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Abstract. We give a combinatorial proof of a recent geometric result of Farkas and
Lian on linear series on curves with prescribed incidence conditions. The result states
that the expected number of degree-d morphisms from a general genus-g, n-marked
curve C to IP", sending the marked points on C to specified general points in IP’,
is equal to (r + 1)8 for sufficiently large d. This computation may be rephrased as
an intersection problem on Grassmannians, which has a combinatorial interpretation
in terms of Young tableaux by the Littlewood-Richardson rule. We give a bijection,
generalizing the RSK correspondence, between the tableaux in question and the (r +1)-
ary sequences of length g, and we explore our bijection’s combinatorial properties.

We also apply similar methods to give a combinatorial interpretation and proof of the
fact that, in the modified setting in which » = 1 and several marked points map to the
same point in P!, the number of morphisms is still 28 for sufficiently large d.
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1 Introduction

In a recent paper [8], Farkas and Lian provide enumerative formulas for the number of
maps from a curve C to a complex projective space IP” with specified incidence condi-
tions. In particular, let C be a general curve of genus g, and let xy,...,x; be distinct
general points on C. Also choose distinct general points vy, ...,y in P". Then we write
Ly a for the number of degree d morphisms f : C — IP” for which f(x;) = y; for all
i=1,2,...,n, which is finite precisely when nr = dr +d +r —rg.
For sufficiently large d and setting n = (dr +d 4+ r — rg) /r (assuming r divides d), it
was shown in [8] that
Losa = (r+1)3. (1.1)

In addition, Lg, 4 is equal to a certain intersection of Schubert cycles in the Grassman-
nian. The latter formula has the following combinatorial interpretation, as we will show
in Section 3.
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Definition 1.1. Define an L-tableau with parameters (g,7,d) to be a way of filling the
boxes of an (r+ 1) x (d —r) grid with rg “red” integers and (d —r)(r +1) — rg “blue”
integers such that:

* The red integers are left-and-bottom justified, and weakly increase up columns and
strictly increase across rows. They consist of the numbers 1,2, ..., g each occurring
exactly r times.

* The blue integers are right-and-top justified, and strictly increase up columns and
weakly increase across rows. Their values are from {0,1,...,r}.

Example 1.2. The following is an L-tableau with parameters (4,3,9). We write the “red”
numbers as black font with a red shaded background for clarity.

21411333
11314122
112(3|0(1]1
112(3|4(0]0

The work in [8] shows that the number of L-tableaux with parameters (g, 7, d) is equal
to (r 4+ 1) whenever d > rg +r (and r|d, so that n is an integer) via geometric methods,
and asks for a combinatorial proof. Our first main result resolves this open problem by
finding a combinatorial proof, of the following stronger result.

Theorem 1.3. The number of L-tableaux with parameters (g,r,d) is (r +1)8 when d > g +r.

Note that in this purely combinatorial setting we only require d > ¢ + r rather than
d > rg +r, and d is not necessarily divisible by r.

Our methods generalize the RSK algorithm (see Section 2.1). In particular, in the case
r = 1, the pair of red and blue tableaux correspond directly under the RSK bijection
to the binary sequences of length g (see [10]). For » > 1 we introduce an intermediate
bijection (see Definition 3.7) to reduce to the RSK correspondence once again.

Remark 1.4. In the case r = 1, there are several known proofs of the fact that L 1 4 = 28
for sufficiently large d, including via scattering amplitudes for d = ¢+ 1 [15] and by
establishing recursions using the boundary geometry of the moduli space of Hurwitz
covers [2]. Neither of these proofs were combinatorial in nature, though the recursions
arising in the latter paper by Cela-Pandharipande-Schmitt [2] are related to Dyck paths
and other Catalan objects for small 4.

Our second result enumerates a related set of maps. Set r = 1, fix an integer k with
1 < k < min(n,d), and consider choices of points v, . ..,y, € IP! such that

Vi=Yy2=--=VYk
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Write L’g’ 4 for the number, assuming that n = (dr +d +r —rg)/r =2d +1— g, of maps

f : C — P! such that f(x;) = y; for all i. We use a similar interpretation in terms of a
family of Young tableaux that we call L’-tableaux, starting from an intersection theoretic
formula in Grassmannians for L:g,d,k given by Farkas and Lian [8], to enumerate these
maps for sufficiently high degree curves.

Theorem 1.5. If d > g+ k, we have Ly, = 25.

Notice that the formula 28 coincides with (r +1)8 at r = 1. Indeed, it is remarked
in [8] that the simple formula L(’g, i = 2% may be explained geometrically in the same
way that the formula L, ; = (r + 1)8 does. Further details and a more general formula
for maps with arbitrary ramification profiles were given by Cela and Lian [1]. However,
the formula from [8] coming from Grassmannians is stated as a difference of two sums of
Schubert class intersection products (see Section 4), and there was previously no stated
enumerative combinatorial interpretation of the latter formula, or for that matter a direct
explanation for why the difference should be positive. We provide such an interpretation
in order to prove Theorem 1.5.

In Section 2 below we recall the necessary background results and notation from
tableaux theory and intersection theory on Grassmannians. In Section 3 we translate
the geometric formulas for L, ; into a Young tableaux enumeration problem and give
a sketch of the proof of Theorem 1.3. In Section 4 we define L'-tableaux for L;g,d,k and
sketch the proof of Theorem 1.5. Full details can be found in our paper [10].

2 Background

We briefly recall several facts about Young tableaux, linear series, and Grassmannians.

2.1 The RSK correspondence on words

The Young diagram of a partition A is the left- and bottom-justified grid of unit squares
in the first quadrant (called boxes) for which there are A; boxes in the i-th row from the
bottom for all i. A semistandard Young tableau, or SSYT, of shape A is a way of filling
the boxes of the Young diagram with nonnegative integers such that the rows are weakly
increasing from left to right and the columns are strictly increasing from bottom to top.
An SSYT is standard, written SYT, if the entries are 1,2,...,n each used exactly once.
The shape of a Young tableau is the underlying Young diagram, and its content is the
tuple (my,my,...) where m; is the number of times i appears in the tableau.

The RSK correspondence, in its most general form, is a bijection between two-line ar-
rays and pairs of semistandard Young tableaux of the same shape (see [9] for an excellent
overview). In the case that the bottom row of the two-line array consists of the numbers
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1,2,3,...,n in order, the top row may be any sequence, and we obtain the following
special case of the RSK correspondence.

Proposition 2.1 (RSK for words). Let A(r,n) = {0,1,2,3,...,r}" denote the set of all length-
n sequences with entries from {0,1,2,...,r}. Let B(r,n) be the set of all pairs (P, Q) such that
P is a semistandard Young tableau with letters in {0,1,2,...,r}, Q is a standard Young tableau,
and P and Q have the same shape of size n. There is an explicit bijection, called the RSK
correspondence, from A(r,n) to B(r,n) for all v, n.

We will refer to the length-n sequences of letters from {0,1,...,7} as (r + 1)-ary
sequences, generalizing the notion of a binary sequence from {0,1}. We will use the
following property that follows from the definition of semistandard Young tableaux.

Remark 2.2. Since P has letters in {0,1,2,3,...,r}, and columns are strictly increasing,
any pair (P, Q) in B(r,n) can have height at most r + 1.

Example 2.3. The 4-ary sequence 0,2,1,1,0,3,0,0,1 in A(3,9) corresponds under RSK to
the following pair of tableaux in B(3,9):

2 5

2.2 Linear series and calculations in the Grassmannian

The definitions of Lg, 4 and Ligm ; may be made more rigorous via the theory of linear
series on curves. (See [7] for an introduction to this topic.) A linear series of type g, on
a smooth curve C can be thought of as a r-dimensional linear family of sets of d points
on C. More formally, this data is encoded by a pair (£, V) where L is a line bundle
of degree d and V C H%(C, L) is a dimension r + 1 space of sections, which in turn
corresponds to a map ¢, vy from C to IP".

There has been much study of enumeration of linear series with prescribed rami-
fication conditions at specified points, including the work of Eisenbud and Harris [6],
Osserman [12], Chan and Pflueger [5], Chan, Lopez Martin, Pflueger, and Teixidor i Bi-
gas [3], Larson, Larson, and Vogt [11], and others. Many of these results relied on the
combinatorial tools of Young tableaux, symmetric function theory, and other aspects of
algebraic combinatorics, and in [4] led to new results in algebraic combinatorics as well.

Here we consider the related problem of enumerating linear series with prescribed
incidence conditions at specified marked points. Write G/;(C) to denote the moduli space
of gy’son C, and let xq, ..., x, be general marked points on C. Then the values Lg,r,d may
alternatively be defined as the degree of the evaluation map ev(,, . from G}(C) to
the moduli space P of n points in IP", given by evaluating the maps ¢, ) at the points
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X1,..., Xy In [8], a degeneration argument, starting with a reduction to genus 0, is used
to reduce the problem of computing the degree of this evaluation map to an intersection
problem in Schubert calculus. For genus 0 curves C, H’(C, £) in general has dimension
d +1 as a complex vector space for sufficiently high d. Therefore, the r 4 1-dimensional
subspaces V C HY(C, £) sweep out a copy of the Grassmannian Gr(r +1,d + 1).

The Grassmannian Gr(r + 1,d 4 1), defined as the moduli space of r + 1-dimensional
subspaces of C?*1, has a well-known Schubert decomposition (with respect to a given
flag) into Schubert varieties X,. (See [9, Ch. 9] for background on Schubert calculus.)
Here, A ranges over all partitions A = (A1, Ay, ..., A;) whose Young diagram fits inside
an (r+1) x (d+1) grid.

The Schubert varieties give rise to a basis of Schubert classes o), := [X,] of its Chow
ring A*(Gr(r +1,d +1)). With respect to this basis, it is shown in [8] that whenever

eitherd27’g+r,d:r—|—rl—g1,orr:1,wehave

Fgrd = /Gr(r+1,d+1) Ufr . Z <H Uai) . =D

ag+-+ar=(r+1)(d—r)—rg \i=0

Here the notation ¢7r is shorthand for (111, 1) where the tuple (1,1,...,1) has length
r, and 0, is shorthand for O(a;)- The integral indicates that the sum of products of
Schubert cycles in question expands in the Schubert basis as a constant multiple of
O(d41) *= O(d+1,d+1,..d+1), and the integral is defined to be this constant coefficient.

The corresponding result from [8] for Lé, ik is stated in Section 4.

2.3 The iterated Pieri rule

The intersections of Schubert cycles on the Grassmannian may be calculated via sym-
metric function theory, as products of Schubert classes correspond to products of Schur
functions. Indeed, let {s, } be the classical Schur function basis of the ring of symmetric
functions, where A ranges over all partitions (see [9] or [14, Ch. 7]). Then the integral in
equation (2.1) is equal to the coefficient of s (d41)(r+1) N the expansion

s§ - Y. (ﬁ Sa,-) (2.2)

ag+-+ar=(r+1)(d—r)—rg \i=0

The coefficients of products of Schur functions expressed in the Schur basis are called
Littlewood-Richardson coefficients. In particular we can write

_ v
SA S =) ChySu
where the Littlewood-Richardson coefficients ¢} are all nonnegative integers. In our set-
ting we will only need to focus on the cases when one of A or y is either a horizontal row
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or vertical column, in which case the Littlewood-Richardson coefficients are described
by the Pieri rules (see, for instance, [9, pp. 24-25]) as follows.

Suppose A and p are partitions for which the Young diagram of y fits inside that of
A. The skew shape A/ is the set of boxes that are in A but not in . A skew shape is a
horizontal strip if no two of its boxes are in the same column, and it is a vertical strip if
no two of its boxes are in the same row.

Proposition 2.4 (Pieri rules). For u = («) a single-row partition, the Littlewood-Richardson

coefficient cXﬂ = CX’(“) is equal to 1 if v/ A is a horizontal strip, and O otherwise.

1%

For u = (1") a single-column partition, the Littlewood-Richardson coefficient CXy = 0

is equal to 1 if v/ A is a vertical strip, and O otherwise.

Proposition 2.4 gives us a rule for multiplying any Schur function by either s,y or
sy, and expanding the result again as a sum of Schur functions. In particular,

SAcSw =Y, Sy Sycsany = Y, S
(a) (17)

v/A€Horz(a) v/A€Vert(r)

where Horz(a) and Vert(r) are the sets of all horiztonal strips of size « and vertical
strips of size r respectively. We can iterate to give a rule for any product of row or
column Schur functions as follows.

Corollary 2.5 (Tterated Pieri rule). Let uM), u®), ..., u%) be partitions, each of which is either
a horizontal row or a vertical column. Then

where C;(U e is equal to the number of ways to extend u") by horizontal or vertical strips (as

indicated by each u'9)) of sizes |u@|, ..., |u®)| such that the total resulting shape is v.

In order to keep track of the horizontal and vertical strips, we will label the squares
of the strip corresponding to u()) by i for each i. This results in a tableau-like object that
enumerates the generalized Pieri coefficients c'; ... above.

Example 2.6. The coefficient cg’)z’(ll)l) 3) is equal to 2, because there are two ways to fill

the boxes of shape (4,2,1) with a horizontal strip of two 1’s, a vertical strip of two 2’s
extending it, and a horizontal strip of three 3’s that extends the shape again:

2 3
2|3 2
171133 1111213
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In the special case when we have all horizontal strips, we recover the well-known
notion of a semistandard Young tableau, or SSYT: a filling of the boxes of a (possibly
skew) Young diagram with numbers such that the rows are weakly increasing from left
to right and the columns are strictly increasing from bottom to top. For the case of all
vertical strips, we say a transposed semistandard Young tableau is a filling of a Young
diagram with strictly increasing rows and weakly increasing columns. We similarly obtain
transposed SSYT’s in the case of all vertical strips.

3 L-tableaux and enumeration by (r + 1)

Corollary 2.5, combined with the fact that the integral in equation (2.1) is the coefficient
of $(4_,yr+1 in the corresponding product (2.2), shows that

. (d—r)r+1
Lera = )3 C1r), (17) ey (17), () oo ()
ao+--Far+rg=(r+1)(d—r)

where the subscripts include g copies of (1”). This summation is therefore the number
of ways to form a transposed SSYT using each of the numbers 1,2, ..., g exactly r times,
and then extend it to fill the rest of the (r +1) x (d — r) grid with a semistandard Young
tableau using the numbers 0,1, ...,r in some varying amounts «j, ..., &, each.

This precisely matches the definition of L-tableaux given in Definition 1.1 in the
introduction.

Remark 3.1. The preprint [8] mistakenly uses an ordinary (not transposed) SSYT for the
red tableau; a correction will appear in a later version of their work and appears in [10].

See Example 1.2. Our discussion thus far, starting from Equation (2.1), has shown:

Proposition 3.2. The number of L-tableau with parameters (g,r,d) is equal to L, , 5 whenever

eithererg—kr,d:r—kri—gl,orr:1.

We now note that we can “truncate” by removing some of the right-hand columns of
the grid to reduce to a simpler case.

Lemma 3.3 (Truncation). For any g,r,d with d > g+ r, the number of L-tableaux with
parameters (g,1,d) is equal to the number of L-tableaux with parameters (g,r,g +1).

We omit the proof and refer to [10] for details. The idea is that any column to the
right of the g-th column is filled entirely with the blue numbers 0,1,2,...,r in order and
therefore is already determined.

Lemma 3.3 tells us that in order to understand Lg, 4 for d > g + 7, it suffices to study
the case d = g + r. We will restrict to this case throughout the remainder of this section.
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Remark 3.4. When d = g + r, the rectangle containing the L-tableaux is size (r +1)g =
rg + g. The red tableau has size r¢ and so the blue tableau has size g.

We now prove Theorem 1.3. We first define the following sets of tableaux.

Definition 3.5. Let TrSSYT(g,r) be the set of all transposed SSYT’s of content (r8) =
(r,r,...,r) and height < r +1.

Note that TrSSYT(g, r) is the set of all possible ‘red’ tableaux in Definition 1.1. We
will refer to them as red tableaux throughout this section.

Definition 3.6. Define a 180°-rotated SYT to be the result of rotating a standard Young
tableaux 180° in the plane. We write SYT'8 (g, 7) for the set of all 180°-rotated SYT of
size ¢ and height < r + 1. We informally call such a tableau a purple tableau, as it will
be used to relate the red and blue tableaux of Definition 1.1 (see Example 3.8).

Given a red tableau, note that each number 1, ..., g occurs once in every row except
one. Relatedly, a purple tableau in the position of the blue tableau will have each number
1,..., g in exactly one row. This leads us to define a bijection between the two as follows.

Definition 3.7 (Red to purple bijection). Let R € TrSSYT(g, r) be a red tableau. We define
a 180°-rotated tableau ¢(R) in the upper right corner of a rectangle by the following
iterative process. We add boxes labeled 1,2,...,¢ in order, where on the ith step we
place a box labeled i as far to the right as possible in the unique row that does not
contain an i in R.

Example 3.8. If R is the tableau at left below, its corresponding purple tableau ¢(R) is
shown at right below.

2|14|5|6 7131
1(314|5]7 6|2
1123|567 4
1123|467 5

A generalized version of this map was shown to be a bijection in [13]. We also provide
a more direct proof in this specific case in [10].

Lemma 3.9. The map ¢ is a bijection from TeSSYT(g, r) to SYT'®" (g, r) for all g, r. Moreover,
for any R € TrSSYT(g,r), the shapes of R and ¢(R) are complementary in an (r +1) x g
rectangle.

We now make precise the notion of a “blue tableau” (see Definition 1.1).
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Definition 3.10. Define a 180°-rotated semistandard tableau, or blue tableau (with pa-
rameters r,g), to be a filling of a 180°-rotated Young diagram of size ¢ with numbers
0,1,2,...,r such that the rows are weakly increasing from left to right and columns are
strictly increasing from bottom to top.

Lemma 3.11. The pairs of blue and purple tableaux of the same shape correspond to (r + 1)-ary
sequences of length g bijectively, via inverting the entries of the blue tableau (that is, replacing
each entry i by r — i), rotating both 180°, and applying RSK.

The proof is a straightforward application of RSK and we omit it.
Example 3.12. Consider the pair of blue and purple tableaux below. The corresponding
pair (P, Q) is shown at right.
012
1

7

2
113

6
3|7

Sl N[ W
Sl N[
=[N ] Gl

Tl =[N =

The corresponding pair (P, Q) is as follows: This pair corresponds via RSK to the (v +1)-
ary sequence 3,2,2,1,0,1,3 where r = 3.

We finally can produce a bijection between L-tableaux and (r + 1)-ary sequences.

Proposition 3.13. The L-tableaux with parameters (g, 1, g + r) are in bijection with the (r +1)-
ary sequences of length g (with letters from the alphabet {0,1,2,...,7}).

Proof. Each such L-tableaux consists of a red tableau and a blue tableau. The bijection
follows from combining Lemma 3.9 with Lemma 3.11, which provide bijections between
red tableaux with purple tableaux, and between pairs of blue and purple tableaux with
(r 4+ 1)-ary sequences of length g, respectively. O

Example 3.14. Below is an L-tableau with parameters (7,3,10). From our previous ex-
amples, we see that it corresponds to the (r + 1)-ary sequence 3,2,2,1,0,1, 3.

214|5/6|0(2]3
1(3|4(5(7|1]|2
11213|5|6|7]|1
112(3[|5(6|7|0

There are (r + 1) sequences of length ¢ in the alphabet 0,1,2,...,7. Combining
Proposition 3.13 with truncation (Lemma 3.3), we get as a corollary Theorem 1.3.

Theorem 1.3. The number of L-tableaux with parameters (g,r,d) is (r +1)8 foralld > r + g.
In our full paper [10], we also analyze the case where r = 1, which reduces to ordi-

nary RSK, and the case d = r + r%/ which recovers a classical theorem of Castelnuovo.
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4 [’-tableaux and enumeration by 23

The result from [8] corresponding to L/g, iy states thatif k + ¢ <2d+1and 2 <k < d:

Loax = /Gr(z,dﬂ) 0} 0k1 ( )3 Ui"j) - /Gr(z,d) 010k 2 ( Y rw]) :

i+j=2d—g—k—1 i+j=2d—g—k-2
We first give an interpretation of the left hand integral in the equation above.

Definition 4.1. A positive L'-tableau with parameters (g,d, k) is a way of filling a 2 x
(d —1) grid with:

* A standard Young tableau of size g in the lower left corner (shaded red),
* A shading of the k — 1 rightmost boxes in the top row (gray),
* A skew SSYT in two letters 0,1 on the remaining squares (blue).

By rearranging so that we think of the o;_1 as last in each product, and applying
Corollary 2.5, we see that the positive term in equation (4.1) is equal to the number of
positive L'-tableaux. The second term in (4.1), which we are subtracting, is similarly
given by a set of smaller tableaux that we call negative tableaux.

Definition 4.2. A negative L'-tableau with parameters (g, d, k) is a filling of a 2 x (d —2)
grid with:

* A standard Young tableau of size ¢ in the lower left corner (shaded red),
* A shading of the k — 2 rightmost boxes in the top row (gray),
* A skew SSYT in two letters 0,1 on the remaining squares (blue).

Example 4.3. Below are a positive and negative L'-tableau with parameters (3,7,4).

31011 310
1(2|10|0]1(1 112|001

Notice that there exist positive L'-tableaux if and only if (k—1)+ g < 2(d — 1),
which is slightly stronger than the given condition k + ¢ < 24 4+ 1. In particular if
k+g=2dork+g=2d+1 we have Lé/ 1k = 0, so we restrict our attention to the case
that k 4+ ¢ < 2d — 1. We now prove Theorem 1.5.

Definition 4.4. For fixed g,d, k, write L/ and L’ for the set of positive and negative L’
tableaux respectively of type (g,d,k). Also write ¢ : L’ — L/ for the map that takes a
negative tableau T and adds a blue 1 to the end of the bottom row and a gray box to the
end of the top row.
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Our above analysis shows that Lzlg ir = ILt| = |L"|, and we analyze this difference
combinatorially. We note that ¥ is a well-defined injective map, and so

Loax = IL\ (L)) 4.1)
The next proposition characterizes the image ¢(L’_), and we refer to [10] for our proof.

Proposition 4.5. A positive tableau T is equal to P(S) for some negative tableaux S if and only
if the bottom row of T contains a blue 1.

Applying this proposition and equation (4.1), we obtain the following.

Corollary 4.6. The quantity L(’g i ¢ 18 equal to the number of positive L'-tableaux with parameters
(g,d, k) for which the bottom row contains no blue 1.

For sufficiently large d, we can simplify this characterization even further.
Theorem 1.5. If d > g+ k, we have Ly, = 25.

We refer to [10] for the full proof. As a sketch, we may restrict our attention to the
columns before any gray squares appear, and then use the RSK bijection on the red and
blue tableaux in those columns to obtain a binary sequence.

Example 4.7. The tableau below at left is a positive L'-tableau with parameters (3,7,4)
that is not the image of a negative one. Since ¢ = 3, we restrict our attention to the first
three columns (second image below), then consider the associated pair of tableaux of
the same shape by rotating the blue tableaux and inverting the labels. Finally, this pair
corresponds under RSK to a unique length 3 binary sequence.

3lo]1 8o JEE 110
1|2]ofofo]o 1/2]0 1/2] [o]1
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