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Abstract. The chromatic quasisymmetric function is a t-analogue of Stanley’s chro-
matic symmetric function, and has recently been at the center of a number of exciting
developments in algebraic combinatorics. This extended abstract contributes to this
trend, describing a novel realization of certain chromatic quasisymmetric functions as
characters of the finite general linear group GLn(Fq). Additional results tie these char-
acters to other aspects of the chromatic quasisymmetric function: point counting in
Hessenberg varieties over Fq, realizing the plethystic connection with unicellular LLT
polynomials, and re-interpreting positivity conjectures.
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1 Introduction

The chromatic symmetric function sits at a nexus of disparate areas of mathematics. At
face value, this symmetric function encodes the coloring problem of a graph as an ana-
logue of the chromatic polynomial [18]. However, through a well-known equivalence
between the ring of symmetric functions and the representation theory of the symmetric
groups (see e.g. [14]), some chromatic symmetric functions are also complex characters
of the symmetric group [7]. Moreover, by way of a t-analogue known as the chromatic
quasisymmetric function, Brosnan and Chow [3] and Guay-Paquet [10] independently
proved that the characters corresponding to indifference graphs are afforded by symmet-
ric group modules on the cohomology rings of regular semisimple Hessenberg varieties,
as predicted by a conjecture of Shareshian and Wachs [17]. Thus, certain questions about
graphs, representation theory, and algebraic geometry coincide in the structure of these
symmetric functions, and vice versa.

Based on the paper [6], this extended abstract describes yet another connection to
the chromatic quasisymmetric function, this time from the general linear group GLn(Fq)
over the finite field with q elements. The maximal unipotent subgroup UTn(Fq) of
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GLn(Fq) has a family of characters indexed by indifference graphs, and Theorem 3.1
shows that and up to a factor of (q− 1)n the induction functor gives a map{

indifference graph
indexed characters

} Ind
GLn(Fq)
UTn(Fq)−−−−−−−→

{
chromatic quasisymmetric functions for
indifference graphs evaluated at t = q

}
where unipotently supported class functions of GLn(Fq) are identified with symmetric
functions via the Hall algebra. Section 3 describes this result and its proof using a Hopf
algebraic interpretation of induction established in a second paper of the author [5].

The remaining sections of this abstract explore implications of Theorem 3.1. While
the theorem is reminiscent of the Brosnan–Chow–Guay-Paquet theorem, the underlying
association between symmetric functions and GLn(Fq) characters in this paper is quite
different and offers a complementary perspective. Moreover, the relevant characters are
elementary in nature and may be more accessible from a module theoretic standpoint.

Section 4 gives a geometric interpretation of the characters in Theorem 3.1: their val-
ues count the points of Hessenberg varieties associated to an ad-nilpotent ideal over Fq.
Even over C, Hessenberg varieties associated to ad-nilpotent ideals are markedly differ-
ent from the ones in the Brosnan–Chow–Guay-Paquet theorem, and there is no known
module structure on their cohomology rings. However, Precup and Sommers [16] have
given a geometric connection between the Poincaré polynomials of these Hessenberg
varieties and the chromatic quasisymmetric function, and Corollary 4.4 shows how The-
orem 3.1 can be seen as a representation theoretic manifestation of this phenomenon.

Section 5 revisits a well-known relationship between chromatic quasisymmetric func-
tions and the family of unicellular LLT polynomials [4] from the perspective of GLn(Fq).
The unipotent characters of GLn(Fq) give another realization of symmetric functions,
and any character can be projected onto its unipotent summands to produce a symmet-
ric function. For the characters in Theorem 3.1, this association turns out to be a twisted
version of the relationship between chromatic quasisymmetric functions and unicellular
LLT polynomials, and Theorem 5.3 gives a map{

indifference graph
indexed characters

} ω◦projection ◦ Ind
GLn(Fq)
UTn(Fq)−−−−−−−−−−−−−−−→

{
unicellular LLT polyno-
mials evaluated at t = q

}
.

No previous connection between LLT polynomials and GLn(Fq) representation theory
was known, though similar associations exist for quantum groups [13], affine Hecke
algebras [8], and the symmetric groups [10, 12].

Finally, Section 6 describes the GLn(Fq) representation theoretic meaning of two
“positivity conjectures” about the chromatic quasisymmetric function and unicellular
LLT polynomial. Each conjecture postulates that when the symmetric function in ques-
tion is expressed in a chosen basis, each coefficient will be nonnegative. For the chro-
matic quasisymmetric functions, the modified Stanley–Stembridge conjecture [17, Con-
jecture 1.3] (see also [20]) concerns positivity in the elementary symmetric function basis,
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and is entirely open. For the LLT polynomials, positivity in the Schur basis has been es-
tablished by Grojnowski and Haiman [8], but no positive combinatorial formula for the
coefficients is known [11]. While no immediate progress is made on either conjecture in
this abstract, the GLn(Fq) interpretations may be a useful starting point for future work.

The remainder of this abstract is organized as follows. Section 2 gives general back-
ground material. Section 3 contains the main result, Theorem 3.1, and Section 4 relates
this result to Hessenberg varieties. Section 5 concerns the unicellular LLT polynomial.
Finally, Section 6 discusses the aforementioned positivity conjectures.

2 Preliminaries

This section contains preliminary material on Hopf algebras and symmetric functions
(Section 2.1), chromatic quasisymmetric functions (Section 2.2), the character theory of
UTn(Fq) (Section 2.3), and its relation to GLn(Fq) characters (Section 2.4).

2.1 (Quasi-)Symmetric functions and combinatorial Hopf algebras

This section describes the Hopf algebraic techniques required to prove the main result.
Throughout, the term Hopf algebra will refer to a graded connected C-vector space

H• =
⊕
n≥0

Hn such that H0
∼= C,

equipped with a C-bialgebra structure and a compatible antipode map. This extra struc-
ture is not used prominently in this work, which instead focuses on Hopf algebra homo-
morphisms; these can be thought of as a well-behaved subclass of graded linear maps.

Two particularly important examples now follow. A composition of n ∈ Z≥0 is a
sequence of positive integers α = (α1, . . . , αk) with α1 + · · ·+ αk = n. Call each αi a part
of α. The monomial quasisymmetric function associated to the composition α is

Mα = ∑
i1<···<iℓ

xα1
i1

xα2
i2
· · · xαℓ(α)

iℓ
∈ C[[x]].

where x = {x1, x2, . . .} is an infinite, totally ordered set of indeterminates. With grading
given by degree, the Hopf algebra of quasisymmetric functions is

QSym = C -span{Mα | α is a composition}.

A partition of n is a composition of n with non-increasing parts. Let

P =
⊔

n≥0
Pn with Pn = {partitions of n}.
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The Hopf algebra of symmetric functions is the subspace

Sym = C -span{mλ | λ ∈ P} ⊆ QSym with mλ = ∑
sort(α)=λ

Mα,

where sort(α) is the partition obtained by listing the parts of α in non-increasing order.
This abstract will use several standard bases of Sym found in [14]: the elementary

symmetric functions {eλ | λ ∈ P} [14, I.2], the Schur functions {sλ | λ ∈ P} [14, I.3],
and the degree-shifted Hall-Littlewood symmetric functions {P̃λ(x; t) | λ ∈ P} [14, IV.4],
which depend on an additional parameter t. We will also use the involution ω : Sym→
Sym, given by ω(sλ) = sλ′ , where λ′ denotes the transpose of λ.

The paper [1] gives classification of all homomorphisms from an arbitrary Hopf al-
gebra H to QSym via certain algebra homomorphisms ζ : H → C, called linear characters
herein in order to avoid confusion with the group characters in this work. The Hopf
algebra QSym has a linear character known as the first principal specialization,

ps1 : QSym −→ C

Mα 7−→
{

1 if α = () or (n) for n ≥ 0,
0 otherwise.

Theorem 2.1 ([1] Theorem 4.1). Let H be a Hopf algebra. Then the map

{homomorphisms H → QSym} −→ {linear characters of H}
Ψ 7−→ ps1 ◦Ψ

is a bijection. In particular, for each linear character ζ of H, there is a unique homomorphism
Ψ : H → QSym for which ζ = ps1 ◦Ψ.

2.2 Indifference graphs and the chromatic quasisymmetric function

This section will describe the chromatic quasisymmetric function of a graph, and go on
to define a special class of graphs for which this function is particularly well behaved.

Let γ be a simple, undirected graph with vertex set [n] and edge set E(γ). A coloring
of γ is a function κ : [n] → Z>0. A coloring κ of γ is proper if κ(i) ̸= κ(j) for all
{i, j} ∈ E(γ). The γ-ascent number of a coloring κ is

ascγ(κ) =
∣∣{{i, j} ∈ E(γ) | i < j and κ(i) < κ(j)

}∣∣. (2.2)

For example, if κ : [5]→ Z>0 is given by κ(1) = 2, κ(2) = 5, κ(3) = 1, and κ(4) = 5,

asc
1 2 3 4

(κ) =
∣∣{{1, 2}, {3, 4}

}∣∣ = 2.

In this example, κ is a proper coloring of the given graph.
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The chromatic quasisymmetric function of γ is

Xγ(x; t) = ∑
κ:[n]→Z>0

proper

tascγ(κ)xκ(1)xκ(2) . . . xκ(n) ∈ QSym[t],

so that Xγ(x; t) is a polynomial in an indeterminate t whose coefficients—by properties
of the ascent statistic—are quasisymmetric functions. For example,

X
1 2 3

(x; t) = t M(2,1) + t M(1,2) + (t2 + 4t + 1) M(13). (2.3)

Evaluating the indeterminate t in Xγ(x; t) at a complex number gives an actual qua-
sisymmetric function. For example, taking t = 1 gives the ordinary chromatic symmetric
function of γ as defined by Stanley in [18], and the main result of this paper concerns
the evaluation of Xγ(x; t) at t = q, the order of the finite field Fq.

The coefficients of Xγ(x; t) are known to be symmetric under certain conditions. An
indifference graph of size n ≥ 0 is a simple, undirected graph γ on the vertex set [n] =
{1, . . . , n} with edge set E(γ) satisfying

for each {i, l} ∈ E(γ):
{
{j, k} | i ≤ j < k ≤ l

}
⊆ E(γ).

The empty graph on ∅ is the unique indifference graph of size zero. Let

IG =
⊔

n≥0
IGn with IGn = {indifference graphs on [n]}.

For example,

γ =
1 2 3 4

∈ IG4 but σ =
1 2 3 4

/∈ IG4,

as {1, 4} ∈ E(σ) but {3, 4} /∈ E(σ).

Proposition 2.4 ([17, Theorem 4.5]). For an indifference graph γ ∈ IGn, the coefficients of
each power of t in Xγ(x; t) is a symmetric function.

The indifference graphs of size n ≥ 0 are enumerated by the nth Catalan number,
as seen in the following bijection, found in [19, Sol. 187]. Associate to each γ ∈ IGn
the southeast lattice path from (0, 0) to (n,−n) which lies directly above the diagonal
x = −y and the unit squares centered at (j− 1

2 , 1
2 − i) for each {i, j} ∈ E(γ). For example,

1 2 3
←→

{1,2}

{2,3} = (EESESS). (2.5)



6 Lucas Gagnon

2.3 Linear algebraic groups and class functions

For a finite group G, the space of complex valued class functions on G is

cf(G) = {ψ : G −→ C | ψ(g) = ψ(hgh−1) for all g, h ∈ G}.

Under the usual inner product ⟨·, ·⟩ : cf(G)⊗ cf(G)→ C, there are two orthogonal bases
of cf(G): the irreducible characters of G and the conjugacy class identifier functions,

{δK | K ∈ Cl} with δK(g) =

{
1 if g ∈ K.
0 otherwise.

(2.6)

The remainder of this section will construct a subspace of class functions of a partic-
ular family of groups. Fix a prime power q, let Fq denote the field with q elements, and
let GLn = GLn(Fq). The unipotent upper triangular group is the subgroup

UTn = {g ∈ GLn | (g− 1n)i,j ̸= 0 only if i < j }

where 1n ∈ GLn is the identity matrix. The set IGn indexes a family of normal subgroups
in UTn known as normal pattern subgroups [15, Lemma 4.1]: for γ ∈ IGn, let

UTγ = {g ∈ UTn | gi,j = 0 if {i, j} ∈ E(γ) },

where E(γ) denotes the edge set of γ. If π is the Dyck path corresponding to γ, then UTγ

is the subset of elements of UTn with nonzero entries occurring only on the diagonal or
above the path π. For example using the graph and Dyck path from Equation (2.5),

UT
1 2 3

=
1

1
1

0
0 0

0 ∗
0 .

The characters appearing in the main results below span a subspace of cf(UTn) which
was initially constructed in [2]. For γ ∈ IGn, let

χγ = IndUTn
UTγ

(1),

the character of the UTn-module C[UTn/UTγ], so that

χγ = q|E(γ)|δUTγ . (2.7)

The characters χγ are linearly independent, and span a self-dual subspace

scf(UTn) = C -span{χγ | γ ∈ IGn},

known as the subspace of superclass functions.

Remark 2.8. The space scf(UTn) comes from a supercharacter theory of UTn [2], and has
a number of interesting bases indexed by IGn. One of these—the “supercharacter basis”—is
typically denoted by χγ and has the property that χγ = ∑σ⊆γ χσ, from which the notation χγ is
derived. More details can be found in the extended version of this abstract [6, Section 2.3].
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2.4 Homomorphisms between Hopf algebras of class functions

In [21, III], Zelevinsky defines a graded connected Hopf algebra on the space

cf(GL•) =
⊕
n≥0

cf(GLn),

with structure maps coming from the parabolic induction and restriction functors. The
paper [5] defines a similar Hopf structure on the spaces

scf(UT•) =
⊕
n≥0

scf(UTn), and cf(UT•) =
⊕
n≥0

cf(UTn),

in which the former is a sub-Hopf algebra of the latter. This section will describe several
homomorphisms involving these Hopf algebras.

In [10, Section 6], Guay-Paquet defines a C[t]-Hopf algebra on the free C[t]-module
C[t][IG], and specializing t 7→ q−1 gives a Hopf algebra over C; see [5, Section 7].

Theorem 2.9 ([5, Corollary 7.6]). The map γ 7→ q−|E(γ)|χγ is an isomorphism from Guay-
Paquet’s specialized Hopf algebra to scf(UT•).

A second map comes from the induction functors IndGLn
UTn

: cf(UTn)→ cf(GLn); let

IndGL
UT =

⊕
n≥0

IndGLn
UTn

: cf(UT•) −→ cf(GL•).

Theorem 2.10 ([5, Theorem 6.1]). The map IndGL
UT is a Hopf algebra homomorphism.

The image of IndGL
UT is a sub-Hopf algebra, the class functions with unipotent support:

cfuni
supp(GL•) = IndGL

UT(cf(UT•)) ⊆ cf(GL•).

The space cfuni
supp(GL•) can also be constructed more explicitly, as follows. An element

g ∈ GLn is unipotent if g is conjugate to an element of UTn. The conjugacy classes of
unipotent elements in GLn are indexed by Pn: the partition λ = (λ1, λ2, . . . , λℓ) corre-
sponds to the conjugacy class Oλ of the Jordan matrix

Jλ = Jλ1 ⊕ Jλ2 ⊕ · · · ⊕ Jλℓ
with (Jk)i,j =

{
1 if j ∈ {i, i + 1}
0 otherwise

Thus, writing δλ = δOλ
, standard properties of induction imply that

cfuni
supp(GL•) = C -span{δλ | λ ∈ P}.

Zelevinsky [21, 10.13] (see also [14, IV.4.1]) constructs a Hopf algebra isomorphism

p{1} : cfuni
supp(GL•) −→ Sym

δλ 7−→ P̃λ(x; q)
(2.11)

where P̃λ is the degree shifted Hall–Littlewood polynomial mentioned in Section 2.1.
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3 Realizing Xγ(x; t) as a GLn character

This section gives the main result. Recall the definitions of IGn and Xγ(x; t) from Sec-
tion 2.2, the groups UTγ from Section 2.3, and the maps IndGL

UT and p{1} from Section 2.4.

Theorem 3.1. For n ≥ 0 and γ ∈ IGn,

IndGLn
UTγ

(1) = (q− 1)n p−1
{1}

(
Xγ(x; q)

)
.

A full proof of Theorem 3.1 is given in [6, Section 3], but we will give a short sketch
below, after a few preliminaries. Theorem 2.1 states that the homomorphism

canoCQS : scf(UT•)
IndGL

UT−−−−→ cfuni
supp(GL•)

p{1}
↪−−→ Sym inclusion−−−−−−→ QSym

is uniquely determined by the linear character ps1 ◦p{1} ◦ IndGL
UT of scf(UT•). The proof

of Theorem 3.1 amounts to showing that this linear character also corresponds to the
homomorphism

scf(UT•) −→ QSym
χγ 7−→ (q− 1)nXγ(x; q),

(3.2)

where for each γ ∈ IGn, χγ = IndUTn
UTγ

(1) as in Section 2.3.
A relative of the map in Equation (3.2) has been studied by Guay-Paquet in [10].

Translating through the isomorphism of Theorem 2.9 and a q ↔ q−1 interchange prop-
erty established in [17, Proposition 2.6], we have the following.

Theorem 3.3 ([10, Theorem 57]). The map χγ 7→ Xγ(x; q) is a Hopf algebra homomorphism
from scf(UT•) to QSym. Writing ζ0 : scf(UT•)→ C for the corresponding linear character,

ζ0(χ
γ) =

{
q|E(γ)| if γ = ([n], ∅),
0 otherwise.

We now relate ζ0 to the linear character of canoCQS. Zelevinsky [21, 10.8] has shown
that for a unipotently supported class function ψ ∈ cfuni

supp(GL•),

ps1 ◦p{1}(ψ) = ψ(J(n)),

where J(n) is the unipotent Jordan matrix corresponding to the partition (n), as in Sec-
tion 2.4. Taking ψ = IndGL

UT(χ
γ), standard facts about induction and the conjugacy class

of J(n) give the following result, proved in [6, Proposition 3.12].

Proposition 3.4. Let γ be an indifference graph of size n ≥ 0. Then

ps1 ◦p{1} ◦ IndGL
UT(χ

γ) =

{
(q− 1)nq|E(γ)| if γ = ([n], ∅),
0 otherwise.

Proof sketch of Theorem 3.1. Starting from Theorem 3.3, it can be verified directly that the
map in Equation (3.2) is a Hopf algebra homomorphism. By Proposition 3.4, this map
has the same linear character as canoCQS, so by Theorem 2.1, they are the same.
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4 Connections to Hessenberg varieties

This section will describe a relationship between the characters in Theorem 3.1 and Hes-
senberg varieties. Take n ≥ 0 and let K be a field. For each element A ∈ Matn(K) and
subspace M ⊆ Matn(K) which is stable under conjugation by the subgroup of upper
triangular matrices Bn(K) ⊆ GLn(K), the Hessenberg variety associated to A and M is

BM
A = {gBn(K) ∈ GLn(K)/Bn(K) | g−1Ag ∈ M}.

The following results exclusively concern Hessenberg varieties associated to strictly
upper triangular subspaces known as ad-nilpotent ideals. For γ ∈ IGn, let

utγ(K) = {A ∈ Matn(K) | Ai,j ̸= 0 only if i < j and {i, j} /∈ E(γ)} = UTγ(K)− 1n.

Some key examples of Hessenberg varieties of the form Butγ(K)
A are well-known, but a

specific study of these varieties is quite recent; see [16] and the references therein.

Proposition 4.1. Let n ≥ 0 and γ ∈ IGn. For A ∈ Matn(Fq) with 1n + A ∈ GLn(Fq),

Ind
GLn(Fq)

UTγ(Fq)
(1)(1n + A) = (q− 1)nq|E(γ)||Butγ(Fq)

A |.

Proof sketch. The left side is equal to q|E(γ)| times the number of cosets hUTn(Fq) ∈
GLn(Fq)/UTn(Fq) with h−1(1n + A)h ∈ UTγ(Fq). Each such coset satisfies hBn(Fq) ∈
Butγ(Fq)

A , with (q− 1)n cosets hUTn(Fq) for each each element of Butγ(Fq)
A .

The paper [16] gives a similar result for the analogous Hessenberg varieties over C,
which involves the modified Poincaré polynomial

Poin
utγ(C)
A (t) = ∑

k≥0
β2ktk,

where βi is the ith Betti number of Butγ(C)
A . Recall the Hall–Littlewood symmetric func-

tion P̃λ(x; t) from Section 2.1, and define expressions dγ
λ(t) for each partition λ of n by

Xγ(x; t) = ∑
λ∈Pn

dγ
λ(t)P̃λ(x; t). (4.2)

Also note that partitions of n index the similarity classes of nilpotent matrices over any
field: λ ∈ Pn corresponds to the class of Jλ − 1n, where Jλ is as defined in Section 2.4.

Theorem 4.3 ([16, Equation (4.7)]). For n ≥ 0, take γ ∈ IGn and λ ∈ Pn. For a nilpotent
matrix A ∈ Matn(C) in the similarity class indexed by λ, Poinutγ(C)

A (t) = t−|E(γ)|dγ
λ(t).

Applying the inverse of the map p{1} defined in Equation (2.11) to Equation (4.2),
Theorem 3.1 and Proposition 4.1 give the following.

Corollary 4.4. For n ≥ 0, take γ ∈ IGn and λ ∈ Pn. Let A ∈ Matn(Fq) and A′ ∈ Matn(C) be

nilpotent elements belonging to similarity classes indexed by λ. Then Poin
utγ(C)
A′ (q) = |Butγ(Fq)

A |.



10 Lucas Gagnon

5 Realizing Gγ(x; t) as a GLn character

For an indifference graph γ ∈ IG, the unicellular LLT polynomial associated to γ is

Gγ(x; t) = ∑
κ:[n]→Z>0

tascγ(κ)xκ(1)xκ(2) . . . xκ(n) ∈ C[[x]][t],

where the sum is over all colorings. This is a variation of the polynomials defined by
Lascoux, Leclerc, and Thibon in [13], and is due to Carlsson and Mellit [4] (see also [12]).
Like Xγ(x; t), each Gγ(x; t) is a polynomial in t with symmetric function coefficients.

Theorem 5.1 ([4, Proposition 3.5]). For n ≥ 0, let γ ∈ IGn. Using plethystic notation,

(t− 1)nXγ(x; t)
[ x

t−1

]
= Gγ(x; t).

Somewhat surprisingly, the plethystic substitution above has a natural meaning for
GLn(Fq). An irreducible character of GLn is unipotent if it is a summand of IndGLn

Bn
(1),

where Bn = Bn(Fq) is as defined in Section 4. These characters are indexed by the
partitions of n, and χλ will denote the irreducible unipotent character corresponding to
λ ∈ P(n), with χ(1n) = 1 as in [14]. Zelevinksy [21, 9.4] defines a homomorphism

p1 : cf(GL•) −→ Sym
ψ 7−→ ∑λ⟨ψ, χλ⟩sλ,

(5.2)

so that for any character ψ of GLn, the coefficient of sλ in p1(ψ) is the multiplicity of χλ

in ψ. Recalling the map p{1} from Section 2.4, it is known [14, IV.4] that the composite

Sym
p−1
{1}−−−→ cfuni

supp(GL•) ↪−−−→ cf(GL•)
p1−−→ Sym

can be expressed in plethystic notation as f 7→ ω f [ x
t−1 ]|t=q. With Theorem 5.1, this

implies the following result; see [6, Theorem 5.1] for a complete proof.

Theorem 5.3. Let γ be an indifference graph. Then p1 ◦ IndGLn
UTγ

(1) = ωGγ(x; q).

6 Positivity conjectures

Recall the bases of Sym given in Section 2.1. An element f ∈ Sym[t] is respectively
e-positive or s-positive if there are polynomials aλ(t) ∈ Z≥0[t] or bλ(t) ∈ Z≥0[t] for which

f = ∑
λ∈P

aλ(t)eλ or f = ∑
λ∈P

bλ(t)sλ.

For the chromatic quasisymmetric functions in Section 2.2, e-positivity generalizes
the Stanley–Stembridge conjecture [20, Conjecture 5.5], which by [9] is the t = 1 case of
the statement below.
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Conjecture 6.1 ([17, Conjecture 1.3]). For each γ ∈ IG, Xγ(x; t) is e-positive.

In light of Theorem 3.1, there should be a restatement of Conjecture 6.1 in terms of
GLn. However, the map p{1} defined in Section 2.4 does not associate eλ to a character
of GLn, so some interpretation is required. One possible restatement uses the Steinberg
character χ(n) of GLn defined in Section 5, which agrees with p−1

{1}(en) on all unipotent

elements. For λ = (λ1, . . . , λℓ) ∈ Pn, let Stλ denote the product χλ1 · · · χλℓ in cf(GL•).

Conjecture 6.2. Let n ≥ 0 and γ ∈ IGn. There are polynomials aγ
λ(t) ∈ Z≥0[t] such

that for each prime power q the character ηγ = ∑λ∈Pn aγ
λ(q) Stλ satisfies (q − 1)nηγ(u) =

IndGLn
UTγ

(1)(u) for every unipotent element u ∈ GLn(Fq).

By [6, Proposition 6.6], Conjectures 6.1 and 6.2 are equivalent. Ideally, a proof of
Conjecture 6.2 would construct a module affording the character ηγ.

For the unicellular LLT polynomials from Section 5, Schur positivity has implications
in the study of Macdonald polynomials [12] and is known to hold by [8, Corollary 6.9].
Unfortunately, the proof in [8] does not explicitly construct the Schur coefficients.

Open Problem 6.3 ([11, Open Problem 6.6]). Find a (manifestly positive) combinatorial for-
mula for the Schur coefficients bγ

λ(t) of Gγ(x; t).

Theorem 5.3 implies that bγ
λ(q) = ⟨χ

λ′ , IndGLn
UTγ

(1)⟩ for each prime power q, which is
a positive integer, but this not yet imply Schur positivity as defined above.

Open Problem 6.4. Find a combinatorial formula for ⟨χλ′ , IndGLn
UTγ

(1)⟩ as a function of q.
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