
tional parameter). Soon after that, Kuperberg used methods from statistical physics to
give another, shorter proof [10] (of the special case).
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Further observations caused considerable excitement in the combinatorics commu-
nity, in particular ∏n−1

i=0
(3i+1)!
(n+i)! appears also as the enumeration formula for descending

plane partitions (DPPs) with parts no greater than n [3, 12], which are defined next. A
strict partition is a sequence λ = (λ1, . . . , λn) of positive integers with λ1 > . . . > λn, and
the shifted Young diagram of shape λ has λi cells in row i, where each row is indented
by one cell to the right with respect to the previous row. A DPP is a filling of a shifted
Young diagram with positive integers such that rows decrease weakly and columns de-
crease strictly, and the first part of each row is greater than the length of its row and less
than or equal to the length of the previous row. The DPPs with all entries less than or
equal to 3 are given next.

∅ 2 3 3 1 3 2 3 3
3 3

2

There has been much effort to construct explicit bijections between ASMs and DPPs,
but until recently without much progress. Very recently, a bijective proof [6] of an iden-
tity that implies the equinumerosity of ASMs and DPPs was established. The bijection is
quite involved, and uses signed sets and a generalization of the involution principle by
Garsia and Milne [7]. It seems fair to say that a perfect understanding of these relations
despite the many efforts is still missing.

The main purpose of this extended abstract is to shed light on the mysterious relation
between ASMs and DPPs by introducing a pair of n + 3 equidistributed statistics, one
set of n + 3 statistics on ASMs and the other set on DPPs. Finding such statistics is a
natural approach to construct bijections. Prior to this work, a constant number of such
statistics were known. The extended abstract is a summary of our two preprints [1, 5]
and we refer the reader to these preprints for all the details.

The introduction of our statistics is at the cost of replacing both ASMs and DPPs by
somewhat modified objects, see Sections 2 and 3, respectively, however the relation of
these modified objects to ASMs and DPPs is easily established by combinatorial means.
We are also able to obtain a result that is similar in vein for vertically symmetric ASMs
and the corresponding DPP-objects (Section 4). As the results are also phrased in terms
of non-intersecting lattice paths on the DPP-side, we spend the rest of the introduction by
presenting the lozenge tilings that correspond to DPPs which in turn are in easy bijective
correspondence with the lattice paths.

DPPs with parts no greater than n are known [9] to be in easy bijective corre-
spondence with cyclically symmetric lozenge tilings of a hexagon with side lengths
n, n + 2, n, n + 2, n, n + 2 that have a central triangular hole of size 2, see Figure 1. Such
tilings can be encoded as families of non-intersecting lattice paths (n-DPP paths), see
Figure 1. More precisely, the n-DPP paths have starting points Ai = (0, i − 2) and end
points Ei = (i, 0) for i ∈ S where S ⊆ {2, . . . , n} and use steps in (1, 0)-direction and
(0,−1)-direction (note that our convention differs from the one more frequently used
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Figure 1: A cyclically symmetric lozenge tiling of a hexagon with the fundamental
domain framed in red (left) and the corresponding 5-DPP paths.

by the reflection along the line y = x. In Section 4, we consider vertically symmetric al-
ternating sign matrices (VSASMs). Due to the vertical symmetry, the central column of a
VSASM has to exist and is of the form (1,−1, 1, . . . ,−1, 1)⊤; hence, VSASMs only exist
for an odd order. Amongst the different objects that are known to be equinumerous to
ASMs, cyclically symmetric lozenge tilings of a hexagon with a central triangular hole
are particularly well-suited for imposing an additional condition that corresponds to the
vertical symmetry of VSASMs. In fact, the axial symmetry can be literally transferred to
lozenge tilings: it has been shown [14, 11] that (2n + 1)× (2n + 1) VSASMs are equinu-
merous with cyclically symmetric lozenge tilings of a hexagon with sides of alternating
lengths 2n + 2 and 2n and with a central triangular hole of side length 2 that exhibit an
additional reflective symmetry. Figure 2 illustrates an example of such a tiling.

2 Arrowed monotone triangles

A monotone triangle is a triangular array (mi,j)1≤j≤i≤n of integers of the form

mn,1 mn,2 mn,n

mn−1,1 mn−1,n−1

m2,1 m2,2

m1,1

with weakly increasing entries along northeast- and southeast-diagonals, i.e., mi+1,j ≤
mi,j ≤ mi+1,j+1, and strictly increasing rows, i.e., mi,j < mi,j+1. It is well known that
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Figure 2: Cyclically symmetric lozenge tiling with an additional reflective symmetry
of a hexagon with alternating side lengths 2n + 2 and 2n for n = 2. The fundamental
domain framed in red corresponds to a sixth of the hexagon. The axis of reflection is
indicated with a dotted line. The tiling corresponds to non-intersecting lattice paths
from (i − 1, 2i − 2) to (2i − 1, i − 1) for 1 ≤ i ≤ n with step set {(1, 0), (0,−1)}.

n × n ASMs are in bijection with monotone triangles with bottom row (1, 2, . . . , n). As
we see in Section 4, monotone triangles with bottom row (0, 2, . . . , 2n− 2) are in bijection
with (2n + 1)× (2n + 1) VSASMs in a similar way. Our modified ASM-objects are the
following decorated monotone triangles.

An arrowed monotone triangle (AMT) is a monotone triangle (mi,j)1≤j≤i≤n together
with a decoration of its entries by one of the symbols ↖,↗,↖↗ such that the decoration
of mi+1,j has to be ↖ if mi+1,j = mi,j, while the decoration of mi+1,j+1 has to be ↗ if
mi+1,j+1 = mi,j. In other words, an arrow indicates that the decorated entry has to be
different from the entry it is pointing to. We write ↖mi,j, mi,j

↗, ↖mi,j
↗ if the entry mi,j is

1 2 3 4 5 6
1 2 3 4 6

1 3 4 6
2 3 5

2 5
3

↖ ↖ ↖ ↖ ↖ ↗ ↗
↖ ↖ ↗ ↗ ↗

↖ ↗ ↖ ↗ ↖
↖ ↖ ↗

↗ ↖ ↗
↖

0 2 4 6
2 3 6

2 6
4

↗ ↗ ↖ ↗ ↗
↖ ↖ ↗

↗ ↖
↖ ↗

Figure 3: An arrowed monotone triangle with bottom row (1, 2, 3, 4, 5, 6) on the left
and with bottom row (0, 2, 4, 6) on the right.

decorated with ↖,↗, or ↖↗, respectively. See Figure 3 for an example. We assign to an
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AMT M = (mi,j)1≤j≤i≤n the weight

WM(u, v, w; x) = u#↗v#↖w#↖↗
n

∏
i=1

x
∑i

j=1 mi,j−∑i−1
j=1 mi−1,j+#(↗ in row i)−#(↖ in row i)

i .

The AMT in Figure 3 (left) has weight u7v11w3x2
1x5

2x2
3x3

4x3
5x2

6 and the AMT in Figure 3
(right) has weight u5v3w2x4

1x4
2x2

3x4
4. The exponents of the n + 3 variables are the n +

3 statistics on the ASM-side of our story. Note that there is a very satisfying anal-
ogy to the weight of Gelfand-Tsetlin patterns that corresponds to the Schur weight
on semistandard Young tableaux under the classical bijection as this weight is simply

∏n
i=1 x

∑i
j=1 ai,j−∑i−1

j=1 ai−1,j

i for a given Gelfand-Tsetlin pattern A = (ai,j)1≤j≤i≤n.
AMTs and monotone triangles are related as follows. Fix a monotone triangle M and

consider the set of all AMTs which are mapped to M by forgetting the decorations. We
claim that the sum of weights of these AMTs is equal to 1 when setting

u = v = 1, w = −1, x1 = . . . = xn = 1. (2.1)

Indeed, this follows from the observation that each entry of M that is different from its
northwest-neighbor and its northeast-neighbor can be decorated with any of ↖,↗,↖↗,
while all the other entries can be decorated with either ↖ or ↗. (In [1, Proposition 3.3]
we also identify a weight on monotone triangles directly that is up to a simple factor the
sum of weights of all arrowed monotone triangles that are obtained by decorating the
monotone triangle.) Therefore, we may consider AMTs with bottom row (1, 2, . . . , n) as
our modified objects on the ASM-side.

For a sequence L = (L1, . . . , Ln) of integers (not necessarily decreasing), we define

the extended Schur polynomial sL(x) as sL(x) =
det

1≤i,j≤n

(
x

Lj+n−j

i

)
∏1≤i<j≤n(xi−xj)

. For an equivalent definition

see [1, Equation (3.6), (5.1)]. We are now able to state our first main result.

Theorem 1 ([1, Theorem 2.2]). The generating function of arrowed monotone triangles with
bottom row k1 < . . . < kn is

n

∏
i=1

(uXi + vX−1
i + w) ∏

1≤p<q≤n

(
uEkp + vE−1

kq
+ wEkpE−1

kq

)
s(kn,kn−1,...,k1)

(x1, . . . , xn), (2.2)

where Ek denotes the shift operator, defined as Ek p(k) = p(k + 1).

This is a multivariate extension of the operator formula of number of monotone
triangles with bottom row [4] and one of the main ingredient in the proofs of our other
results.
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3 On the relation between ASMs and DPPs

We present the modified objects replacing DPPs along with the multivariate weight with
n + 3 variables that give rise to the n + 3 statistics on the DPP-side.

Extended n-DPP paths are families of non-intersecting lattice paths with starting points
A′

i = (−i, i − 2) and end points E′
i = (i,−2) for i ∈ S and a given subset S ⊆ {1, . . . , n}

which stay weakly below the line y = n− 2 and have the following step sets and weights:

(i) In the region {(x, y)|x < 0}, the step set is {(1, 0), (0, 1)2} with weights xp+q+2v−1

for a (1, 0) step ending in (p, q), and where (1, 0)2 indicates that there are two types
of (0, 1) steps, one of which has weight xp+q+2v−1w when ending in (p, q) and the
other has weight 1.

(ii) In the region {(x, y)|x ≥ 0, y ≥ −1}, the step set is {(1, 0), (0,−1)}, with weights
uxq+2 for a (1, 0) step at height q and weight 1 for a (0,−1) step.

(iii) If we go below the line y = −1, the step set is {(1,−1), (0,−1)}, with weights w
for a (1,−1) step and 1 for a (0,−1) step.

The weight of extended n-DPP paths is v(
n+1

2 ) times the product of the weights of all
steps. See Figure 4 for an example. Note that in [1, Section 4] we consider a (very minor)
modification of these paths. Analogously to the situation for AMTs and ASMs, we argue

Figure 4: A family of extended 5-DPP paths with S = {1, 2, 4, 6} and weight
u11v5w5x5

1x4
2x6

3x5
4x2

5x2
6x3

7 where all (0, 1) steps left of the y-axis are of first type.

next that the generating function of extended n-DPP paths is the number of n-DPP paths
under the specialization (2.1). Indeed, strictly left of the y-axis (0, 1) steps come in pairs
with weights of opposite sign; hence, left of the y-axis, we can assume to have only (1, 0)
steps. The following is a sign-reversing involution between all such extended n-DPP
paths for which not all paths end by two (0,−1) steps (and hence cancels these paths):
pick the right-most path ending by either a diagonal (1,−1) step or by a (1, 0) step
followed by an (0,−1) step and replace in the second case the two steps by a diagonal
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step and vice-versa. By deleting all steps left of the y-axis and below the x-axis of the
remaining extended DPP paths, we obtain the above defined DPP paths.

Our second main result is a consequence of [1, Theorem 2.6] using insights from
Section 4 in that paper.

Theorem 2. The generating function of AMTs with bottom row (1, 2, . . . , n) is equal to the
generating function of extended n-DPP paths.

It is an open problem to construct a weight-preserving bijection between AMTs with
bottom row (1, 2, . . . , n) and extended n-DPP paths. One surprising observation we
made in our work is the following: Suppose that one is able to find a weight preserving
bijection between AMTs with bottom row (1, 2, . . . , n) and extended n-DPP paths, which
is further compatible with the sign reversing involution described above and the one
hinted at in the paragraph around (2.1). Then, as a direct consequence, one would
obtain a longed for bijection between ASMs and DPPs. However, we show that such a
compatible weight preserving bijection does not exist for n ≥ 3.

Proposition 1. Let n ≥ 3. Then there exists no weight-preserving bijection between AMTs with
bottom row (1, . . . , n) and extended n-DPP paths which induces a bijection between monotone
triangles with bottom row (1, . . . , n) and n-DPP paths by restricting to n-DPP paths as described
above and by ignoring the arrows in the corresponding AMT.

Proof. We extend n-DPP paths to extended n-DPP paths by adding an appropriate num-
ber of (1, 0) steps at the beginning of each path and by adding two (0,−1) steps at the
end of each path. The exponent of x1 thereby counts the number of paths in a given
family of n-DPP paths. Hence the maximum exponent of x1 is n − 1 and obtained by the
unique family of n-DPP paths consisting of n − 1 paths. For AMTs, the exponent of x1
is n − 1 exactly if the top entry is n. The number of monotone triangles with top entry
n is equal to the number of monotone triangles with bottom row (1, . . . , n − 1) since the
top entry n forces all entries in the right-most northwest-diagonal to be equal to n. For
n ≥ 3, there are at least 2 of such monotone triangles. Hence not all of them can be
reached through a weight-preserving bijection.

There exists also a version of Theorem 2 in terms of certain plane partitions, which
we discuss next. Let λ be a partition and (a1, . . . , al|b1, . . . , bl) its Frobenius notation, i.e.,
ai = λi − i and bi = λ′

i − i, where l = maxi{λi ≥ i}. We say that λ is near-balanced if, for
all i, either ai = bi or ai = bi + 1. We assign the weight W(λ) = wl+∑l

i=1(bi−ai). Now, a
set-valued near-balanced column strict plane partition (SBCSPP) D of shape λ and order n is
a filling of a near-balanced partition λ with non-empty subsets of {1, 2, . . . , n} such that
strictly above the diagonal the subsets are singletons, and (i) rows decrease weakly in
the sense that the maxima of the sets form a weakly decreasing sequence if read from
left to right, and (ii) columns decrease strictly in the sense that for two adjacent cells in
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a column, all elements in the top cell are strictly greater than all elements in the bottom
cell. The weight of D is as follows

W(D) = W(λ) · u# cells strictly above the main diagonal · v(
n+1

2 )−# entries on and below the main diagonal

· w# entries−# cells ·
n

∏
i=1

x#i in D
i .

Next is an example of an SBCSPP of order 9 and weight u16v26w3x5
1x5

2x4
3x5

4x4
5x4

6x5
7x3

8.

8 8 8 7 7 6 4 1

7 7 7 6 5 5

6 6 5 4 4 4

5 4 3 3, 2 3 2

3 2 2, 1 1

2 1

1

Theorem 3 ([1, Theorem 2.6]). The generating function of arrowed monotone triangles with
bottom row 1, 2, . . . , n is equal to the generating function of set-valued near-balanced column
strict plane partitions with parts in {1, 2, . . . , n}.

Concerning the proof of Theorem 3 (and also of Theorem 4), the rough idea is to use
Theorem 1 to obtain a bialternant formula for the generating function of AMTs. We then
transform this generating function into a Jacobi-Trudi-type determinant, which we then
interpret combinatorially using the Lindström-Gessel-Viennot theorem.

4 Reflective symmetry

We have indicated in Section 2 that there is a one-to-one correspondence between mono-
tone triangles with bottom row (1, 2, . . . , n) and n × n ASMs. By applying similar ideas,
we see that (2n + 1)× (2n + 1) VSASMs are in bijection with monotone triangles with
bottom row (0, 2, . . . , 2n − 2): First we rotate the given matrix by 90◦ and then map it
to a monotone triangle with 2n + 1 rows of which we only need to consider the top
n rows due to the axial symmetry of the original VSASM. Since the central column of
the VSASM was (1,−1, 1,−1, . . . ,−1, 1)⊤, the top n rows constitute a monotone triangle
with bottom row (2, 4, . . . , 2n). Finally, we subtract 2 from each entry.

Thanks to the correspondence between VSASMs and these monotone triangles, The-
orem 1 yields an enumerational refinement of (2n + 1) × (2n + 1) VSASMs by n + 3
parameters. An obvious question is whether there is a corresponding family of non-
intersecting lattice paths — that might be interpreted as some kind of plane partitions
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or lozenge tilings afterwards — with equally distributed statistics. There are indeed sev-
eral such objects but just like we needed to broaden the notion of monotone triangles in
favour of AMTs in order to incorporate additional statistics, we need to consider here
more intricate families of non-intersecting lattice paths than those we get from lozenge
tilings; see Figure 2. However, the weights of these lattice paths are signed. In The-
orem 4, we provide one such family of non-intersecting lattice paths, an example of
which is depicted in Figure 5. By eliminating the sign, these paths can then be further
transformed into pairs of certain plane partitions in Theorem 5.

Theorem 4 ([5, Theorem 2.2]). The generating function of AMTs with bottom row (0, 2, . . . , 2n
− 2) is equal to the signed generating function of n lattice paths with starting points (−1, 1),
(−2, 2),. . . ,(−n, n) and end points (0, 1), (1, 0),. . . ,(n − 1,−n + 2) such that:

(i) In the region {(x, y)|x ≤ 0}, the step set is {(1, 1), (1, 0)}, and steps of type (1, 0) are
equipped with the weight w.

(ii) In the region {(x, y)|x ≥ 0, y ≥ 1}, the step set is {(1,−1), (0,−2)}, and steps of type
(0,−2) are equipped the weight −uv.

(iii) In the region {(x, y)|x ≥ 0, y ≤ 1}, the step set is {(−1, 0)2, (0,−1)}, and one type of
horizontal steps with distance d from the line y = 2 is equipped with the weight uxd and
the second type is equipped with the weight vx−1

d .

The paths are non-intersecting in the first and in the third region. In the second region, we
distinguish between even and odd paths depending on whether they contain only even or only
odd lattice points, respectively. Lattice paths of the same type are not intersecting each other, but
an odd path may have an intersection with an even path.

The weight of a family of lattice paths is ∏n
i=1 xn−1

i multiplied by the product of the weights
of all its steps where the weight of a step is 1 if it has not been specified. Let σ be the permutation
so that the i-th starting point is connected to the σ(i)-th end point, then the sign of the family is
sgn σ.

In Section 5 of [5], we have related the lattice paths of Theorem 4 to non-intersecting
lattice paths from {(i − 1, 2i − 2)|1 ≤ i ≤ n} to {(2i − 1, i − 1)|1 ≤ i ≤ n} with step set
{(1, 0), (0,−1)} by purely combinatorial means. The latter are in one-to-one correspon-
dence with cyclically and vertically symmetric lozenge tilings of a hexagon with side
lengths 2n + 2, 2n, 2n + 2, 2n, 2n + 2, 2n and a central triangular hole of size 2 as de-
scribed in Figure 2. For this purpose, we have to consider the unrefined case by setting
u = v = 1, w = −1 and x1 = · · · = xn = 1; compare with (2.1).

In order to present a class of objects with signless weights, we recall the notion of
column-strictness and row-strictness regarding plane partitions. A column-strict plane
partition is a filling of a Young diagram with positive integers that weakly decrease
along rows and strictly decrease down columns, whereas a row-strict plane partition is
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Figure 5: A family of non-intersecting lattice paths as defined in Theorem 4 for n = 5.
In the second region, we draw even paths in red and odd paths in blue. The associated
permutation is σ = (1 3 2 5 4), and the weight is (−uv)3u4w4x5

1x5
2x5

3x5
4x4

5 when always
choosing the first type for horizontal steps in the third region.

a filling of a Young diagram with positive integers that weakly decrease down columns
and strictly along rows. The following described pairs of plane partitions provide a
signless generating function that coincides with the (n + 3)-parameter refinement of
VSASMs. Figure 6 shows an example of such a pair.

Theorem 5 ([5, Theorem 2.5]). The generating function of AMTs with bottom row (0, 2, . . . ,
2n − 2) is equal to the generating function of pairs (P, Q) of plane partitions of the same shape
with n rows (allowing also rows of length zero) such that P is a column-strict plane partition
and Q is a row-strict plane partition, and the entries of P in the i-th row from the bottom are no
greater than 2i, while the entries of Q in the i-th row from the bottom are no greater than i. The
weight of such a pair is given by the following monomial:

w(n+1
2 )−# entries in Q

n

∏
i=1

xn−1
i (uxi)

# (2i − 1) in P(vx−1
i )# (2i) in P.

We are able to prove Theorem 5 in two different ways: one proof is rather based
on algebraic manipulations, whilst the other one is more combinatorial. In fact, we can
apply two sign-reversing involutions on the lattice paths of Theorem 4 to obtain the pairs
of plane partitions in Theorem 5. We essentially start with the family of lattice paths in
Theorem 4, but where paths might intersect in the second and third region. The first
sign-reversing involution eliminates intersections in the second region and shows that
the generating function has no negative coefficients although each family of lattice paths
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9 7 7 3

8 6

5 5

2

4 3 2 1

4 2

3 2

1

Figure 6: Pair of a column-strict plane partition (left) and a row-strict plane par-
tition (right) of the same shape for n = 5. The weight of this pair is given by
w6x4

1x4
2x4

3x4
4x4

5(vx−1
1 )1(ux2)1(ux3)2(vx−1

3 )1(ux4)
2(vx−1

4 )1(ux5)1.

is equipped with a sign. The intersections in the third regions are then dealt with by a
second sign-reversing involution of “Gessel-Viennot” type.

In addition to providing a signless interpretation in terms of plane partitions, there is
another benefit of Theorem 5: It yields an expansion of the generating function of AMTs
with bottom row (0, 2, . . . , 2n − 2) into symplectic characters since column-strict plane
partitions as they appear in Theorem 5 are in bijective correspondence with symplectic
tableaux as described by Koike and Terada [8]. The coefficients in this expansion are
given by totally symmetric self-complementary plane partitions. This can be seen as follows:
Given a row-strict plane partition with n rows (including rows of length zero) and entries
in the i-th row from the bottom not being greater than i, we replace each entry π by
n + 1 − π and conjugate the resulting array such that we obtain a semistandard Young
tableau with entries from 1 to n such that the entries in the i-th column are no smaller
than i. By applying the standard procedure of mapping semistandard Young tableaux
into Gelfand-Tsetlin patterns and adding an additional diagonal and adding 1 to each
entry, we obtain so-called Magog triangles — triangular arrays of positive integers with
weakly increasing ↗- and ↘-diagonals such that no entry in the ith ↗-diagonal from
the left exceeds i for every i — which are known to be in bijection with totally symmetric
self-complementary plane partitions in a (2n+ 2)× (2n+ 2)× (2n+ 2) box [13]. We give
the Magog triangle that corresponds to the row-strict plane partition in Figure 6 below.
Note that a similar result is known for the ordinary case: the generating function of
AMTs with bottom row (1, 2, . . . , n) exhibits an expansion into Schur functions whose
coefficients are given by weights of totally symmetric plane partitions [2].

4 3 2 1

4 2

3 2

1

⇒

1
1 1

1 1 3
1 1 2 4

1 1 2 4 4
1 1 2 2 4 5
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