A unipotent realization of the chromatic quasisymmetric function

Lucas Gagnon*1
${ }^{1}$ Department of Mathematics and Statistics, York University, Toronto ON, Canada

Abstract

The chromatic quasisymmetric function is a t-analogue of Stanley's chromatic symmetric function, and has recently been at the center of a number of exciting developments in algebraic combinatorics. This extended abstract contributes to this trend, describing a novel realization of certain chromatic quasisymmetric functions as characters of the finite general linear group $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$. Additional results tie these characters to other aspects of the chromatic quasisymmetric function: point counting in Hessenberg varieties over \mathbb{F}_{q}, realizing the plethystic connection with unicellular LLT polynomials, and re-interpreting positivity conjectures.

Keywords: Chromatic quasisymmetric function; unicellular LLT polynomial; unipotent group; combinatorial Hopf algebra

1 Introduction

The chromatic symmetric function sits at a nexus of disparate areas of mathematics. At face value, this symmetric function encodes the coloring problem of a graph as an analogue of the chromatic polynomial [18]. However, through a well-known equivalence between the ring of symmetric functions and the representation theory of the symmetric groups (see e.g. [14]), some chromatic symmetric functions are also complex characters of the symmetric group [7]. Moreover, by way of a t-analogue known as the chromatic quasisymmetric function, Brosnan and Chow [3] and Guay-Paquet [10] independently proved that the characters corresponding to indifference graphs are afforded by symmetric group modules on the cohomology rings of regular semisimple Hessenberg varieties, as predicted by a conjecture of Shareshian and Wachs [17]. Thus, certain questions about graphs, representation theory, and algebraic geometry coincide in the structure of these symmetric functions, and vice versa.

Based on the paper [6], this extended abstract describes yet another connection to the chromatic quasisymmetric function, this time from the general linear group $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ over the finite field with q elements. The maximal unipotent subgroup $\mathrm{UT}_{n}\left(\mathbb{F}_{q}\right)$ of

[^0]$\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ has a family of characters indexed by indifference graphs, and Theorem 3.1 shows that and up to a factor of $(q-1)^{n}$ the induction functor gives a map
\[

\left\{$$
\begin{array}{c}
\text { indifference graph } \\
\text { indexed characters }
\end{array}
$$\right\} \xrightarrow{\operatorname{Ind}_{\mathrm{UT}_{n}\left(\mathbb{F}_{q}\right)}^{\mathrm{Ci}_{n}\left(\mathbb{F}_{q}\right)}}\left\{$$
\begin{array}{c}
\text { chromatic quasisymmetric functions for } \\
\text { indifference graphs evaluated at } t=q
\end{array}
$$\right\}
\]

where unipotently supported class functions of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ are identified with symmetric functions via the Hall algebra. Section 3 describes this result and its proof using a Hopf algebraic interpretation of induction established in a second paper of the author [5].

The remaining sections of this abstract explore implications of Theorem 3.1. While the theorem is reminiscent of the Brosnan-Chow-Guay-Paquet theorem, the underlying association between symmetric functions and $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ characters in this paper is quite different and offers a complementary perspective. Moreover, the relevant characters are elementary in nature and may be more accessible from a module theoretic standpoint.

Section 4 gives a geometric interpretation of the characters in Theorem 3.1: their values count the points of Hessenberg varieties associated to an ad-nilpotent ideal over \mathbb{F}_{q}. Even over C, Hessenberg varieties associated to ad-nilpotent ideals are markedly different from the ones in the Brosnan-Chow-Guay-Paquet theorem, and there is no known module structure on their cohomology rings. However, Precup and Sommers [16] have given a geometric connection between the Poincaré polynomials of these Hessenberg varieties and the chromatic quasisymmetric function, and Corollary 4.4 shows how Theorem 3.1 can be seen as a representation theoretic manifestation of this phenomenon.

Section 5 revisits a well-known relationship between chromatic quasisymmetric functions and the family of unicellular LLT polynomials [4] from the perspective of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$. The unipotent characters of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ give another realization of symmetric functions, and any character can be projected onto its unipotent summands to produce a symmetric function. For the characters in Theorem 3.1, this association turns out to be a twisted version of the relationship between chromatic quasisymmetric functions and unicellular LLT polynomials, and Theorem 5.3 gives a map

$$
\left\{\begin{array}{l}
\text { indifference graph } \\
\text { indexed characters }
\end{array}\right\} \xrightarrow{\omega \circ \text { projection } \circ \operatorname{Ind}_{\mathrm{UT}_{n}\left(\mathbb{F}_{q}\right)}^{\mathrm{GL}\left(\mathbb{F}_{q}\right)}}\left\{\begin{array}{l}
\text { unicellular LLT polyno- } \\
\text { mials evaluated at } t=q
\end{array}\right\}
$$

No previous connection between LLT polynomials and $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ representation theory was known, though similar associations exist for quantum groups [13], affine Hecke algebras [8], and the symmetric groups [10, 12].

Finally, Section 6 describes the $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ representation theoretic meaning of two "positivity conjectures" about the chromatic quasisymmetric function and unicellular LLT polynomial. Each conjecture postulates that when the symmetric function in question is expressed in a chosen basis, each coefficient will be nonnegative. For the chromatic quasisymmetric functions, the modified Stanley-Stembridge conjecture [17, Conjecture 1.3] (see also [20]) concerns positivity in the elementary symmetric function basis,
and is entirely open. For the LLT polynomials, positivity in the Schur basis has been established by Grojnowski and Haiman [8], but no positive combinatorial formula for the coefficients is known [11]. While no immediate progress is made on either conjecture in this abstract, the $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ interpretations may be a useful starting point for future work.

The remainder of this abstract is organized as follows. Section 2 gives general background material. Section 3 contains the main result, Theorem 3.1, and Section 4 relates this result to Hessenberg varieties. Section 5 concerns the unicellular LLT polynomial. Finally, Section 6 discusses the aforementioned positivity conjectures.

2 Preliminaries

This section contains preliminary material on Hopf algebras and symmetric functions (Section 2.1), chromatic quasisymmetric functions (Section 2.2), the character theory of $\mathrm{UT}_{n}\left(\mathbb{F}_{q}\right)$ (Section 2.3), and its relation to $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ characters (Section 2.4).

2.1 (Quasi-)Symmetric functions and combinatorial Hopf algebras

This section describes the Hopf algebraic techniques required to prove the main result. Throughout, the term Hopf algebra will refer to a graded connected \mathbb{C}-vector space

$$
H_{\bullet}=\bigoplus_{n \geq 0} H_{n} \quad \text { such that } \quad H_{0} \cong \mathbb{C}
$$

equipped with a \mathbb{C}-bialgebra structure and a compatible antipode map. This extra structure is not used prominently in this work, which instead focuses on Hopf algebra homomorphisms; these can be thought of as a well-behaved subclass of graded linear maps.

Two particularly important examples now follow. A composition of $n \in \mathbb{Z}_{\geq 0}$ is a sequence of positive integers $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ with $\alpha_{1}+\cdots+\alpha_{k}=n$. Call each α_{i} a part of α. The monomial quasisymmetric function associated to the composition α is

$$
M_{\alpha}=\sum_{i_{1}<\cdots<i_{\ell}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{\ell}}^{\alpha_{\ell(\alpha)}} \in \mathbb{C}[[\mathbf{x}]] .
$$

where $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots\right\}$ is an infinite, totally ordered set of indeterminates. With grading given by degree, the Hopf algebra of quasisymmetric functions is

$$
\mathcal{Q} \operatorname{Sym}=\mathbb{C}-\operatorname{span}\left\{M_{\alpha} \mid \alpha \text { is a composition }\right\} .
$$

A partition of n is a composition of n with non-increasing parts. Let

$$
\mathcal{P}=\bigsqcup_{n \geq 0} \mathcal{P}_{n} \quad \text { with } \quad \mathcal{P}_{n}=\{\text { partitions of } n\}
$$

The Hopf algebra of symmetric functions is the subspace

$$
\operatorname{Sym}=\mathbb{C}-\operatorname{span}\left\{m_{\lambda} \mid \lambda \in \mathcal{P}\right\} \subseteq \mathcal{Q} \operatorname{Sym} \quad \text { with } \quad m_{\lambda}=\sum_{\operatorname{sort}(\alpha)=\lambda} M_{\alpha}
$$

where $\operatorname{sort}(\alpha)$ is the partition obtained by listing the parts of α in non-increasing order.
This abstract will use several standard bases of Sym found in [14]: the elementary symmetric functions $\left\{e_{\lambda} \mid \lambda \in \mathcal{P}\right\}$ [14, I.2], the Schur functions $\left\{s_{\lambda} \mid \lambda \in \mathcal{P}\right\}$ [14, I.3], and the degree-shifted Hall-Littlewood symmetric functions $\left\{\widetilde{P_{\lambda}}(\mathbf{x} ; t) \mid \lambda \in \mathcal{P}\right\}$ [14, IV.4], which depend on an additional parameter t. We will also use the involution $\omega: \operatorname{Sym} \rightarrow$ Sym, given by $\omega\left(s_{\lambda}\right)=s_{\lambda^{\prime}}$, where λ^{\prime} denotes the transpose of λ.

The paper [1] gives classification of all homomorphisms from an arbitrary Hopf algebra H to $\mathcal{Q S y m}$ via certain algebra homomorphisms $\zeta: H \rightarrow \mathbb{C}$, called linear characters herein in order to avoid confusion with the group characters in this work. The Hopf algebra \mathcal{Q} Sym has a linear character known as the first principal specialization,

$$
\begin{aligned}
\mathrm{ps}_{1}: \mathcal{Q S y m} & \longrightarrow \begin{array}{c}
\mathbb{C} \\
M_{\alpha}
\end{array} \longmapsto \begin{cases}1 & \text { if } \alpha=() \text { or }(n) \text { for } n \geq 0, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Theorem 2.1 ([1] Theorem 4.1). Let H be a Hopf algebra. Then the map

$$
\begin{aligned}
\{\text { homomorphisms } H \rightarrow \mathcal{Q S y m}\} & \longrightarrow \text { \{linear characters of } H\} \\
\Psi & \longmapsto \mathrm{ps}_{1} \circ \Psi
\end{aligned}
$$

is a bijection. In particular, for each linear character ζ of H, there is a unique homomorphism $\Psi: H \rightarrow \mathcal{Q} \operatorname{Sym}$ for which $\zeta=\mathrm{ps}_{1} \circ \Psi$.

2.2 Indifference graphs and the chromatic quasisymmetric function

This section will describe the chromatic quasisymmetric function of a graph, and go on to define a special class of graphs for which this function is particularly well behaved.

Let γ be a simple, undirected graph with vertex set $[n]$ and edge set $E(\gamma)$. A coloring of γ is a function $\kappa:[n] \rightarrow \mathbb{Z}_{>0}$. A coloring κ of γ is proper if $\kappa(i) \neq \kappa(j)$ for all $\{i, j\} \in E(\gamma)$. The γ-ascent number of a coloring κ is

$$
\begin{equation*}
\operatorname{asc}_{\gamma}(\kappa)=\mid\{\{i, j\} \in E(\gamma) \mid i<j \text { and } \kappa(i)<\kappa(j)\} \mid . \tag{2.2}
\end{equation*}
$$

For example, if $\kappa:[5] \rightarrow \mathbb{Z}_{>0}$ is given by $\kappa(1)=2, \kappa(2)=5, \kappa(3)=1$, and $\kappa(4)=5$,

$$
\text { asc } \underset{i \underset{i \neq 4}{\curvearrowright} . \underset{\sim}{\sim}}{ }(\kappa)=|\{\{1,2\},\{3,4\}\}|=2 .
$$

In this example, κ is a proper coloring of the given graph.

The chromatic quasisymmetric function of γ is

$$
X_{\gamma}(\mathbf{x} ; t)=\sum_{\substack{\kappa:[n] \rightarrow \mathbb{Z}_{>0} \\ \text { proper }}} t^{\operatorname{asc}_{\gamma}(\kappa)} x_{\kappa(1)} x_{\kappa(2)} \ldots x_{\kappa(n)} \in \mathcal{Q S y m}[t]
$$

so that $X_{\gamma}(\mathbf{x} ; t)$ is a polynomial in an indeterminate t whose coefficients-by properties of the ascent statistic-are quasisymmetric functions. For example,

$$
\begin{equation*}
X_{i \underset{i j}{\dot{3}} .}(\mathbf{x} ; t)=t M_{(2,1)}+t M_{(1,2)}+\left(t^{2}+4 t+1\right) M_{\left(1^{3}\right)} \tag{2.3}
\end{equation*}
$$

Evaluating the indeterminate t in $X_{\gamma}(\mathbf{x} ; t)$ at a complex number gives an actual quasisymmetric function. For example, taking $t=1$ gives the ordinary chromatic symmetric function of γ as defined by Stanley in [18], and the main result of this paper concerns the evaluation of $X_{\gamma}(\mathbf{x} ; t)$ at $t=q$, the order of the finite field \mathbb{F}_{q}.

The coefficients of $X_{\gamma}(\mathbf{x} ; t)$ are known to be symmetric under certain conditions. An indifference graph of size $n \geq 0$ is a simple, undirected graph γ on the vertex set $[n]=$ $\{1, \ldots, n\}$ with edge set $E(\gamma)$ satisfying

$$
\text { for each }\{i, l\} \in E(\gamma): \quad\{\{j, k\} \mid i \leq j<k \leq l\} \subseteq E(\gamma) .
$$

The empty graph on \varnothing is the unique indifference graph of size zero. Let

$$
\mathcal{I G}=\bigsqcup_{n \geq 0} \mathcal{I} \mathcal{G}_{n} \quad \text { with } \quad \mathcal{I} \mathcal{G}_{n}=\{\text { indifference graphs on }[n]\}
$$

For example,
as $\{1,4\} \in E(\sigma)$ but $\{3,4\} \notin E(\sigma)$.
Proposition 2.4 ([17, Theorem 4.5]). For an indifference graph $\gamma \in \mathcal{I} \mathcal{G}_{n}$, the coefficients of each power of t in $X_{\gamma}(\mathbf{x} ; t)$ is a symmetric function.

The indifference graphs of size $n \geq 0$ are enumerated by the nth Catalan number, as seen in the following bijection, found in [19, Sol. 187]. Associate to each $\gamma \in \mathcal{I} \mathcal{G}_{n}$ the southeast lattice path from $(0,0)$ to $(n,-n)$ which lies directly above the diagonal $x=-y$ and the unit squares centered at $\left(j-\frac{1}{2}, \frac{1}{2}-i\right)$ for each $\{i, j\} \in E(\gamma)$. For example,

2.3 Linear algebraic groups and class functions

For a finite group G, the space of complex valued class functions on G is

$$
\operatorname{cf}(G)=\left\{\psi: G \longrightarrow \mathbb{C} \mid \psi(g)=\psi\left(h g h^{-1}\right) \text { for all } g, h \in G\right\}
$$

Under the usual inner product $\langle\cdot, \cdot\rangle: \operatorname{cf}(G) \otimes \operatorname{cf}(G) \rightarrow \mathbb{C}$, there are two orthogonal bases of $\operatorname{cf}(G)$: the irreducible characters of G and the conjugacy class identifier functions,

$$
\left\{\delta_{K} \mid K \in \mathrm{Cl}\right\} \quad \text { with } \quad \delta_{K}(g)= \begin{cases}1 & \text { if } g \in K \tag{2.6}\\ 0 & \text { otherwise }\end{cases}
$$

The remainder of this section will construct a subspace of class functions of a particular family of groups. Fix a prime power q, let \mathbb{F}_{q} denote the field with q elements, and let $\mathrm{GL}_{n}=\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$. The unipotent upper triangular group is the subgroup

$$
\mathrm{UT}_{n}=\left\{g \in \mathrm{GL}_{n} \mid\left(g-1_{n}\right)_{i, j} \neq 0 \text { only if } i<j\right\}
$$

where $1_{n} \in \mathrm{GL}_{n}$ is the identity matrix. The set $\mathcal{I} \mathcal{G}_{n}$ indexes a family of normal subgroups in UT_{n} known as normal pattern subgroups [15, Lemma 4.1]: for $\gamma \in \mathcal{I} \mathcal{G}_{n}$, let

$$
\mathrm{UT}_{\gamma}=\left\{g \in \mathrm{UT}_{n} \mid g_{i, j}=0 \text { if }\{i, j\} \in E(\gamma)\right\}
$$

where $E(\gamma)$ denotes the edge set of γ. If π is the Dyck path corresponding to γ, then $U T T_{\gamma}$ is the subset of elements of UT_{n} with nonzero entries occurring only on the diagonal or above the path π. For example using the graph and Dyck path from Equation (2.5),

$$
\text { UT }_{i \underset{i}{2} \dot{\rightleftarrows}}=\left[\begin{array}{llll}
1 & 0 & * \\
0 & 1 & * \\
\hline 0 & 0 & 1
\end{array}\right] .
$$

The characters appearing in the main results below span a subspace of $\operatorname{cf}\left(\mathrm{UT}_{n}\right)$ which was initially constructed in [2]. For $\gamma \in \mathcal{I} \mathcal{G}_{n}$, let

$$
\bar{\chi}^{\gamma}=\operatorname{Ind}_{\mathrm{UT}_{\gamma}}^{\mathrm{UT}_{n}}(\mathbb{1})
$$

the character of the UT_{n}-module $\mathbb{C}\left[\mathrm{UT}_{n} / \mathrm{UT}_{\gamma}\right]$, so that

$$
\begin{equation*}
\bar{\chi}^{\gamma}=q^{|E(\gamma)|} \delta_{\mathrm{UT}_{\gamma}} \tag{2.7}
\end{equation*}
$$

The characters $\bar{\chi}^{\gamma}$ are linearly independent, and span a self-dual subspace

$$
\operatorname{scf}\left(\mathrm{UT}_{n}\right)=\mathbb{C}-\operatorname{span}\left\{\bar{\chi}^{\gamma} \mid \gamma \in \mathcal{I} \mathcal{G}_{n}\right\}
$$

known as the subspace of superclass functions.
Remark 2.8. The space $\operatorname{scf}\left(\mathrm{UT}_{n}\right)$ comes from a supercharacter theory of UT_{n} [2], and has a number of interesting bases indexed by $\mathcal{I} \mathcal{G}_{n}$. One of these-the "supercharacter basis"-is typically denoted by χ^{γ} and has the property that $\bar{\chi}^{\gamma}=\sum_{\sigma \subseteq \gamma} \chi^{\sigma}$, from which the notation $\bar{\chi}^{\gamma}$ is derived. More details can be found in the extended version of this abstract [6, Section 2.3].

2.4 Homomorphisms between Hopf algebras of class functions

In [21, III], Zelevinsky defines a graded connected Hopf algebra on the space

$$
\mathrm{cf}(\mathrm{GL} \bullet)=\bigoplus_{n \geq 0} \operatorname{cf}\left(\mathrm{GL}_{n}\right)
$$

with structure maps coming from the parabolic induction and restriction functors. The paper [5] defines a similar Hopf structure on the spaces

$$
\operatorname{scf}\left(\mathrm{UT}_{\bullet}\right)=\bigoplus_{n \geq 0} \operatorname{scf}\left(\mathrm{UT}_{n}\right), \quad \text { and } \quad \operatorname{cf}\left(\mathrm{UT}_{\bullet}\right)=\bigoplus_{n \geq 0} \operatorname{cf}\left(\mathrm{UT}_{n}\right)
$$

in which the former is a sub-Hopf algebra of the latter. This section will describe several homomorphisms involving these Hopf algebras.

In [10, Section 6], Guay-Paquet defines a $\mathbb{C}[t]$-Hopf algebra on the free $\mathbb{C}[t]$-module $\mathbb{C}[t][\mathcal{I} \mathcal{G}]$, and specializing $t \mapsto q^{-1}$ gives a Hopf algebra over \mathbb{C}; see [5, Section 7].
Theorem 2.9 ([5, Corollary 7.6]). The map $\gamma \mapsto q^{-|E(\gamma)|} \bar{\chi}^{\gamma}$ is an isomorphism from GuayPaquet's specialized Hopf algebra to $\operatorname{scf}\left(\mathrm{UT}_{\bullet}\right)$.

A second map comes from the induction functors $\mathrm{Ind}_{\mathrm{UT}_{n}}^{\mathrm{GL}_{n}}: \operatorname{cf}\left(\mathrm{UT}_{n}\right) \rightarrow \operatorname{cf}\left(\mathrm{GL}_{n}\right)$; let

$$
\mathrm{Ind}_{\mathrm{UT}}^{\mathrm{GL}}=\bigoplus_{n \geq 0} \operatorname{Ind}_{\mathrm{UT}_{n}}^{\mathrm{GL}_{n}}: \operatorname{cf}\left(\mathrm{UT}_{\bullet}\right) \longrightarrow \operatorname{cf}\left(\mathrm{GL}_{\bullet}\right)
$$

Theorem 2.10 ([5, Theorem 6.1]). The map $\operatorname{Ind}_{\mathrm{UT}}^{\mathrm{GL}}$ is a Hopf algebra homomorphism.
The image of $\mathrm{Ind}_{\mathrm{UT}}^{\mathrm{GL}}$ is a sub-Hopf algebra, the class functions with unipotent support:

$$
\mathrm{cf}_{\text {supp }}^{\mathrm{uni}}\left(\mathrm{GL}_{\bullet}\right)=\operatorname{Ind}_{\mathrm{UT}}^{\mathrm{GL}}\left(\operatorname{cf}\left(\mathrm{UT}_{\bullet}\right)\right) \subseteq \operatorname{cf}\left(\mathrm{GL}_{\bullet}\right)
$$

The space $\mathrm{cf}_{\text {supp }}^{\mathrm{uni}}\left(\mathrm{GL}_{\bullet}\right)$ can also be constructed more explicitly, as follows. An element $g \in \mathrm{GL}_{n}$ is unipotent if g is conjugate to an element of UT_{n}. The conjugacy classes of unipotent elements in GL_{n} are indexed by \mathcal{P}_{n} : the partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ corresponds to the conjugacy class O_{λ} of the Jordan matrix

$$
J_{\lambda}=J_{\lambda_{1}} \oplus J_{\lambda_{2}} \oplus \cdots \oplus J_{\lambda_{\ell}} \quad \text { with } \quad\left(J_{k}\right)_{i, j}= \begin{cases}1 & \text { if } j \in\{i, i+1\} \\ 0 & \text { otherwise }\end{cases}
$$

Thus, writing $\delta_{\lambda}=\delta_{O_{\lambda}}$, standard properties of induction imply that

$$
\operatorname{cf}_{\text {supp }}^{\text {uni }}\left(\mathrm{GL}_{\bullet}\right)=\mathbb{C}-\operatorname{span}\left\{\delta_{\lambda} \mid \lambda \in \mathcal{P}\right\} .
$$

Zelevinsky [21, 10.13] (see also [14, IV.4.1]) constructs a Hopf algebra isomorphism

$$
\begin{align*}
\mathbf{p}_{\{1\}}: \mathrm{cf}_{\mathrm{supp}}^{\mathrm{uni}}(\mathrm{GL} \cdot) & \longrightarrow \mathrm{Sym} \tag{2.11}\\
\delta_{\lambda} & \longmapsto \widetilde{P_{\lambda}}(\mathbf{x} ; q)
\end{align*}
$$

where $\widetilde{P_{\lambda}}$ is the degree shifted Hall-Littlewood polynomial mentioned in Section 2.1.

3 Realizing $X_{\gamma}(\mathbf{x} ; t)$ as a GL_{n} character

This section gives the main result. Recall the definitions of $\mathcal{I} \mathcal{G}_{n}$ and $X_{\gamma}(\mathbf{x} ; t)$ from Section 2.2, the groups UT_{γ} from Section 2.3, and the maps $\operatorname{Ind}_{\mathrm{UT}}^{\mathrm{GL}}$ and $\mathbf{p}_{\{1\}}$ from Section 2.4.
Theorem 3.1. For $n \geq 0$ and $\gamma \in \mathcal{I} \mathcal{G}_{n}$,

$$
\operatorname{Ind}_{\mathrm{UT}_{\gamma}}^{\mathrm{GL}_{n}}(\mathbb{1})=(q-1)^{n} \mathbf{p}_{\{1\}}^{-1}\left(X_{\gamma}(\mathbf{x} ; q)\right)
$$

A full proof of Theorem 3.1 is given in [6, Section 3], but we will give a short sketch below, after a few preliminaries. Theorem 2.1 states that the homomorphism

$$
\operatorname{cano}_{\mathrm{CQS}}: \operatorname{scf}\left(\mathrm{UT}_{\bullet}\right) \xrightarrow{\mathrm{Ind}_{\mathrm{UT}}^{\mathrm{GL}}} \mathrm{cf}_{\mathrm{supp}}^{\text {uni }}\left(\mathrm{GL}_{\bullet}\right) \xrightarrow{\mathbf{p}_{\{1\}}} \mathrm{Sym} \xrightarrow{\text { inclusion }} \mathcal{Q} \mathrm{Sym}
$$

is uniquely determined by the linear character $\mathrm{ps}_{1} \circ \mathbf{p}_{\{1\}} \circ \operatorname{Ind}_{\mathrm{UT}}^{\mathrm{GL}}$ of $\operatorname{scf}(\mathrm{UT} \bullet)$. The proof of Theorem 3.1 amounts to showing that this linear character also corresponds to the homomorphism

$$
\begin{align*}
\operatorname{scf}\left(\mathrm{UT}_{\mathbf{\bullet}}\right) & \longrightarrow \mathcal{Q S y m} \\
\bar{\chi}^{\gamma} & \longmapsto(q-1)^{n} X_{\gamma}(\mathbf{x} ; q), \tag{3.2}
\end{align*}
$$

where for each $\gamma \in \mathcal{I} \mathcal{G}_{n}, \bar{\chi}^{\gamma}=\operatorname{Ind}_{\mathrm{UT}_{\gamma}}^{\mathrm{UT}_{n}}(\mathbb{1})$ as in Section 2.3.
A relative of the map in Equation (3.2) has been studied by Guay-Paquet in [10]. Translating through the isomorphism of Theorem 2.9 and a $q \leftrightarrow q^{-1}$ interchange property established in [17, Proposition 2.6], we have the following.
Theorem 3.3 ([10, Theorem 57]). The map $\bar{\chi}^{\gamma} \mapsto X_{\gamma}(\mathbf{x} ; q)$ is a Hopf algebra homomorphism from $\operatorname{scf}\left(\mathrm{UT}_{\bullet}\right)$ to $\mathcal{Q S y m}$. Writing $\zeta_{0}: \operatorname{scf}\left(\mathrm{UT}_{\bullet}\right) \rightarrow \mathbb{C}$ for the corresponding linear character,

$$
\zeta_{0}\left(\bar{\chi}^{\gamma}\right)= \begin{cases}q^{|E(\gamma)|} & \text { if } \gamma=([n], \varnothing) \\ 0 & \text { otherwise }\end{cases}
$$

We now relate ζ_{0} to the linear character of canoces. Zelevinsky [21, 10.8] has shown that for a unipotently supported class function $\psi \in \mathrm{cf}_{\text {supp }}^{\text {uni }}\left(\mathrm{GL}_{\bullet}\right)$,

$$
\operatorname{ps}_{1} \circ \mathbf{p}_{\{1\}}(\psi)=\psi\left(J_{(n)}\right),
$$

where $J_{(n)}$ is the unipotent Jordan matrix corresponding to the partition (n), as in Section 2.4. Taking $\psi=\operatorname{Ind}_{\mathrm{UT}}^{\mathrm{GL}}\left(\bar{\chi}^{\gamma}\right)$, standard facts about induction and the conjugacy class of $J_{(n)}$ give the following result, proved in [6, Proposition 3.12].
Proposition 3.4. Let γ be an indifference graph of size $n \geq 0$. Then

$$
\operatorname{ps}_{1} \circ \mathbf{p}_{\{1\}} \circ \operatorname{Ind}_{\mathrm{UT}}^{\mathrm{GL}}\left(\bar{\chi}^{\gamma}\right)= \begin{cases}(q-1)^{n} q^{|E(\gamma)|} & \text { if } \gamma=([n], \varnothing) \\ 0 & \text { otherwise }\end{cases}
$$

Proof sketch of Theorem 3.1. Starting from Theorem 3.3, it can be verified directly that the map in Equation (3.2) is a Hopf algebra homomorphism. By Proposition 3.4, this map has the same linear character as cano ${ }_{\mathrm{CQS}}$, so by Theorem 2.1, they are the same.

4 Connections to Hessenberg varieties

This section will describe a relationship between the characters in Theorem 3.1 and Hessenberg varieties. Take $n \geq 0$ and let \mathbb{K} be a field. For each element $A \in \operatorname{Mat}_{n}(\mathbb{K})$ and subspace $M \subseteq \operatorname{Mat}_{n}(\mathbb{K})$ which is stable under conjugation by the subgroup of upper triangular matrices $B_{n}(\mathbb{K}) \subseteq \mathrm{GL}_{n}(\mathbb{K})$, the Hessenberg variety associated to A and M is

$$
\mathcal{B}_{A}^{M}=\left\{g B_{n}(\mathbb{K}) \in \mathrm{GL}_{n}(\mathbb{K}) / B_{n}(\mathbb{K}) \mid g^{-1} A g \in M\right\}
$$

The following results exclusively concern Hessenberg varieties associated to strictly upper triangular subspaces known as ad-nilpotent ideals. For $\gamma \in \mathcal{I} \mathcal{G}_{n}$, let

$$
\mathfrak{u t}_{\gamma}(\mathbb{K})=\left\{A \in \operatorname{Mat}_{n}(\mathbb{K}) \mid A_{i, j} \neq 0 \text { only if } i<j \text { and }\{i, j\} \notin E(\gamma)\right\}=\operatorname{UT}_{\gamma}(\mathbb{K})-1_{n}
$$

Some key examples of Hessenberg varieties of the form $\mathcal{B}_{A}^{\mathfrak{u t} \gamma(\mathbb{K})}$ are well-known, but a specific study of these varieties is quite recent; see [16] and the references therein.
Proposition 4.1. Let $n \geq 0$ and $\gamma \in \mathcal{I} \mathcal{G}_{n}$. For $A \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)$ with $1_{n}+A \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$,

$$
\operatorname{Ind}_{\mathrm{UT}_{\gamma}\left(\mathbb{F}_{q}\right)}^{\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)}(\mathbb{1})\left(1_{n}+A\right)=(q-1)^{n} q^{|E(\gamma)|}\left|\mathcal{B}_{A}^{\mathfrak{u t}_{\gamma}\left(\mathbb{F}_{q}\right)}\right|
$$

Proof sketch. The left side is equal to $q^{|E(\gamma)|}$ times the number of cosets $h \mathrm{UT}_{n}\left(\mathbb{F}_{q}\right) \in$ $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right) / \mathrm{UT}_{n}\left(\mathbb{F}_{q}\right)$ with $h^{-1}\left(1_{n}+A\right) h \in \mathrm{UT}_{\gamma}\left(\mathbb{F}_{q}\right)$. Each such coset satisfies $h B_{n}\left(\mathbb{F}_{q}\right) \in$ $\mathcal{B}_{A}^{\mathfrak{u t}\left(\mathbb{F}_{q}\right)}$, with $(q-1)^{n}$ cosets $h \mathrm{UT}_{n}\left(\mathbb{F}_{q}\right)$ for each each element of $\mathcal{B}_{A}^{\mathfrak{u t} t_{\gamma}\left(\mathbb{F}_{q}\right)}$.

The paper [16] gives a similar result for the analogous Hessenberg varieties over \mathbb{C}, which involves the modified Poincaré polynomial

$$
\operatorname{Poin}_{A}^{\mathfrak{u t} t_{\gamma}(\mathrm{C})}(t)=\sum_{k \geq 0} \beta_{2 k} t^{k},
$$

where β_{i} is the i th Betti number of $\mathcal{B}_{A}^{\mathfrak{u t} \tau_{\gamma}(\mathrm{C})}$. Recall the Hall-Littlewood symmetric function $\widetilde{P_{\lambda}}(\mathbf{x} ; t)$ from Section 2.1, and define expressions $d_{\lambda}^{\gamma}(t)$ for each partition λ of n by

$$
\begin{equation*}
X_{\gamma}(\mathbf{x} ; t)=\sum_{\lambda \in \mathcal{P}_{n}} d_{\lambda}^{\gamma}(t) \widetilde{P_{\lambda}}(\mathbf{x} ; t) \tag{4.2}
\end{equation*}
$$

Also note that partitions of n index the similarity classes of nilpotent matrices over any field: $\lambda \in \mathcal{P}_{n}$ corresponds to the class of $J_{\lambda}-1_{n}$, where J_{λ} is as defined in Section 2.4.
Theorem 4.3 ([16, Equation (4.7)]). For $n \geq 0$, take $\gamma \in \mathcal{I} \mathcal{G}_{n}$ and $\lambda \in \mathcal{P}_{n}$. For a nilpotent matrix $A \in \operatorname{Mat}_{n}(\mathbb{C})$ in the similarity class indexed by $\lambda, \operatorname{Poin}_{A}^{\mathfrak{u t}_{\gamma}(\mathbb{C})}(t)=t^{-|E(\gamma)|} d_{\lambda}^{\gamma}(t)$.

Applying the inverse of the map $\mathbf{p}_{\{1\}}$ defined in Equation (2.11) to Equation (4.2), Theorem 3.1 and Proposition 4.1 give the following.
Corollary 4.4. For $n \geq 0$, take $\gamma \in \mathcal{I} \mathcal{G}_{n}$ and $\lambda \in \mathcal{P}_{n}$. Let $A \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)$ and $A^{\prime} \in \operatorname{Mat}_{n}(\mathbb{C})$ be nilpotent elements belonging to similarity classes indexed by λ. Then $\operatorname{Poin}_{A^{\prime}}^{\mathfrak{u t}_{\gamma}(\mathbb{C})}(q)=\left|\mathcal{B}_{A}^{\mathfrak{u t}_{\gamma}\left(\mathbb{F}_{q}\right)}\right|$.

5 Realizing $G_{\gamma}(\mathbf{x} ; t)$ as a GL_{n} character

For an indifference graph $\gamma \in \mathcal{I G}$, the unicellular LLT polynomial associated to γ is

$$
G_{\gamma}(\mathbf{x} ; t)=\sum_{\kappa:[n] \rightarrow \mathbb{Z}_{>0}} t^{\operatorname{asc}_{\gamma}(\kappa)} x_{\kappa(1)} x_{\kappa(2)} \ldots x_{\kappa(n)} \in \mathbb{C}[[\mathbf{x}]][t]
$$

where the sum is over all colorings. This is a variation of the polynomials defined by Lascoux, Leclerc, and Thibon in [13], and is due to Carlsson and Mellit [4] (see also [12]). Like $X_{\gamma}(\mathbf{x} ; t)$, each $G_{\gamma}(\mathbf{x} ; t)$ is a polynomial in t with symmetric function coefficients.
Theorem 5.1 ([4, Proposition 3.5]). For $n \geq 0$, let $\gamma \in \mathcal{I} \mathcal{G}_{n}$. Using plethystic notation,

$$
(t-1)^{n} X_{\gamma}(\mathbf{x} ; t)\left[\frac{\mathbf{x}}{t-1}\right]=G_{\gamma}(\mathbf{x} ; t)
$$

Somewhat surprisingly, the plethystic substitution above has a natural meaning for $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$. An irreducible character of GL_{n} is unipotent if it is a summand of $\operatorname{Ind}_{B_{n}}^{\mathrm{GL}_{n}}(\mathbb{1})$, where $B_{n}=B_{n}\left(\mathbb{F}_{q}\right)$ is as defined in Section 4. These characters are indexed by the partitions of n, and χ^{λ} will denote the irreducible unipotent character corresponding to $\lambda \in \mathcal{P}(n)$, with $\chi^{\left(1^{n}\right)}=\mathbb{1}$ as in [14]. Zelevinksy [21, 9.4] defines a homomorphism

$$
\begin{array}{clc}
\mathbf{p}_{\mathbb{1}}: \operatorname{cf}\left(\mathrm{GL}_{\bullet}\right) & \longrightarrow & \text { Sym } \tag{5.2}\\
\psi & \longmapsto \sum_{\lambda}\left\langle\psi, \chi^{\lambda}\right\rangle s_{\lambda},
\end{array}
$$

so that for any character ψ of GL_{n}, the coefficient of s_{λ} in $\mathbf{p}_{\mathbb{1}}(\psi)$ is the multiplicity of χ^{λ} in ψ. Recalling the map $\mathbf{p}_{\{1\}}$ from Section 2.4, it is known [14, IV.4] that the composite

$$
\operatorname{Sym} \xrightarrow{\mathbf{p}_{\{1\}}^{-1}} \mathrm{cf}_{\text {supp }}^{\text {uni }}\left(\mathrm{GL}_{\bullet}\right) \longleftrightarrow \mathrm{cf}\left(\mathrm{GL}_{\bullet}\right) \xrightarrow{\mathbf{p}_{\mathbb{\Perp}}} \operatorname{Sym}
$$

can be expressed in plethystic notation as $\left.f \mapsto \omega f\left[\frac{x}{t-1}\right]\right|_{t=q}$. With Theorem 5.1, this implies the following result; see [6, Theorem 5.1] for a complete proof.
Theorem 5.3. Let γ be an indifference graph. Then $\mathbf{p}_{\mathbb{1}} \circ \operatorname{Ind}_{\mathrm{UT}_{\gamma}}^{\mathrm{GL}_{n}}(\mathbb{1})=\omega G_{\gamma}(\mathbf{x} ; q)$.

6 Positivity conjectures

Recall the bases of Sym given in Section 2.1. An element $f \in \operatorname{Sym}[t]$ is respectively e-positive or s-positive if there are polynomials $a_{\lambda}(t) \in \mathbb{Z}_{\geq 0}[t]$ or $b_{\lambda}(t) \in \mathbb{Z}_{\geq 0}[t]$ for which

$$
f=\sum_{\lambda \in \mathcal{P}} a_{\lambda}(t) e_{\lambda} \quad \text { or } \quad f=\sum_{\lambda \in \mathcal{P}} b_{\lambda}(t) s_{\lambda}
$$

For the chromatic quasisymmetric functions in Section 2.2, e-positivity generalizes the Stanley-Stembridge conjecture [20, Conjecture 5.5], which by [9] is the $t=1$ case of the statement below.

Conjecture 6.1 ([17, Conjecture 1.3]). For each $\gamma \in \mathcal{I} \mathcal{G}, X_{\gamma}(\mathbf{x} ; t)$ is e-positive.
In light of Theorem 3.1, there should be a restatement of Conjecture 6.1 in terms of GL_{n}. However, the map $\mathbf{p}_{\{1\}}$ defined in Section 2.4 does not associate e_{λ} to a character of GL_{n}, so some interpretation is required. One possible restatement uses the Steinberg character $\chi^{(n)}$ of GL_{n} defined in Section 5, which agrees with $\mathbf{p}_{\{1\}}^{-1}\left(e_{n}\right)$ on all unipotent elements. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \in \mathcal{P}_{n}$, let St_{λ} denote the product $\chi^{\lambda_{1}} \cdots \chi^{\lambda_{\ell}}$ in $\mathrm{cf}\left(\mathrm{GL}_{\bullet}\right)$.

Conjecture 6.2. Let $n \geq 0$ and $\gamma \in \mathcal{I} \mathcal{G}_{n}$. There are polynomials $a_{\lambda}^{\gamma}(t) \in \mathbb{Z}_{\geq 0}[t]$ such that for each prime power q the character $\eta_{\gamma}=\sum_{\lambda \in \mathcal{P}_{n}} a_{\lambda}^{\gamma}(q) \operatorname{St}_{\lambda}$ satisfies $(q-1)^{n} \eta_{\gamma}(u)=$ $\operatorname{Ind}_{\mathrm{UT}_{\gamma}}^{\mathrm{GL}_{n}}(\mathbb{1})(u)$ for every unipotent element $u \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$.

By [6, Proposition 6.6], Conjectures 6.1 and 6.2 are equivalent. Ideally, a proof of Conjecture 6.2 would construct a module affording the character η_{γ}.

For the unicellular LLT polynomials from Section 5, Schur positivity has implications in the study of Macdonald polynomials [12] and is known to hold by [8, Corollary 6.9]. Unfortunately, the proof in [8] does not explicitly construct the Schur coefficients.

Open Problem 6.3 ([11, Open Problem 6.6]). Find a (manifestly positive) combinatorial formula for the Schur coefficients $b_{\lambda}^{\gamma}(t)$ of $G_{\gamma}(\mathbf{x} ; t)$.

Theorem 5.3 implies that $b_{\lambda}^{\gamma}(q)=\left\langle\chi^{\lambda^{\prime}}, \operatorname{Ind}_{\mathrm{UT}_{\gamma}}^{\mathrm{GL}_{n}}(\mathbb{1})\right\rangle$ for each prime power q, which is a positive integer, but this not yet imply Schur positivity as defined above.
Open Problem 6.4. Find a combinatorial formula for $\left\langle\chi^{\lambda^{\prime}}, \operatorname{Ind}_{\mathrm{UT}_{\gamma}}^{\mathrm{GL}_{n}}(\mathbb{1})\right\rangle$ as a function of q.

Acknowledgments

This abstract is based on the paper [6] and my Ph.D. thesis, completed at the University of Colorado Boulder. I am thankful for the support of my advisor N. Thiem during this time. I am also grateful to M. Precup for a helpful conversation about Section 4, and to two anonymous referees for suggesting many small improvements to this abstract.

References

[1] M. Aguiar, N. Bergeron, and F. Sottile. "Combinatorial Hopf algebras and generalized Dehn-Sommerville relations". Compos. Math. 142.1 (2006). Dor.
[2] F. Aliniaeifard and N. Thiem. "Pattern groups and a poset based Hopf monoid". J. Combin. Theory Ser. A 172 (2020), p. 105187. Dor.
[3] P. Brosnan and T. Y. Chow. "Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties". Adv. Math. 329 (2018). Doi.
[4] E. Carlsson and A. Mellit. "A proof of the shuffle conjecture". J. Amer. Math. Soc. 31.3 (2018). Doi.
[5] L. Gagnon. "A GL($\left.\mathbb{F}_{q}\right)$-compatible Hopf structure on unitriangular class functions". 2022. arXiv:2211.05960.
[6] L. Gagnon. "A unipotent realization of the chromatic quasisymmetric function". 2022. arXiv:2211.06981.
[7] V. Gasharov. "Incomparability graphs of $(3+1)$-free posets are s-positive". Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994). Vol. 157. 1-3. 1996. DoI.
[8] I. Grojnowski and M. Haiman. "Affine Hecke algebras and positivity of LLT and Macdonald polynomials". Unpublished. 2007. Link.
[9] M. Guay-Paquet. "A modular relation for the chromatic symmetric functions of (3+1)-free posets". 2013. arXiv:1306.2400.
[10] M. Guay-Paquet. "A second proof of the Shareshian-Wachs conjecture, by way of a new Hopf algebra". 2016. arXiv:1601.05498.
[11] J. Haglund. The q,t-Catalan numbers and the space of diagonal harmonics. Vol. 41. University Lecture Series. With an appendix on the combinatorics of Macdonald polynomials. American Mathematical Society, Providence, RI, 2008. DoI.
[12] J. Haglund, M. Haiman, and N. Loehr. "A combinatorial formula for Macdonald polynomials". J. Amer. Math. Soc. 18.3 (2005). Doi.
[13] B. Lascoux A.and Leclerc and J.-Y. Thibon. "Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties". J. Math. Phys. 38.2 (1997). Dor.
[14] I. G. Macdonald. Symmetric functions and Hall polynomials. Second. Oxford Mathematical Monographs. With contributions by A. Zelevinsky, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
[15] E. Marberg. "A supercharacter analogue for normality". J. Algebra 332 (2011). Dor.
[16] M. Precup and E. Sommers. "Perverse sheaves, nilpotent Hessenberg varieties, and the modular law". Pure Appl. Math. Q. (2023+), to appear. arXiv:2201.13346.
[17] J. Shareshian and M. L. Wachs. "Chromatic quasisymmetric functions". Adv. Math. 295 (2016). DoI.
[18] R. P. Stanley. "A symmetric function generalization of the chromatic polynomial of a graph". Adv. Math. 111.1 (1995). Doi.
[19] R. P. Stanley. Catalan numbers. Cambridge University Press, New York, 2015. doi.
[20] R. P. Stanley and J. R. Stembridge. "On immanants of Jacobi-Trudi matrices and permutations with restricted position". J. Combin. Theory Ser. A 62.2 (1993). Doi.
[21] A. V. Zelevinsky. Representations of finite classical groups. Vol. 869. Lecture Notes in Mathematics. A Hopf algebra approach. Springer-Verlag, Berlin-New York, 1981.

[^0]: *lgagnon@yorku.ca.

