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Abstract. We characterize totally symmetric self-complementary plane partitions
(TSSCPP) as bounded compatible sequences satisfying a Yamanouchi-like condition.
As such, they are in bijection with certain pipe dreams. Using this characterization
and the recent bijection of [Gao-Huang] between reduced pipe dreams and reduced
bumpless pipe dreams, we give a bijection between alternating sign matrices and TSS-
CPP in the reduced, 1432-avoiding case.
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1 Introduction

Plane partitions are three-dimensional analogues of ordinary partitions. Just as partitions
in an a × b are counted by a lovely formula (a+b

a ), plane partitions in an a × b × c box

are enumerated by MacMahon’s product formula
a

∏
i=1

b

∏
j=1

c

∏
k=1

i + j + k − 1
i + j + k − 2

[11]. In a 1986 [13],

Stanley considered symmetry operations on plane partitions, namely, reflection (trans-
pose), rotation, and complementation. This yielded 10 symmetry classes of plane par-
titions consisting of plane partitions invariant under combinations of these operations.
The plane partitions invariant under all three operations are called totally symmetric self-
complementary (TSSCPP). As in the case of all plane partitions, each symmetry class has a
nice enumeration. TSSCPP inside a 2n × 2n × 2n box was shown in 1994 by Andrews [1]

to be counted by
n−1

∏
j=0

(3j + 1)!
(n + j)!

. This was, at the time, the conjectured [12] number of n × n

alternating sign matrices (ASM). The 1996 proofs of this conjecture [16, 9] sparked a search
for a natural, explicit bijection between TSSCPP and ASM. Partial bijections have been
found on small subsets, including the permutation case [14], the case of two monotone
triangle diagonals [6, 4], and the 312-avoiding case [2]. This paper interprets TSSCPP
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⇔ ⇔ ⇔



1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 −1 1 0
0 0 0 1 0 0
0 1 0 −1 0 1
0 0 0 1 0 0



Figure 1: An example of the bijection of this paper. From left to right the objects are:
TSSCPP, pipe dream, bumpless pipe dream, ASM. The pipe dream and bumpless pipe
dream both have permutation 135264, which avoids 1432.

as pipe dreams to extend the bijection of [14] to what appears to be a larger subset than
any previous partial bijection. Our main theorem is below; see Figure 1 for an example
and Section 2 for definitions. Given π ∈ Sn, let TSSCPPred(π) denote the set of TSSCPP
whose associated pipe dream is reduced and has permutation π, and let ASMred(π)
denote the set of ASM whose associated bumpless pipe dream is reduced and has permu-
tation π. Notice that the reducedness property on TSSCPPs is definitionally inherited
from this property on pipe dreams.

Theorem 1.1. Let π ∈ Sn. There is an explicit weight-preserving injection φ from
TSSCPPred(π) to ASMred(π). If π avoids 1432, then φ is a bijection.

The paper is organized as follows. Section 2 contains background on the relevant
objects, including the permutation case TSSCPP bijection of [14] and the bijection of [8]
between reduced pipe dreams and reduced bumpless pipe dreams, which are important
ingredients in our proof. Section 3 proves Theorem 3.3 characterizing TSSCPP as pipe
dreams subject to a Yamanouchi-like condition. Section 4 concerns our main result and
its proof. This is an extended abstract only; the full version is posted on the arXiv.

2 Background

In this section, we review relevant definitions and bijections from the literature. Subsec-
tions 2.1, 2.2, 2.4, and 2.5 review definitions of ASM, TSSCPP, bumpless pipe dreams,
and pipe dreams, respectively. Subsections 2.3 and 2.6 contain less-familiar bijections
that are important for our main results.
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2.1 Alternating sign matrices

In this subsection, we define alternating sign matrices (see e.g. [12]).

Definition 2.1. An alternating sign matrix (ASM) is a square matrix with entries in
{0, 1,−1} such that the rows and columns each sum to 1 and the nonzero entries alter-
nate in sign across each row and across each column.

Alternating sign matrices are in bijection with configurations of the six-vertex / square
ice model of statistical physics with domain wall boundary conditions; this was an essential
element of the enumeration proof of [9]. The 3 × 3 alternating sign matrices are below. 1 0 0

0 1 0
0 0 1

 1 0 0
0 0 1
0 1 0

 0 1 0
0 0 0
0 0 1

 0 1 0
1 −1 1
0 1 0

 0 1 0
0 0 1
1 0 0

 0 0 1
1 0 0
0 1 0

 0 0 1
0 1 0
1 0 0


Below, left and center-left are an alternating sign matrix and its corresponding square

ice configuration; the horizontal molecules correspond to +1, the vertical molecules
correspond to −1, and all other molecules correspond to 0. Center-right is its six-vertex
configuration, where the six molecule configurations are replaced by directed edges.
Below, right is the corresponding bumpless pipe dream, which will be discussed shortly.

2.2 Totally symmetric self-complementary plane partitions

In this subsection, we define plane partitions and their symmetry classes (see e.g. [13]).

Definition 2.2. A plane partition t is a rectangular array of nonnegative integers (ti,j)i,j≥1
such that ti,j ≥ ti′,j′ if i ≤ i′, j ≤ j′. We say t is in an a × b × c bounding box if ti,j = 0
whenever i > a or j > b and ti,j ≤ c for all i, j. Let PP(a × b × c) denote the set of plane
partitions in an a × b × c bounding box.

Remark 2.3. We can also view t ∈ PP(a × b × c) as a finite set of positive integer lattice
points (i, j, k) with 1 ≤ i ≤ a, 1 ≤ j ≤ b, and 1 ≤ k ≤ c such that if (i, j, k) ∈ t and
1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j, 1 ≤ k′ ≤ k then (i′, j′, k′) ∈ t. This well-known bijection is given as
(i, j, k) ∈ t if and only if ti,j ≥ k. We will use both of these characterizations in the next
definition.
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Definition 2.4. A plane partition t is symmetric if ti,j = tj,i for all i, j. t is cyclically
symmetric if whenever (i, j, k) ∈ t then (j, k, i) ∈ t as well. t is totally symmetric if it
is both symmetric and cyclically symmetric, so that whenever (i, j, k) ∈ t then all six
permutations of (i, j, k) are also in t. The complement tC of t inside a given bounding
box a × b × c is defined as tC

i,j = c − ta−i+1,b−j+1 for all 1 ≤ i ≤ a, 1 ≤ j ≤ b. That
is, tC

i,j equals the number of empty cubes above ta−i+1,b−j+1 in the bounding box. A
plane partition t is self-complementary inside a given bounding box if t = tC. A totally
symmetric self-complementary plane partition (TSSCPP) is a plane partition which is
both totally symmetric and self-complementary.

Note that for there to exist a self-complementary plane partition in an a × b × c
bounding box, the volume abc of the box must be an even number. In addition, cyclic
symmetry requires a = b = c, therefore, we need a = b = c = 2n for there to exist a
TSSCPP inside an a × b × c bounding box.

Definition 2.5. Let TSSCPP(n) denote the set of TSSCPP inside a 2n × 2n × 2n box.

2.3 TSSCPP boolean triangles and the permutation case bijection

In this subsection, we review the characterization from [14] of TSSCPP as boolean tri-
angles and the bijection of the same paper between permutation matrices and TSSCPP
boolean triangles whose entries weakly decrease along rows.

Definition 2.6 (Def 2.12 of [14]). A TSSCPP boolean triangle of order n is a triangular
integer array b = {bi,j} for 1 ≤ i ≤ n − 1, n − i ≤ j ≤ n − 1 with entries in {0, 1} such
that the diagonal partial sums satisfy the following inequality for all 1 ≤ j < i ≤ n − 1:

1 +
i

∑
k=j+1

bk,n−j−1 ≥
i

∑
k=j

bk,n−j. (2.1)

Call this the (i, j)-inequality, in which n − j and n − j − 1 are the diagonals being com-
pared and i indicates the row index of where the sums stop.

We give below the indexing of a generic TSSCPP boolean triangle.

b1,n−1
b2,n−2 b2,n−1

b3,n−3 b3,n−2 b3,n−1
...

bn−1,1 bn−1,2 · · · bn−1,n−2 bn−1,n−1

Below are a non-example and an example of a TSSCPP boolean triangle.
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1
1 1

1 0 0
1 0 0 1

0 0 0 1 0

1
1 1

1 0 0
1 0 1 1

0 0 0 0 0

In the left triangle, the (4, 1)-inequality is not satisfied, since ∑4
k=1 bk,n−1 = 3 while

∑4
k=2 bk,n−2 = 1. In the triangle on the right, all (i, j)-inequalities are satisfied.

Proposition 2.7 (Prop 2.13 of [14]). TSSCPP boolean triangles of order n are in bijection with
TSSCPP(n).

The bijection proceeds by taking the fundamental domain of the TSSCPP, transform-
ing it into a nest of non-intersecting lattice paths, and then recording the two different
types of steps in each path as 0 and 1. The diagonal partial sum condition (2.1) is equiv-
alent to the requirement that the paths do not intersect. See [14] for details.

We now review the characterization of a certain subset of TSSCPP boolean triangles.

Definition 2.8 (Def 3.1 of [14]). A permutation TSSCPP boolean triangle is a TSSCPP
boolean triangle with weakly decreasing rows.

That is, the entries equal to one in a permutation TSSCPP boolean triangle are all
left-justified. The terminology ‘permutation’ in the above definition is justified by the
statistic-preserving bijection in the theorem below.

Theorem 2.9 (Theorem 3.5 of [14]). There is a natural, statistic-preserving bijection Φ between
n× n permutation matrices with inversion number p and permutation TSSCPP boolean triangles
of order n with p zeros.

TSSCPP

↔

Permutation
TSSCPP

Boolean triangle
1

0 0
1 1 0

0 0 0 0
1 0 0 0 0

↔

Permutation
Matrix



0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0


The injection φ in Theorem 1.1 extends this bijection under the mild transformation

of flipping the resulting matrix vertically (or reversing the one-line notation of the per-
mutation). Thus, in Theorem 1.1 we instead map the TSSCPP above, to the vertical
reflection of the matrix shown above.
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2.4 Bumpless pipe dreams

In this subsection, we define bumpless pipe dreams and describe the bijection with
alternating sign matrices.

Definition 2.10. A bumpless pipe dream [10] of size n is a tiling of an n × n grid of
squares by the following six types of tiles: , , , , , , such that n pipes traveling
from the south border to the east border are formed. We denote the set of bumpless
pipe dreams of size n as BPD(n). We say a bumpless pipe dream is reduced if no two
pipes cross twice. We associate a permutation to each reduced bumpless pipe dream by
labeling the pipes 1, . . . , n from left to right on the south border and read off the pipe
labels from top to bottom on the east border. Let BPDred(π) denote the set of all reduced
bumpless pipe dreams with permutation π.

There is a natural bijection between BPD(n) and ASM(n), as described in [15]. To
obtain an ASM from a BPD we simply replace each with a 1, each with a −1, and
the rest with 0s. For the inverse map it is not difficult to see the positions of and
uniquely determine a bumpless pipe dream. See p.3 for an example.

2.5 Pipe dreams

In this subsection, we define pipe dreams and bounded compatible sequences and de-
scribe the bijection between them.

Definition 2.11. A pipe dream [3] of size n is a tiling of a square n × n grid of squares
with two kinds of tiles, the cross-tile and elbow-tile , such that the positions on or
below the main (anti)diagonal only consist of elbow-tiles. We think of a pipe dream as n
pipes, labelled 1, . . . , n traveling from the north border and exiting from the west border.
We denote the set of pipe dreams of size n as PD(n). We say a pipe dream is reduced
if no two pipes cross twice. We associate a permutation to each reduced pipe dream by
reading from top to bottom the labels of each pipe on the west border of the pipe dream.
Let PDred(π) denote the set of reduced pipe dreams with permutation π.

The set of pipe dreams for a fixed permutations are connected by chute and ladder
moves. For precise definitions see [3]. When a ladder (or chute) move is bounded by a
2 × 2 square, we call this move a simple slide, as shown below, left.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

Above, right shows the set of pipe dreams PDred(1432). The first four pipe dreams
are connected by simple slides; the fifth is not.
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Definition 2.12. A bounded compatible sequence [5] is a pair (a, r) where
a = (a1, . . . , aℓ) and r = (r1, . . . , rℓ) are words of positive integers, satisfying the fol-
lowing conditions:

(a) r1 ≥ r2 ≥ · · · ≥ rℓ,
(b) ai ≥ ri for all 1 ≤ i ≤ ℓ,
(c) ri > ri+1 if ai ≥ ai+1.

There is a simple bijection between PD(n) and the set of all bounded compatible
sequences where ai < n for each i, see [3]. Given a bounded compatible sequence
(a, r), we may construct a pipe dream by putting a cross-tile at position (ri, ai + 1 −
ri) for each 1 ≤ i ≤ ℓ and fill the remaining positions with elbow-tiles. Conversely,
given a pipe dream, we may construct a bounded compatible sequence as follows: scan
the pipe dream from bottom to top and within each row left to right, and whenever
we encounter a cross-tile at position (r, c) we append (r + c − 1, r) to the compatible
sequence. For example, the corresponding bounded compatible sequences for the pipe
dreams in PDred(1432) on p.6 are as follows; the vector a is recorded in the top row and
r in the bottom row. (

3 2 3
3 2 2

)
,
(

3 2 3
3 2 1

)
,
(

3 2 3
3 1 1

)
,
(

3 2 3
2 1 1

)
,
(

2 3 2
2 2 1

)
.

2.6 Reduced BPD-PD bijection

Both reduced pipe dreams and reduced bumpless pipe dreams give combinatorial for-
mulas for Schubert polynomials Sπ, π ∈ S∞ which are important polynomials in the
study of Schubert calculus [3, 10]. Explicitly,

Sπ = ∑
D∈PDred(π)

∏
(r,c)∈cross(D)

xr = ∑
D∈BPDred(π)

∏
(r,c)∈blank(D)

xr.

For this reason, there exists a weight-preserving bijection between PDred(π) and
BPDred(π), where the weight of a PD or BPD is its monomial contribution to the Schubert
polynomial indexed by its permutation.

In [8], such an explicit direct bijection φ : BPDred(π) → PDred(π) is given using an
iterative algorithm. To find the image of a BPD under φ, the algorithm computes in each
iteration the position of one crossing in the corresponding PD. For a detailed description
of this process, see [8, Definition 3.1]. For explicit examples, see [8, Example 3.4]. This
bijection is weight-preserving; in particular, for D ∈ BPDred(π), the number of blank
tiles in row k equals the number of cross-tiles in row k of φ(D).

Because the bijection is weight-preserving and there is a unique lowest weight mono-
mial that corresponds to the Lehmer code of the permutation in each Schubert polyno-
mial, the permutation BPD is mapped to the bottom pipe dream, the unique pipe dream
with all crosses left-justified.
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3 Characterizing TSSCPP as pseudo-Yamanouchi pipe
dreams

This section focuses on our first theorem: a characterization of TSSCPP as a subset of all
(reduced and non-reduced) pipe dreams.

3.1 Mapping TSSCPP into pipe dreams

Recall the bijection of Proposition 2.7 from TSSCPP to the TSSCPP boolean triangles
of Definition 2.6. As TSSCPP boolean triangles are triangular arrays with entries in
{0, 1}, we can transform them to pipe dreams (reduced and non-reduced), since these
are triangular arrays of tiles with two choices for each spot. There are several possibilities
for how to do this; we choose to correspond each 1 to a cross-tile and each 0 to an
elbow-tile . There are also several choices for orientation of the triangle. We set the
following convention.

Given a TSSCPP boolean triangle b of order n, create a triangular array yi,j, 1 ≤
i ≤ n − 1, 1 ≤ j ≤ n − i of zeros and ones where yi,j = bn−i,i+j−1. That is, rotate b
counterclockwise and justify to the corner.

bn−1,1 bn−1,2 bn−1,3 · · · bn−1,n−1
bn−2,2 bn−2,3 · · · bn−2,n−1
bn−3,3 · · · bn−3,n−1

. . .

b1,n−1

y1,1 y1,2 y1,3 · · · y1,n−1
y2,1 y2,2 · · · y2,n−2
y3,1 · · · y3,n−3

. . .

yn−1,1

The inequality of Definition 2.6 translates to the following:

1 +
i

∑
k=1

yj−k,k ≥
i+1

∑
k=1

yj−k+1,k for all 1 ≤ i < j ≤ n − 1.

Now we turn each 1 into a cross-tile and each 0 into an elbow-tile . We call
the pipe dreams that lie in this image the TSSCPP pipe dreams. See Figure 2 for an
example. Note that permutation TSSCPP boolean triangles have weakly decreasing rows;
this corresponds to left-justified crosses in the associated pipe dream.

3.2 A Yamanouchi-like condition on bounded compatible sequences

In this subsection, we prove Theorem 3.3 characterizing TSSCPP pipe dreams. We also
prove Lemma 3.2, which will be used in Section 4.
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↔

0
0 1

1 0 0
1 0 1 0

0 0 0 0 0

↔

0 0 0 0 0
1 0 1 0
1 0 0
0 1
0

↔

Figure 2: An example of transforming a TSSCPP to a pipe dream.

Definition 3.1. Given a bounded compatible sequence (a, r) = ((a1, . . . , aℓ), (r1, . . . , rℓ)),
define count(k, j)(a) (or count(k, j) when a is understood) to be the number of j that
appear in a1, . . . , ak. We say that (a, r) is pseudo-Yamanouchi if for all 1 ≤ k ≤ ℓ,
1 ≤ j ≤ n − 2, 1 + count(k, j) ≥ count(k, j + 1). We also say that a pipe dream is
pseudo-Yamanouchi if its corresponding bounded compatible sequence is so.

Lemma 3.2. For any π, the bottom pipe dream is pseudo-Yamanouchi.

Proof. The bottom pipe dream is the unique pipe dream of π with all left-justified cross-
tiles. Thus the bounded compatible sequence (a, r) is either empty or a is made up of
increasing runs such that it can be written for some m ≥ 1 as

a = (j1, j1 + 1, . . . , j∗1 − 1, j∗1 , j2, j2 + 1, . . . , j∗2 − 1, j∗2 , . . . , jm, jm + 1, . . . , j∗m − 1, j∗m)

where j1 > j2 > · · · > jm and j∗i ≥ ji for all 1 ≤ i ≤ m. Because j1 > j2 > · · · > jm, each
increasing run needs to start with a smaller number than the previous.

Suppose (a, r) is not pseudo-Yamanouchi. Choose the smallest k such that there
exists a j for which 1 + count(k, j) < count(k, j + 1). Since count(k, j) is a non-negative
increasing function of k, it must be that 1 + count(k − 1, j) = count(k − 1, j + 1) and
ak = j + 1, since we chose k to be the smallest value with the property. If we are
in row j + 1 (rk = j + 1), then this is the first time that j + 1 has appeared in a, so
count(k, j + 1) = 1 and thus cannot be greater than 1 + count(k, j). If rk > j + 1, then
ak−1 = j, since the cross-tiles are left-justified, and thus count(k − 1, j) + 1 = count(k, j).
But 1+ count(k− 1, j) ≥ count(k− 1, j+ 1) = count(k, j+ 1)− 1. So finally, count(k, j) ≥
count(k, j + 1)− 1, which is a contradiction.

Theorem 3.3. TSSCPP(n) is in bijection with the set of pseudo-Yamanouchi pipe dreams in
PD(n).

Proof. We identify a TSSCPP with the 0-1 triangular array (yi,j)1≤i≤n−1,1≤j≤n−i satisfying
the inequalities 1 + ∑i

k=1 yj−k,k ≥ ∑i+1
k=1 yj−k+1,k for all 1 ≤ i < j ≤ n − 1, as described in
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Section 3.1. These inequalities mean the following: for any position (i, j) in the corre-
sponding pipe dream, the number of crosses in the same diagonal as (i, j) at or below
row i can be at most one more than the number of crosses in the previous diagonal at or
below row i. Therefore it suffices to check this property when (i, j) is a cross to decide
whether the pipe dream is TSSCPP.

Now suppose (a, r) is an entry of a pseudo-Yamanouchi compatible sequence. Then
by the definition of the reading order, all crosses that appear at or below row r in the
(a− 1)st diagonal of the corresponding pipe dream appear before (a, r) in the compatible
sequence. Therefore the inequality for the (r, a− r+ 1) position is implied by the pseudo-
Yamanouchi property. The converse is true by a similar argument.

4 Main result

In this section, we prove our main result, Theorem 1.1. The proof uses the following
theorem and lemmas, the first of which is due to Yibo Gao. We will need the following
terminology. A permutation π avoids a permutation π′ if there is no subsequence of π

having the same relative order as π′.

Theorem 4.1 ([7, Theorem 4.1]). If π ∈ Sn avoids 1432, then any two reduced pipe dreams of
π are connected by simple slides.

Lemma 4.2. Suppose D ∈ PD(n) is pseudo-Yamanouchi and D′ ∈ PD(n) is related to D by a
simple slide. Then D′ is pseudo-Yamanouchi.

Proof. Suppose D ∈ PD(n) is pseudo-Yamanouchi. Let (a, r) = ((a1, . . . , aℓ), (r1, . . . , rℓ))
be its associated bounded compatible sequence. Suppose for some 1 < i < n, D has a

tile at position (ri, ai + 1 − ri) and no tiles at positions (ri, ai + 2 − ri), (ri−1, ai − ri),
or (ri−1, ai + 1 − ri). Then a simple slide may be applied to D, resulting in another pipe
dream D′ with tile at position (ri−1, ai + 1 − ri) and no tiles at positions (ri, ai + 1 −
ri), (ri, ai + 2− ri), or (ri−1, ai − ri). That is, the simple slide moves the tile up one unit
and to the right one unit and there were no other tiles in these intermediate squares.
This preserves the diagonal but decrements the row index, creating a new bounded
compatible sequence (a′, r′) = ((a′1, . . . , a′ℓ), (r

′
1, . . . , r′ℓ)) such that

a′k =


ak k < i
ak+1 i ≤ k < m
ai k = m
ak m < k ≤ ℓ

(4.1)

where m > i is uniquely chosen so that (a′, r′) satisfies the conditions of a bounded
compatible sequence. Let j̃ := ai. So a and a′ differ only in that j̃ has slid to the right
from index i to m.
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Recall count(k, j)(a) denotes the number of j that appear in a1, . . . , ak. By Theo-
rem 3.3, (a, r) is pseudo-Yamanouchi, so for all 1 ≤ k ≤ ℓ, 1 ≤ j ≤ n − 2, 1 +
count(k, j)(a) ≥ count(k, j + 1)(a). We need only check that (a′, r′) is also pseudo-
Yamanouchi. The only values of j we need to consider are j̃ − 1, j̃, and j̃ + 1.

By (4.1), count(k, j)(a′) = count(k, j)(a) for all values of j when k < i or k ≥ m. Thus
we need only check the pseudo-Yamanouchi inequality for k in the range i ≤ k < m.

Suppose i ≤ k < m. Since (a, r) and (a′, r′) are related by a simple slide, we know
there is no cross in D at position (ri−1, ai − ri). That is, am−1 ̸= j̃ − 1. Furthermore,
ak ̸= j̃ − 1 for all i ≤ k < m. Thus count(k, j̃ − 1)(a′) = count(k, j̃ − 1)(a) for all
i ≤ k < m while count(k, j̃)(a′) = count(k, j̃)(a)− 1 in this same range. So

count(k, j̃ − 1)(a′) = count(k, j̃ − 1)(a) ≥ count(k, j̃)(a)− 1 = count(k, j̃)(a′).

So the pseudo-Yamanouchi condition is more than satisfied when comparing diagonals
j̃ − 1 and j̃.

Since (a, r) and (a′, r′) are related by a simple slide, we also know there is no cross
in D at position (ri, ai + 2 − ri). That is, ai+1 ̸= j̃ + 1. Furthermore, ak ̸= j̃ + 1 for
all i ≤ k < m. Thus count(k, j̃ + 1)(a′) = count(k, j̃ + 1)(a) for all i ≤ k < m while
count(k, j̃)(a′) = count(k, j̃)(a)− 1 in this same range. So

1 + count(k, j̃)(a′) = 1 + count(k, j̃)(a) ≥ count(k, j̃ + 1)(a) = count(k, j̃ + 1)(a′).

Thus, the pseudo-Yamanouchi condition is satisfied on diagonals j̃ and j̃ + 1.
Therefore, (a′, r′) is pseudo-Yamanouchi, implying D′ is pseudo-Yamanouchi.

Lemma 4.3. If π ∈ Sn avoids 1432, then all reduced pipe dreams of π are pseudo-Yamanouchi.

Proof. Choose π ∈ Sn that avoids 1432. Using the previous two lemmas, we know
that simple slides preserve the pseudo-Yamanouchi property and that all reduced pipe
dreams in PDred(π) are connected by simple slides. So we need only show one reduced
pipe dream is pseudo-Yamanouchi, and then all of them are. By Lemma 3.2, the bottom
(permutation) pipe dream is pseudo-Yamanouchi. Thus the lemma is proved.

Proof of Theorem 1.1. Let π ∈ Sn. The explicit bijection φ : PDred(π) → BPDred(π) of
[8] discussed in Section 2.6 is weight-preserving; in particular, for D ∈ PDred(π), the
number of cross-tiles in row k equals the number of blank tiles in row k of φ(D). By
Theorem 3.3, TSSCPP are characterized as the set of pseudo-Yamanouchi pipe dreams
in PD(n). Thus whenever such pipe dreams are reduced, φ produces a BPD with the
same weight. Thus we have an injection φ : TSSCPPred(π) ↪→ ASMred(π) given by
transforming the TSSCPP to its corresponding reduced pipe dream, mapping it to a
reduced BPD using φ, and then transforming to an ASM using the bijection described
in Section 2.4.

Suppose π avoids 1432. Then by Lemma 4.3, all pipe dreams in PDred(π) are pseudo-
Yamanouchi, so TSSCPPred(π) is in bijection with PDred(π). So the above injection is a
bijection between TSSCPPred(π) and ASMred(π).
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