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Abstract. In 1992, Pukhlikov and Khovanskii provided a description of the cohomol-
ogy ring of toric variety as a quotient of the ring of differential operators on spaces of
virtual polytopes. Later Kaveh generalized this construction to the case of cohomology
rings for full flag varieties.

In this paper we extend Pukhlikov–Khovanskii type presentation to the case of K-
theory of toric and flag varieties. First we study the Gorenstein duality quotients of
the group algebra of free abelian group (possibly of infinite rank). Then we specialize
to the K-ring of integer (virtual) polytopes with a fixed normal fan. Finally we show
that the K-theory of toric and flag varieties can be realized as polytope K-rings and
describe the classes of toric orbits or Schubert varieties in them.
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1 Introduction

This paper is devoted to the study of K-theory of toric and flag varieties. In [12], A. Kho-
vanskii and A. Pukhlikov described the cohomology ring of a toric variety X as the
quotient of the ring of differential operators with constant coefficients modulo the anni-
hilator of the volume polynomial of the moment polytope of X. This construction was
generalized by K. Kaveh [5] who observed that the cohomology ring of a full flag variety
can be obtained by applying the same construction to a Gelfand–Zetlin polytope. This
description was later used by V. Kiritchenko, E. Smirnov, and V. Timorin [8] to provide
a polyhedral model for Schubert calculus on full flag varieties.

In this paper we generalize the above results to the K-theory. First, in Section 2 we
generalize the construction of algebras with Gorenstein duality pairing via Macaulay
inverse systems (see [7]) to the case of shift operators with constant coefficients. Then
we use this to define a polytope K-ring by considering the algebra of shift operators

*leonid.monin@epfl.ch.
†esmirnov@hse.ru. The study has been funded within the framework of the HSE University Basic

Research Program.

mailto:leonid.monin@epfl.ch
mailto:esmirnov@hse.ru


2 L. Monin, E. Smirnov

with constant coefficients modulo the annihilator of the Ehrhart polynomial and study
its properties in the case when polytope is integrally simple.

In Section 3 we prove that the K-theory of a toric variety coincides with the K-ring of
its moment polytope. Finally, in Section 4 we extend this to full flag varieties showing
that K-theory of G/B for G = GL(n) is given by the K-ring of Gelfand–Zetlin polytope.
Moreover, we identify the structure sheaves of Schubert varieties of G/B in the K-ring
of Gelfand–Zetlin polytope. This provides a polyhedral model for K-theoretic Schubert
calculus generalizing results of [8].

This is a report on the forthcoming paper [10]. In particular, we skip most of the
proofs in this text and refer the reader to [10] for more details and complete proofs.

2 Polytope algebra

In this section we associate an algebra with duality to any function f : Λ → k on a lattice.
We then study a particular example of this construction given by the Ehrhart function
on the lattice of integral (virtual) polytopes with a given normal fan.

2.1 Algebra associated to a function on a lattice

Let k be any field and let A be a commutative algebra with identity over k. In further
subsections of the paper we will stick with k = Q, however we decided to work with
more general setting here. A linear function ℓ : A → k defines a symmetric, bilinear
pairing on A via:

⟨a, b⟩ℓ := ℓ(a · b) for any a, b ∈ A.

Definition 2.1. A pairing ⟨·, ·⟩ℓ on algebra A is called Gorenstein duality pairing if it is
non-degenerate.

The main objective of this subsection is to give a construction of algebras with Goren-
stein duality pairing from a k-valued function on a lattice. Everywhere in this text by a
lattice we mean a (possibly infinitely generated) free abelian group.

Let Λ be a lattice and let k be any field. We will denote by kΛ the set of maps
f : Λ → k. Let us further denote by k[Λ] the group algebra of Λ. The group algebra k[Λ]
is acting on the set of functions kΛ via shift operators. That is, for t = ∑r

i=1 aiλi ∈ k[Λ]
and f ∈ kΛ we have

t · f (x) =
r

∑
i=1

ai f (x + λi), for any x ∈ Λ.

In what follows we identify the group algebra k[Λ] with the algebra of shift operators
with constant coefficients Sh(Λ) on Λ. We will further denote by tx the shift operator by
−x and by Dx = 1 − tx the corresponding difference operator for any x ∈ Λ.
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Theorem 2.2. Let f ∈ kΛ be any function, then Ann( f ) = {s ∈ Sh(Λ) | s · f ≡ 0} is an
ideal in Sh(Λ). Moreover, the quotient algebra A f := Sh(Λ)/ Ann( f ) has a Gorenstein duality
pairing defined by a function

ℓ f : Sh(Λ) → k, ℓ f : t 7→ (t · f )(0).

In particular, linear function ℓ f descends to a well-defined linear function on A f .

The construction from Theorem 2.2 is quite general as the following Theorem shows.

Theorem 2.3. Let A be a commutative algebra generated by invertible elements a1, . . . , as ∈ A×

with Gorenstein duality pairing given by a function ℓ : A → k. Then A ≃ A f with

f : Zs → k, f : (n1, . . . , ns) 7→ ℓ(an1
1 . . . ans

s ).

Remark 2.4. A version of Theorem 2.2 is also true for any commutative semigroup with
cancellation Λ. In this more general form Theorem 2.2 is closely related to the explicit
version of Macaulay duality recently studied in [7] (see also [4, 6] for related results).

Note that for a general function f : Λ → k the ideal Ann( f ) might be trivial (see
Example 2.5). In fact, as illustrated by Lemma 2.6, for most functions f , Ann( f ) = 0.
However, for some classes of functions f , the ideal A f is non-trivial. For instance, if
f is a polynomial on the lattice Λ, the quotient algebra A f is Artinian, i.e. is a finite
dimensional vector space over k.

Example 2.5. Let g(x) = eex
be a double exponential function on one-dimensional lattice

Z and let T = ∑s
i=1 λitki with k1 < . . . < ks. Then |t · g(x)| > 0 for x ≫ 0, in particular

t · g ̸≡ 0 so Ann(g) is trivial.

Lemma 2.6. Let Λ = Z be a one-dimensional lattice. Then for each nontrivial shift operator
T = ∑k

i=1 λitri the functions f : Z → k annihilated by T form a finite dimensional vector space.
In particular, if k is countable, the set of functions f with nontrivial annihilator Ann( f ) ̸= 0

is countable, while the set of all functions kZ is uncountable.

Proposition 2.7. Let Λ ≃ Zr be of finite rank, and let f be a polynomial function on Λ. Then
A f is an Artinian algebra.

Proof. Let Di = 1 − ti be the standard difference operators for i = 1, . . . , r. Then Laurent
monomials Dk1

1 . . . Dkr
r form a basis of k[Λ]. The statement follows from the fact that for

a polynomial f of degree d, one has Dk1
1 . . . Dkr

r · f = 0 for |k1|+ . . . + |kr| > d.

We finish this subsection with a description of the relation between two algebras
A f , Ag defined by pairs (Λg, g) and (Λ f , f ) such that there is a lattice homomorphism
σ : Λg → Λ f with g = σ∗ f . Our description is parallel to [8, Proposition 2.4].

Proposition 2.8. There exists an abelian group M f ,g with an epimorphism π : A f → M f ,g

and a monomorphism ι : Ag → M f ,g such that π(α̃β̃) = ι(αβ) whenever π(α̃) = ι(α) and
π(β̃) = ι(β).
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2.2 Ehrhart polynomial and the polytope algebra

In this subsection we briefly recall the definition of the Ehrhart polynomial on the space
of virtual polytopes. For more detailed background on virtual polytopes we refer to [11].

We will call a polytope ∆ ⊂ Rd integral if all vertices of ∆ belong to the integer
lattice Zd ⊂ Rd. Denote by P+ the set of all integral polytopes in Rd. The set P+ has a
structure of an abelian semigroup with respect to Minkowski addition:

∆1 + ∆2 = {x + y | x ∈ ∆1, y ∈ ∆2}.

It is easy to check that P+ has the cancellation property, i.e.

∆1 + ∆ = ∆2 + ∆ if and only if ∆1 = ∆2.

Thus P+ is embedded into its Grothendieck group, which we denote by P i.e. the group
of formal differences of elements in P+. The space of integral virtual polytopes P has a
structure of a free abelian group.

A virtual polytope ∆ is uniquely described by its support function H∆ : (Rd)∨ → R

given by
H∆(ψ) := min

x∈∆
ψ(x),

for a convex polytope ∆ and extended by linearity to virtual polytopes. For an integral
virtual polytope ∆ its support function H∆ is a piecewise linear function which attains
integer values on (Zd)∨. The cones of linearity of H∆ form a fan in (Rd)∨. For a given
fan Σ ⊂ (Rd)∨, let us denote by P+

Σ the set of integer convex polytopes ∆ with H∆ linear
on the cones of Σ. Similarly, by PΣ we denote the set of integer virtual polytopes with
support function linear on the cones of Σ. Clearly, PΣ is a free abelian group and P+

Σ is
its subsemigroup.

Let e1, . . . , er be the primitive ray generators of Σ. Then a virtual polytope is uniquely
determined by the evaluation of H∆ on e1, . . . , er. This defines an embedding PΣ ↪→ Zr

as a sublattice. Notice however that PΣ is in general a proper sublattice of Zr. In fact, it
can both have smaller rank and be non-saturated.

An Ehrhart polynomial Ehr : P → Z is the unique polynomial on the space of virtual
polytopes such that

Ehr(∆) = |∆ ∩ Zd|, for any ∆ ∈ P+.

It is shown in [12] that the polynomial Ehr is well defined, i.e. that the number of lattice
points is the restriction of a polynomial function on P+.

Definition 2.9. Let Σ be a complete rational fan and PΣ be the corresponding space of
integer virtual polytopes. We define the polytope K-ring to be the algebra KΣ defined by
the pair (PΣ, Ehr)

KΣ = Sh(PΣ)/ Ann(Ehr).

Note that since PΣ is a finite rank lattice and Ehr is a polynomial, KΣ is an Artinian
algebra by Proposition 2.7.
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2.3 Structure of polytope K-ring

In this subsection we will study the algebra KΣ in more detail. First let us assume
that Σ is a smooth fan with |Σ(1)| = r. In this case, the evaluation of H∆ on integer ray
generators of Σ canonically identifies the lattice PΣ with Zr. We will denote by ∆1, . . . , ∆r
the corresponding basis of PΣ. In other words ∆i is a virtual polytope in PΣ such that

H∆i(ej) =

{
1, if i = j
0, otherwise,

where e1, . . . er are the primitive ray generators of Σ. We further denote by t1, . . . , tr the
shift operators with respect to ∆1, . . . , ∆r.

Theorem 2.10. Let Σ ⊂ (Rn)∨ be a smooth complete fan with Σ(1) = r and primitive ray
generators e1, . . . , er. Then the polytope ring AΣ is given by

A f ≃ Q[t±1
1 , . . . , t±1

r ]/(I + J),

where I is generated by products (1− t−1
i1

) · · · (1− t−1
is ) such that ρi1 , . . . , ρis ∈ Σ(1) are distinct

and do not form a cone in Σ and J =
〈

∏r
i=1 t⟨u,ei⟩

i − 1 | u ∈ Zn
〉

.

Remark 2.11. The statement of Theorem 2.10 is also true over Z. We will treat this case
in the full version [10].

The difference operators appearing in the definition of ideal I will play an important
role in what follows. We will denote them by Di = 1− t−1

i . More generally, for any cone
σ ∈ Σ we denote by Dσ the corresponding product of difference operators

Dσ = ∏
ρi∈Σ

Di.

The proof of Theorem 2.10 is done in two steps. The first part is to show that the
relations I and J are satisfied in the algebra KΣ. Indeed, the relations J are satisfied since

r

∏
i=1

t⟨u,ei⟩
i · Ehr(∆) = Ehr

(
∆ +

r

∑
i=1

⟨u, ei⟩∆i

)
= Ehr(∆ + u) = Ehr(∆) for any u ∈ Zn.

The relations from I are subject of the following lemma.

Lemma 2.12. Let Σ be a smooth fan and ∆ ∈ PΣ an integer (possibly virtual) polytope. Then

Di1 · · · Dis · Ehr(∆) = Ehr(Fσ),

where σ is a cone spanned by ρi1 , . . . , ρis and Fσ is a corresponding (virtual) face of ∆. In
particular, if ρi1 , . . . , ρis do not form a cone, Di1 · · · Dit · Ehr(∆) = 0.
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Since both sets of relations I and J are satisfied in KΣ, there exists a surjection

ψ : Z[t±1
1 , . . . , t±1

r ]/(I + J) → AΣ, ψ : ti 7→ ∆i.

To show that ψ is an isomorphism, we will then use a Morse theoretic argument which
is parallel to results in [13].

In what follows we will also have to work with non-smooth fans Σ and their K-
rings KΣ. It is convenient in this case to reduce to the smooth case by considering
any smooth subdivison Σ′ of Σ and using Proposition 2.8. Indeed, PΣ ⊂ PΣ′ and the
Ehrhart polynomial on PΣ is the restriction of Ehrhart polynomial on PΣ′ . Thus there
is an abelian group MΣ′,Σ with an epimorphism π : KΣ′ → MΣ′,Σ and a monomorphism
ι : KΣ → MΣ′,Σ such that π(α̃β̃) = ι(αβ) whenever π(α̃) = ι(α) and π(β̃) = ι(β). This
allows to perform the computations in KΣ′ instead of KΣ which we understand better.

3 Toric varieties

In this section we will apply the results of Section 2 to computation of the K-theory of
toric varieties. In what follows we assume the basic knowledge of toric geometry and
refer to [2] for further details and references.

For a smooth algebraic variety X we denote by K0(X) the free abelian group gener-
ated by isomorphism classes of coherent sheaves on X up to the relation [V ] + [U ] = [W ]
whenever there is a short exact sequence 0 → V → W → U → 0. The subgroup gen-
erated by classes of vector bundles is denoted by K0(X). For a smooth variety X the
inclusion K0(X) ↪→ K0(X) is an isomorphism. In this case, we define the ring structure
on K0(X) via [V ][U ] = [V ⊗ U ]. In what follows we will work with rational K-theory
K0(X) ⊗Z Q. To simplify the notation we will denote the rational K-theory of X by
K0(X). Finally, K-theory admits a proper push-forward. In particular, for a trivial map
f : X → pt, the pushforward f∗ : K0(X) → K0(pt) ≃ Q is a linear function on K0(X)
which is equal to the holomorphic Euler characteristic on the classes of sheaves:

f∗([F ]) = χ(X,F ).

For a more detailed introduction to K-theory we refer to [9].
Let T ≃ (C∗)n be an algebraic torus, M ≃ Zn its character lattice and

N = HomZ(M, Z) its dual lattice. We denote by MR = M ⊗Z R, NR = N ⊗Z R vector
spaces spanned by M and N respectively. Let further Σ be a smooth complete fan and
YΣ the corresponding toric variety. We denote by Σ(1) = {ρ1, . . . , ρr} the set of rays of
Σ and by D1, . . . , Dr the corresponding T-invariant divisors. Finally, for a cone σ ∈ Σ of
dimension ≥ 1 we will denote by Xσ the closure of the T-orbit corresponding to σ.

The main input from toric geometry for us comes from the computation of holomor-
phic Euler characteristic of line bundles on YΣ in terms of combinatorics of polytopes.
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More concretely, every line bundle L on YΣ can be linearized, and this is equivalent (as
a sheaf) to O(∑r

i=1 hiDi) for some h1, . . . , hr ∈ Z. Therefore, there is a surjection

PΣ → Pic(YΣ), ∆h 7→ O
(

r

∑
i=1

hiDi

)
.

We will denote the line bundle corresponding to a polytope ∆ ∈ PΣ by L∆.

Proposition 3.1. Let ∆ ∈ PΣ be an integer virtual polytope and L∆ the corresponding line
bundle on YΣ. Then χ(YΣ,L∆) = Ehr(∆).

Theorem 3.2. Let Σ be a smooth, complete fan and let YΣ be the corresponding toric variety.
Then we have an isomorphism

K0(YΣ) ≃ KΣ = Sh(PΣ)/ Ann(Ehr).

Proof. First, since YΣ has an algebraic cell decomposition, the Euler characteristic pro-
vides a Gorenstein duality pairing on K0(YΣ), i.e. the Euler pairing

⟨F ,G⟩Eu := χ(YΣ,F ⊗ G), F ,G ∈ K0(YΣ)

is non-degenerate. Moreover, K0(YΣ) is generated by the Picard lattice Pic(YΣ). There-
fore, by Theorem 2.3 we get K0(YΣ) ≃ Sh(Pic(YΣ))/ Ann(χ). Finally the theorem follows
from the correspondence of PΣ with the Picard lattice Pic(YΣ) and Proposition 3.1.

As a corollary of Theorems 2.10 and 3.2 we obtain the following statement.

Corollary 3.3. Let Σ be a smooth fan and YΣ the corresponding toric variety. Then

K0(YΣ) ≃ Q[t±1
1 , . . . , t±1

r ]/(I + J),

where I is generated by monomials Di1 · · · Dis such that ρi1 , . . . , ρis ∈ Σ(1) are distinct and do

not form a cone in Σ and J =
〈

∏r
i=1 t⟨u,ei⟩

i − 1 | u ∈ Zn
〉

.

The above presentation for K0(YΣ) can be also obtained by applying the Chern char-
acter isomorphism to the usual presentation of the Chow ring of YΣ.

We will finish this section with a description of the classes of structure sheaves OXσ

for orbit closures in the polytope K-ring KΣ.

Proposition 3.4. Let Σ be a smooth fan and YΣ the corresponding toric variety. Let further σ ∈ Σ
be a cone and Xσ ⊂ YΣ the corresponding orbit closure. Then the class of OXσ is represented in
KΣ by the operator Dσ = ∏ρi∈σ Di.

Proof. Indeed, since K0(YΣ) is generated by Pic(YΣ), it is enough to check that

χ(YΣ,OXσ ⊗L∆) = Dσ · Ehr(∆)

for any ∆ ∈ PΣ. Hence the proposition follows from Lemma 2.12 and the fact that
χ(YΣ,OXσ ⊗ L∆) = χ(Xσ,L∆|Xσ) = Ehr(Fσ), where Fσ is a face of ∆ corresponding to
σ.



8 L. Monin, E. Smirnov

4 Full flag varieties

Let G be a reductive algebraic group of rank n. Fix a Borel subgroup B ⊂ G; let T be
the maximal torus corresponding to B. Denote by X = X(T) the weight lattice of G (i.e.,
the character lattice of T). For a dominant highest weight λ = (λ1, . . . , λn) ∈ X, the
dimension of the corresponding irreducible G-module V(λ) is computed using the Weyl
dimension formula:

dim Vλ = ∏
α∈∆+

⟨λ + ρ, α⟩
⟨ρ, α⟩ ,

where the product is taken over the system of positive roots ∆+, ⟨·, ·⟩ is the Cartan
pairing on X, and ρ = 1

2 ∑α∈∆+ α. Thus, dim Vλ is a polynomial in λ1, . . . , λn. It is
called the Weyl polynomial and denoted by FG(λ). It is an inhomogeneous polynomial of
degree |∆+|.

Example 4.1. If G = GL(n), the Weyl polynomial equals FGL(n)(λ) = ∏
i<j

λi − λj − i + j
j − i

.

The previous discussion immediately implies the following theorem about the K-
group of the full flag variety G/B.

Theorem 4.2. We have an isomorphism K0(G/B) ∼= Sh(X)/ Ann FG.

Proof. The proof is analogous to the proof of Theorem 3.2. Indeed, G/B has an algebraic
cell decomposition and K0(G/B) is generated by Pic(G/B) which can be identified with
X. Therefore, the statement follows from Theorem 2.3 and Borel–Weil–Bott theorem
which states that χ(G/B,L(λ)) = dim V(λ) = FG(λ).

4.1 Gelfand–Zetlin polytopes

In this subsection we study K0(G/B) for G = GL(n) in more detail. For this we shall
need the definition of Gelfand–Zetlin polytopes.

Take a strictly decreasing sequence of integers λ = (λ1 > λ2 > · · · > λn). Consider
a triangular tableau of the following form (it is called a Gelfand–Zetlin tableau):

λn λn−1 λn−2 . . . λ1
x1,n−1 x1,n−2 . . . x11

x2,n−2 . . . x21
. . . ...

xn−1,1

(4.1)

We will interpret xij, where i + j ≤ n, as coordinates in RN, where N = n(n−1)
2 . This

tableau can be viewed as a set of inequalities on the coordinates in the following way:
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for each triangle
a b

c
in this tableau, impose the inequalities a ≤ c ≤ b. This system

of inequalities defines a bounded nondegenerate polytope in RN. This polytope is called
a Gelfand–Zetlin polytope; we will denote it by GZ(λ).

Gelfand–Zetlin polytopes were introduced by I. M. Gelfand and M. L. Zetlin1 in 1950
(cf. [3]). The integer points in GZ(λ) index a special basis, called the Gelfand–Zetlin
basis, in the irreducible representation Vλ with the highest weight λ of the group GL(n).
In particular, the number of integer points in GZ(λ) equals dim V(λ). This can be
viewed as follows: the map taking each row of the Gelfand–Zetlin tableau into its sum

pr : RN → Rn−1 ∼= X, (x11, x12, . . . , xn−1,1) 7→
(

n−1

∑
i=1

x1i,
n−2

∑
i=1

x2i, . . . , xn−1,1

)

projects GZ(λ) onto the weight polytope of V(λ).
The following proposition is immediate.

Proposition 4.3. For a given n, all Gelfand–Zetlin polytopes have the same normal fan. The
Ehrhart polynomial of GZ(λ) is equal to the Weyl polytope of type An−1:

Ehr(GZ(λ)) = FGL(n) = ∏
i<j

λi − λj − i + j
j − i

.

We denote the lattice of (possibly virtual) integer Gelfand–Zetlin polytopes by PGZ.
Theorem 4.2 together with Proposition 4.3 implies the following corollary.

Corollary 4.4. Let Fl(n) = GL(n)/B be the variety of complete flags in Cn. Its K-group is
isomorphic to K0(Fl(n)) ∼= KGZ = Sh(PGZ)/ Ann Ehr(GZ(λ)).

4.2 Faces of Gelfand-Zetlin polytopes

Let us describe the set of faces of the Gelfand–Zetlin polytope. The polytope is defined
by a set of inequalities, represented by (4.1). Each face is obtained by turning some
of these inequalities into equalities. In particular, each facet is defined by a unique
equation: xij = xi−1,j+1 or xij = xi−1,j for some pair (i, j), where i + j ≤ n. (We suppose
that x0,k = λk). Denote the facets of the first type by Fij.

Definition 4.5. A face F of GZ(λ) is called a Kogan face if it is obtained as the intersection
of facets Fij for some i, j. Equivalently, F is a Kogan face if it contains the vertex defined
by the equations

λn = x1,n−1 = · · · = xn−1,1, λn−1 = x1,n−2 = · · · = xn−2,1, . . . , λ2 = x1,1.
1Sometimes also spelled Cetlin or Tsetlin.
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We will represent Kogan faces of the Gelfand–Zetlin polytope symbolically by di-
agrams obtained from Gelfand–Zetlin tableaux by replacing all λi’s and xij’s by dots,
where each equality of type xij = xi+1,j−1 is represented by an edge joining these dots.
We shall assign to each Kogan face F a word w(F) in the alphabet s1, . . . , sn−1 of Coxeter
generators of the symmetric group Sn, as follows. We mark the edge going from xi−1,j+1
to xij by a simple transposition si+j−1 ∈ Sn (recall that 1 ≤ i, j and i + j ≤ n), as shown on
Figure 1, and take the word in s1, . . . , sn−1 obtained by reading the letters on the edges
from bottom to top from left to right.

s1
s2 s3

s2
s3

s3

s1
s2 s3

s2 s3
s3

Figure 1: Diagrams of Kogan faces

Definition 4.6. Let w = (si1 , . . . , sik) be a word. The Demazure product δ(w) of w is the
permutation defined inductively as follows: δ(si) = si, and δ(w, si) equals δ(w)si if
ℓ(δ(w)si) > ℓ(δ(w)), and δ(w) otherwise. Note if w is a reduced word, then δ(w) =
si1 . . . sik .

Definition 4.7. Let F be a Kogan face of codimension k, and let w(F) = (si1 , . . . , sik) be
the corresponding word. We shall say that F corresponds to the permutation δ(w(F)). A
Kogan face is said to be reduced if the word w(F) is reduced, and non-reduced otherwise.

Example 4.8. Diagrams on Figure 1 produce the words (s3, s2, s1, s3) and (s3, s2, s3, s1, s3)
respectively. Both of these faces correspond to the permutation s3s2s1s3 = (4231). The
left of them is reduced, while the right one is not.

Finally, we can assign a collection of Kogan faces to each permutation w ∈ W. Denote
by F (w) the set of all Kogan faces F corresponding to w, and by Γ(w) the (set-theoretic)
union of all these faces.

4.3 Characters of Demazure modules

In this subsection we give a definition of Demazure modules and recall a theorem by
Kiritchenko, Smirnov, and Timorin relating their characters to faces of Gelfand–Zetlin
polytopes.

Let G = GL(n). We denote the Weyl group of G by W ∼= Sn. For w ∈ W, let
Xw = BwB/B ⊂ G/B be the corresponding Schubert variety; in particular, for the
longest element w0 we have Xw0 = G/B. Let L(λ) be the G-equivariant line bundle on
G/B defined as G ×B C−λ → G/B, and let Lw(λ) stand for the restriction of L(λ) to Xw.
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Definition 4.9. Let V(λ) = H0(G/B,Lλ)
∗ be the irreducible representation with the

highest weight λ. For w ∈ W, define a Demazure module Vw(λ) as follows. Take a vector
of weight wλ in V(λ) (such a vector is unique up to a scalar) and consider the B-module
of V(λ) generated by this vector. We denote this B-module by Vw(λ).

The following theorem is well-known (cf., for instance, [1, Sec. 3.3]).

Theorem 4.10. For λ ∈ X, w ∈ W, we have a B-module isomorphism H0(Xw,Lw(λ)) ∼=
Vw(λ).

The character of a Demazure module char Vw(λ) is an element of the group algebra
A(T) := Z[X] of the character group. The following theorem provides a relation between
characters of Demazure modules and faces of Gelfand–Zetlin polytopes.

Theorem 4.11 ([8, Theorem 5.1]). The character of a Demazure module Vw(λ) is obtained as
the sum over all integer points of the set of Kogan faces of GZ(λ) corresponding to w:

char Vw(λ) = ∑
x∈Γ(w)∩ZN

epr(x).

Specializing the character at 0, we obtain the dimension formula for Vw(λ):

Corollary 4.12. The Euler characteristic of Lw(λ) is equal to

χ(Lw(λ)) = dim Vw(λ) = #(Γ(w) ∩ ZN).

We finish this section by identifying classes of structure sheaves of Schubert vari-
eties in KGZ. Since the Gelfand–Zetlin fan is not smooth it is more convenient for
us to work with the module MG̃Z,GZ which is associated to its smooth subdivision
(See Proposition 2.8 and the end of Section 2.3). Recall that there is an epimorphism
π : KG̃Z → MG̃Z,GZ. Finally, define Dw ∈ KG̃Z via

Dw = ∑
Γ∈F (w)

(−1)ℓ(w)−dim(Γ)DΓ.

Theorem 4.13. Let w ∈ W. Then the class [Ow] of the structure sheaf of Schubert variety Xw
is represented in KGZ by π(Dw).

Proof. Since K0(G/B) is generated by Pic(G/B), it is enough to check that χ(Lw(λ)) =
Dw · Ehr(GZ(λ)). Therefore the theorem follows from Corollary 4.12 and the fact that
Dw · Ehr(GZ(λ)) = #(Γ(w) ∩ ZN) by the inclusion-exclusion formula.
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