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Abstract. Given a finite quiver (directed graph) without loops and multiedges, the
convex hull of the column vector of the incidence matrix is called the directed edge
polytope and is an interesting example of lattice polytopes. In this article, we give a
complete characterization of facets of the directed edge polytope of an arbitrary finite
quiver without loops and multiedges in terms of the connectivity and the existence of
a rank function. Our result can be regarded as an extension of the result of Higashitani
et al. [6] on facets of symmetric edge polytopes to directed edge polytopes. When the
quiver in question has a rank function, we obtain a characterization of faces of arbitrary
dimensions. This article is an extended abstract of [10].

Résumé. Pour un graphe orienté fini simple, l’enveloppe convexe du vecteur colonne
de la matrice d’incidence est appelée le polytope d’arête orienté. C’est un intéres-
sant exemple de polytopes intégraux. Dans cet article, nous donnons une caractéri-
sation complète des facettes de polytope d’arête orienté en termes de connectivité et
d’existence d’une fonction de rang. Notre résultat peut être considéré comme une
extension du résultat de Higashitani et al. [6] sur les facettes de polytope d’arête
symétrique. Pour un graphe orienté avec une fonction de rang, on obtient une car-
actérisation de faces de dimensions arbitraires. Cet article est un résumé étendu de
[10].

Keywords: Kantorovich–Rubinstein polytopes; fundamental polytopes; symmetric
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1 Introduction

For a motivation of optimal transportation problems, Vershik proposed to study the
fundamental polytope constructed from a finite metric space in [11]. For a metric space
([n], d), the fundamental polytope KR([n], d) is defined to be the convex hull of{

ϵd
(i,j) =

ei − ej

d(i, j)

∣∣∣∣ i, j ∈ [n], i ̸= j
}

,
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where {e1, . . . , en} is the standard orthonormal basis of Rn. The polytope KR([n], d)
is also called the Kantorovich–Rubinstein polytope [7, 8]. In the case of a tree-like metric
space, Delucchi and Hoessley proved a nice formula of the f -vector by using the relation
between tree-like metric spaces and hyperplane arrangements in [3]. The starting point
of this work was the second author’s attempt to extend their work to graphs with cycles.

For a finite simple graph G whose vertex set is [n], we can define a metric dG on
[n] by the minimum length of paths. The Kantorovich–Rubinstein polytope KR([n], dG)
has already been studied as the symmetric edge polytope SE(G), introduced by Matsui et
al. [9]. If G is the complete graph Kn, then it is also called the root polytope of the root
system An−1 and Cho completely determined its faces in [1].

We can also generalize the definition of symmetric edge polytope to a finite quiver
(directed graph). In this article, a quiver Q = (Q0, Q1) means a quiver without loops
and multiedges. Since Q has no loop and no multiedges, Q1 is realized as a subset of
(Q0 × Q0) \ { (i, i) | i ∈ Q0 }. Let Q be a quiver with Q0 = [n]. We define ε(i,j) = ei − ej
for (i, j) ∈ Q1. Let ε(Q1) be the set of ε(i,j) for all (i, j) ∈ Q1. We define the directed edge
polytope DE(Q) to be the convex hull of ε(Q1). In other words, DE(Q) is the convex hull
of column vectors of the incidence matrix of Q. The directed edge polytope is the convex
polytope whose set of vertices is ε(Q1). See also [5]. The symmetric edge polytope SE(G)
is nothing but DE(D(G)), where D(G) is the double of G, i.e. the quiver whose edge set
is the collection of direct edges (v, w) and (w, v) for adjacent vertices v, w in G.

The aim of this article is to give an explicit combinatorial description of all facets of
DE(Q) for a quiver Q and combinatorial descriptions of facets of SE(G) = KR(G0, dgraph)
for a finite simple graph.

In general, the directed edge polytope DE(Q) with Q0 = [n] is a convex polytope in
the vector space Rn. Since the set of vertices of DE(Q) is given by ε(Q1), we can describe
any face of DE(Q) in the form DE(R) for a subquiver R with R0 = Q0. Let us call such
a subquiver a lluf subquiver.

Our problem is to determine the lluf subquiver R of Q such that DE(R) is a facet of
DE(Q), i.e. DE(R) is a face of DE(Q) and dim DE(R) = dim DE(Q)− 1. The existence
of a rank function plays a key role in both problems. We call ρ : Q0 → R a rank function
of Q if ρ(v) + 1 = ρ(w) for each edge (v, w) ∈ Q1. As in Remark 3.3, such a function
makes the vertex set Q0 into a graded poset. To consider the dimension, we also need
to consider a connected component C of a quiver Q, i.e. a maximal subquiver such
that any two distinct vertices in C are connected by an undirected walk in C, where an
undirected walk is a sequence (v0, v1, . . . , vl) of vertices in Q such that (vt, vt+1) ∈ Q1 or
(vt+1, vt) ∈ Q1 for all t. We define the coconnectivity c(Q) of Q by c(Q) = |Q0| − |π0(Q)|,
where π0(Q) stands for the set of connected components of Q. We can describe the
dimension of DE(Q) by the coconnectivity as follows:
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Theorem 1.1. For a finite quiver Q without loops and multiedges, we have

dim(DE(Q)) =

{
c(Q)− 1 (if Q has a rank function)
c(Q) (otherwise).

To determine faces, the contraction is also a key notion. We say that a luff subquiver
R of Q is component-wise full if C1 = { (v, w) ∈ Q1 | v, w ∈ C0 } for each connected com-
ponent C of R. For a component-wise full subquiver R of a quiver Q, we define an
equivalence relation ∼ on Q0 by

v ∼ w ⇐⇒ v and w are in the same connected component of R ,

and the equivalence class of v ∈ Q0 is denoted by [v]. We define the contraction Q/R to
be the quiver such that (Q/R)0 = Q0/∼ and (Q/R)1 = { ([v], [w]) | (v, w) ∈ Q1 \ R1 }.
Roughly speaking, Q/R is the quiver obtained from Q by collapsing each connected
component of R to a point. We can characterize facets as follows:

Theorem 1.2. Let Q be a finite quiver without loops and multiedges. For a lluf subquiver R of
Q with dim(DE(R)) = dim(DE(Q))− 1, DE(R) is a facet of DE(Q) if and only if one of the
following conditions holds:

1. c(R) = c(Q)− 1, R is a component-wise full subquiver of Q, and the contraction Q/R is
acyclic.

2. c(R) = c(Q) and there exists a rank function ρ of R such that

(ρ(v)− ρ(w) + 1)(ρ(v′)− ρ(w′) + 1) > 0

for any (v, w), (v′, w′) ∈ Q1 \ R1.

By iterating the process of taking facets, we can obtain lower dimensional faces. Thus
we obtain a characterization of faces of DE(Q) for a quiver Q with a rank function.

Theorem 1.3. Suppose Q has a rank function. For a proper subquiver R of Q, the polytope
DE(R) is a face of DE(Q), if and only if R is a component-wise full subquiver of Q and Q/R is
acyclic.

In the case of D(G) for a simple graph G, it does not have a rank function and the
condition (2) in Theorem 1.2 applies. Hence we have the following:

Corollary 1.4. Let G be a finite simple graph. For a lluf subquiver R of D(G) with
dim(DE(R)) = dim(SE(G))− 1, the following are equivalent:

1. DE(R) is a facet of SE(G).
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2. c(R) = c(D(G)) and there exists a rank function ρ of R such that

(ρ(v)− ρ(w) + 1)(ρ(v′)− ρ(w′) + 1) > 0

for any (v, w), (v′, w′) ∈ D(G)1 \ R1.

3. c(R) = c(D(G)) and there exists a map ρ from the set of vertices of G to R such that

ρ(v)− ρ(w) =


1 ((v, w) ∈ R1)

−1 ((w, v) ∈ R1)

0 (otherwise)

for (v, w) ∈ D(G)1.

Remark 1.5. This is essentially equivalent to a characterization of facets of symmetric
edge polytopes in Higashitani–Jochemko–Michałek [6] for a connected graph G. See [10,
Remark 5.5] for the details.

Remark 1.6. In the case of the Kantorovich–Rubinstein polytope KR([n], d) for a general
metric d, Gordon and Petrov [4] defined a quiver Q(F) with vertex set [n] from a face F
of KR([n], d) by

Q(F)1 =
{
(v, w)

∣∣∣ ϵd
(v,w) ∈ F

}
.

They proved as Theorem 3 that E is a subset of in Q(F)1 for some facet F of KR([n], d)
if and only if there exists a function ρ : E → R such that ρ(v) − ρ(w) = d(v, w) for
(v, w) ∈ E.

When d = dG for a graph G with the vertex set [n], KR([n], dG) = SE(G), the third
condition in Corollary 1.4 is closely related to their condition. In fact, if F is a facet
of SE(G) represented by a luff subquiver R of D(G) by F = DE(R), then R1 ⊂ Q(F)
and Theorem 3 of Gordon-Petrov says that there exists a function ρ : [n] → R such that
ρ(v)− ρ(w) = 1 for (v, w) ∈ R1.

On the other hand, Corollary 1.4 gives a complete characterization of lluf subquivers
R of D(G) such that DE(R) is a facet of KR([n], dG), while Gordon-Petrov’s Theorem 3
does not.

This article is organized as follows: After fixing notation and terminology in Sec-
tion 2, we see sketches of proofs for Theorem 1.1 in Section 3.1, and for Theorem 1.2 in
Section 3.2. We end this paper with sample computations in Section 4. This article is an
extended abstract of the preprint [10]. We will omit details. See [10] for the details.
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2 Notation and terminology

Here we fix notation and terminology for quivers. A quiver Q is said to be

1. acyclic if there do not exist v0, . . . , vl ∈ Q0 such that l > 1, vl = v0, and (vt, vt+1) ∈
Q1 for t = 0, . . . , l − 1,

2. asymmetric if (w, v) ̸∈ Q1 for any (v, w) ∈ Q1, and

3. symmetric if (v, w) ∈ Q1 for all (w, v) ∈ Q1.

Note that a quiver may not be symmetric nor asymmetric.
The sequence (v0, v1, . . . , vl) is called a directed cycle if l > 1, vl = v0, (vt, vt+1) ∈ Q1

for t = 0, . . . , l − 1, and vi ̸= vj for any pair (i, j) with 0 ≤ i < j < l. By definition, a
quiver is acyclic if and only if it does not contain a directed cycle.

We define the underlying graph of a quiver Q to be the (undirected) graph obtained
from Q by using all vertices of Q and by replacing all directed edges of Q with undirected
edges. Underlying graphs may have multiple edges. The underlying graph of Q is
simple if and only if Q is asymmetric.

In order to describe faces of directed edge polytopes, we need subquivers. A quiver
R is called a subquiver of Q if R0 ⊂ Q0 and R1 ⊂ Q1. We say that a subquiver R of Q is

1. proper if R1 is a proper subset of Q1,

2. full if R1 = { (v, w) ∈ Q1 | v, w ∈ R0 }, and

3. lluf if R0 = Q0.

We make use of (undirected) walks to define connectivity of quivers. Let Q be a
quiver. An undirected walk from v0 to vl in Q is a sequence (v0, v1, . . . , vl) of vertices in Q
such that (vt, vt+1) ∈ Q1 or (vt+1, vt) ∈ Q1 for all t. An undirected walk (v0, v1, . . . , vl) is
called

1. closed if v0 = vl, and

2. an undirected cycle if it is closed and vi ̸= vj for any pair (i, j) with 0 ≤ i < j < l.

We say a quiver Q is connected if, for any pair (v, w) of vertices of Q, there exists an
undirected walk from v to w . A connected maximal subquiver of Q is called a connected
component of Q. The set of all connected components of Q is denoted by π0(Q). The
number |Q0| − |π0(Q)| is denoted by c(Q) and is called the coconnectivity of Q. Note
that a quiver is connected if and only if the underlying graph is connected. We say that
a luff subquiver R of Q is component-wise full if each connected component C of R is a
full subquiver of Q.
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3 Sketch of proof

Here we give a sketch of proofs of Theorems 1.1 and 1.2. We omit the details. See [10]
for the details.

3.1 Dimension

Here we give a sketch of proofs of Theorem 1.1. Note that even if Q is connected, a
subquiver R representing a face of DE(Q) may not be connected. It turns out that the
number of connected components is closely related to the dimension of DE(R). In fact,
an upper bound is given by the coconnectivity c(R).

Lemma 3.1. Define a vector subspace VQ of RQ0 by

VQ =
⋂

R∈π0(Q)

κ⊥R0
,

where κ⊥R0
is the hyeperplane orthogonal to κR0 = ∑v∈R0

ev in Rn. Then DE(Q) ⊂ VQ and we
have dim DE(Q) ≤ |Q0| − |π0(Q)| = c(Q).

It turns out that dim DE(Q) varies depending on the existence of a rank function,
since such a function defines another hyperplane that contains DE(Q).

Definition 3.2. For a quiver Q, a map ρ : Q0 → R is called a rank function of Q if it
satisfies ρ(v) + 1 = ρ(w) for each edge (v, w) ∈ Q1.

Remark 3.3. The following are equivalent for a quiver Q:

1. Q has a rank function ρ.

2. Q is asymmetric and satisfies

|{ t | (vt, vt+1) ∈ Q1 }| = |{ t | (vt+1, vt) ∈ Q1 }|

for each undirected closed walk (v0, v1, . . . , vn) in Q.

3. Q is asymmetric and satisfies

|{ t | (vt, vt+1) ∈ Q1 }| = |{ t | (vt+1, vt) ∈ Q1 }|

for each undirected cycle (v0, v1, . . . , vn) in Q.

4. Q is the Hasse diagram of a graded poset (Q0,≤) with the rank function ρ.
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Let Q have a rank function ρ. Since Q0 = [n], we regard a rank function as a vector in
Rn. The affine hyperplane ρ⊥ + ε(v,w) =

{
δ + ε(v,w)

∣∣∣ δ ∈ ρ⊥
}

is independent of choice

of an egde (v, w) ∈ Q1. We define Hρ to be ρ⊥ + ε(v,w) for some edge (v, w) ∈ Q1.
The hyperplane Hρ contains DE(Q), and is transversal to the hyperplanes defined by
connected components of Q. We have the following upper bound of dim DE(Q).

Lemma 3.4. If Q has a rank function, then dim(DE(Q)) ≤ c(Q)− 1.

In order to obtain lower bounds of dim DE(Q), we consider the case of a quiver
whose underlying graph is acyclic. Then the dimension of the vector space spanned by
{ ε(v,w) | (v, w) ∈ Q1 } is given by c(Q). Thus we obtain

dim DE(Q) = dim aff
(

ε(v,w)

∣∣∣ (v, w) ∈ Q1

)
= c(Q)− 1,

where aff denotes the affine hull. Hence we have the following.

Lemma 3.5. For any quiver Q, we have dim(DE(Q)) ≥ c(Q)− 1.

For those quivers that do not have rank functions, we have the following lower bound.

Lemma 3.6. If Q does not have a rank function, then dim(DE(Q)) ≥ c(Q).

Now Theorem 1.1 follows from Lemmas 3.1 and 3.4 to 3.6.

3.2 Facets

Let R be a lluf subquiver of Q so that both DE(R) and DE(Q) are contained in RQ0 . In
order to prove Theorem 1.2, we would like to know when DE(R) is a face of DE(Q) and
dim(DE(R)) = dim(DE(Q))− 1.

We first obtain the following relation between the coconnectivities of Q and R by the
dimension condition.

By Theorem 1.1, we have the following:

Lemma 3.7. Let R be a lluf subquiver of Q. If DE(R) is a facet of DE(Q), then c(R) = c(Q)
or c(R) = c(Q)− 1.

If a facet DE(R) of DE(Q) satisfies c(R) = c(Q), then Q has no rank function but
R has a rank function. In this case, we obtain Lemma 3.8, which implies nessesary
condition of Theorem 1.2 for the case where c(R) = c(Q):

Lemma 3.8. Let R be a lluf subquiver of Q with c(R) = c(Q). If DE(R) is a facet of DE(Q),
then the subquiver R has a rank function ρ ∈ RQ0 such that

(ρ(v)− ρ(w) + 1)(ρ(v′)− ρ(w′) + 1) > 0.

for (v, w), (v′, w′) ∈ Q1 \ R1 and Q does not have a rank function.
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If a facet DE(R) of DE(Q) satisfies c(R) > c(Q), then both Q and R have a rank
function or both has no rank function. In this case, we have the following:

Lemma 3.9. Let R be a subquiver of Q with c(R) = c(Q)− 1. If DE(R) is a facet of DE(Q),
then R is a component-wise full subquiver of Q.

If Q/R has a directed cycle, then we have a pair (R1, R2) of connented components
of R with an edge of Q connecting R1 to R2 and an edge of Q connecting R2 to R1. The
hyperplanes corrsponding to those edges separates the connected components R1, R2.
Hence we have the following:

Lemma 3.10. Let R be a subquiver of Q with c(R) = c(Q)− 1. If DE(R) is a facet of DE(Q),
then Q/R is acyclic.

Lemmas 3.9 and 3.10 imply nessesary condition of Theorem 1.2 for the case where
c(R) + 1 = c(Q)

By the calculation of the supporting hyperplanes, we have Lemmas 3.11 and 3.12.

Lemma 3.11. Let R be a component-wise full subquiver of Q. If Q/R is acyclic, then DE(R) is
a face of DE(Q).

Lemma 3.12. Let R be a lluf proper subquiver of a quiver Q. If R has a rank function ρ ∈ RQ0

such that

(ρ(v)− ρ(w) + 1)(ρ(v′)− ρ(w′) + 1) > 0

for any (v, w), (v′, w′) ∈ Q1 \ R1, then DE(R) is a face of DE(Q).

4 Examples

Here we apply our main theorem to some special quivers, and consider the f -vector, i.e.,
the sequence of the number fd of the faces of dimension d.

4.1 Quivers related to forests

First we consider the case of an asymmetric quiver Q with no undirected closed walk,
i.e., the case where the underlying graph of Q is a forest. In this case, we have

|vert(DE(Q))| = |Q1| = c(Q).

On the other hand, Q has a rank function and we have dim(DE(Q)) = c(Q) − 1 by
Theorem 1.1. Hence DE(Q) is a simplex of dimension |Q1| − 1 = c(Q)− 1. We also have
fd = (|Q1|

d+1), and DE(R) is a face of DE(Q) for any lluf subquiver R of Q.
Next we consider a forest G = (G0, G1) and SE(G). Since a quiver whose underlying

graph is G has a rank function, it is a facet of SE(G). Hence fd = (|G1|
d+1)2

d+1.
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4.2 Quivers related to cycles

Here we consider a quiver related to the cycle with m edges and m vertices. In this
case, we regard the vertex set Q0 as Z/mZ =

{
1, . . . , m = 0

}
. Moreover, we de-

fine O+ to be the set
{
(i − 1, i)

∣∣ i ∈ Q0
}

of ‘clock-wise’ edges, and O− to be the set{
(i + 1, i)

∣∣ i ∈ Q0
}

of ‘anticlock-wise’ edges.
First we consder the quiver whose underlying graph is a cycle.

Example 4.1. Let Q be an asymmetric quiver whose underlying graph is the cycle with
2n + 1 edges. In this case, Q has no rank function. Hence DE(Q) is a 2n dimensional
polytope with 2n + 1 vertices. Thus DE(Q) is a simplex of dimension 2n.

Next consider the case of even cycle.

Example 4.2. We consider an asymmetric quiver Q whose underlying graph is an even
cycle. Let m = 2n. We define Q+

1 = Q1 ∩ O+, Q−
1 = Q1 ∩ O−. If

∣∣Q+
1

∣∣ = ∣∣Q−
1

∣∣ = n, then
Q has a rank function. It follows from Theorem 1.1 that dim(DE(Q)) = 2n − 2. Since
|vert(DE(Q))| = |Q1| = 2n, DE(Q) is not a simplex.

Let R be a lluf subquiver of Q whose directed edge polytope DE(R) is a facet of
DE(Q). Since R also has a rank function, we have

2n − 3 = dim(DE(R)) = |Q0| − |π0(R)| − 1 = 2n − 1 − |π0(R)| ,

which implies that |Q1 \ R1| = 2. Let Q1 \ R1 = { e′, e′′ }. The acyclicity of Q/R fol-
lowing from Theorem 1.3 allows us to assume that e′ ∈ Q+

1 and e′′ ∈ Q−
1 . This is a

characterization of facets of DE(Q).
For such a subquiver R, DE(R) is a simplex of dimension 2n − 3. Since faces of a

simplex are in one-to-one correspondence to subsets of the vertex set, for a lluf subquiver
S of Q, DE(S) is a proper face of DE(Q) of dimension d if and only if

∣∣S1 ∩ Q+
1

∣∣ < n,∣∣S1 ∩ Q−
1

∣∣ < n, and |S1| = d + 1. Hence

fd =

(
2n

d + 1

)
− 2

(
n

d + 1 − n

)
,

where the binomial coefficient (m
k ) equals 0 if m < k or k < 0.

Next we consider a cycle G and SE(G).

Example 4.3. Let C2n be the cycle with 2n edges and Q = D(C2n). In this case, we
have Q1 = O+ ∪ O−. The symmetric edge polytope SE(C2n) = DE(Q) is a (2n − 1)-
dimensional polytope by Theorem 1.1. The faces of SE(C2n) can be determined as fol-
lows.

By (3) of Corollary 1.4, for a lluf subquiver R of Q with

dim(DE(R)) = dim(SE(C2n))− 1 = 2n − 2,



10 Y. Numata, Y. Takahashi, D. Tamaki

DE(R) is a facet of SE(C2n) if and only if c(R) = c(Q) = 2n − 1 and there exists a
function ρ : Z/2nZ → R such that

ρ(i − 1)− ρ(i) =


1 ((i − 1, i) ∈ R1)

−1 ((i, i − 1) ∈ R1)

0 (otherwise),

which implies that only one of (i − 1, i) or (i, i − 1) belongs to R1 for each i. Let R+
1 =

R1 ∩ O+ and R−
1 = R1 ∩ O−. Then we have

∣∣R+
1

∣∣ = ∣∣R−
1

∣∣.
Since DE(R) is of dimension 2n − 2,

|R1| = |vert(DE(R))| ≥ 2n − 1.

By the condition on ρ, we see that the underlying graph of R must be the whole C2n.
Hence facets of SE(C2n) are in bijective correspondence to subsets of cardinality n in O+.
Hence we have

f2n−2 =

(
2n
n

)
.

Note that facets of SE(C2n) are polytopes in Example 4.2. In particular, faces of
codimension 2 in SE(C2n) are simplices of dimension (2n − 3), which means that all
faces of SE(C2n) except for facets are simplices. In other words, for d < 2n − 2 and a lluf
subquiver R of Q, DE(R) is a face of dimension d in SE(C2n) if and only if |R1| = d + 1,
|R1 ∩ O+| < n, |R1 ∩ O−| < n, and R+

1 ∩ (−R−
1 ) = ∅. Hence it follows from direct

calculation that

fd =

(
2n

d + 1

)
2d+1.

We remark that D’Ali, Delucchi, and Michałek [2] also performed the same compu-
tation based on the characterization of facets by Higashitani et al. [6].
Example 4.4. Consider the case of an odd cycle C2n+1. Let Q = D(C2n+1). The symmetric
edge polytope SE(C2n+1) = DE(Q) is a 2n-dimensional polytope by Theorem 1.1.

For a lluf subquiver R of Q, suppose that dim(DE(R)) = 2n − 1. By the same ar-
gument as in Example 4.3, DE(R) is a facet of SE(C2n+1) if and only if c(R) = c(Q),∣∣R+

1

∣∣ = ∣∣R−
1

∣∣ = n, and R+
1 ∩ (−R−

1 ) = ∅. Hence we have

f2n−1 = (n + 1)
(

2n + 1
n

)
=

(2n + 1)!
n!n!

= (2n + 1)
(

2n
n

)
.

Thus, for d < 2n − 2 and a lluf subquiver R of Q, DE(R) is a face of SE(C2n+1) of
dimension d if and only if |R1| = d + 1,

∣∣R+
1

∣∣ < n,
∣∣R−

1

∣∣ < n, and R+
1 ∩ (−R−

1 ) = ∅.
Hence it follows from direct calculation that

fd =

(
2n + 1
d + 1

)
2d+1.
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4.3 Quivers of small size

As a final remark, we give examples of f -vectors of directed edge polytopes for con-
nected quivers with three vertices. The directed edge polytopes for the following quivers
are 1-dimensional simplices:

• •

•

-
@

@R

• •

•

-

?

• •

•

-
6

The directed edge polytopes for the following quivers are 2-dimensional simplices:

• •

•

-
@
@R?

• •

•

-�

?

• •

•

-

?@
@I

• •

•

-�
6

Next we give examples of the case where directed edge polytopes are not simplices. The
f -vectors for the directed edge polytopes for the following quivers are (1, 4, 4, 1):

• •

•

-
@
@R?@

@I
• •

•

-
@

@R?
6

• •

•

-
@

@R

�

?

• •

•

-�

?
6

The f -vector for the directed edge polytope for the following quiver is (1, 5, 5, 1):

• •

•

-
@

@R?@
@I 6

The f -vector for the directed edge polytope for the following quiver is (1, 6, 6, 1):

• •

•

-
@

@R

�

?@
@I 6

In the case of the quivers with three vertices, we have only three kinds of f -vectors
for derected edge polytopes which are not simplices. In the case of the quivers with four
vertices, we, however, have more kinds of f -vectors as follows:

(1, 5, 8, 5, 1), (1, 6, 10, 6, 1), (1, 7, 13, 8, 1), (1, 8, 16, 10, 1), (1, 9, 19, 12, 1),
(1, 9, 17, 10, 1), (1, 10, 20, 12, 1), (1, 6, 11, 7, 1), (1, 7, 14, 9, 1), (1, 8, 17, 11, 1),
(1, 8, 14, 8, 1), (1, 9, 15, 8, 1), (1, 7, 12, 7, 1), (1, 5, 9, 6, 1), (1, 7, 11, 6, 1),
(1, 9, 18, 11, 1), (1, 10, 21, 13, 1), (1, 6, 12, 8, 1), (1, 7, 15, 10, 1), (1, 6, 9, 5, 1),
(1, 10, 19, 11, 1), (1, 11, 22, 13, 1), (1, 12, 24, 14, 1), (1, 8, 13, 7, 1), (1, 4, 4, 1),
(1, 8, 18, 12, 1), (1, 8, 15, 9, 1), (1, 8, 12, 6, 1), (1, 9, 16, 9, 1).
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