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Foata-like bijections and science fiction
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Abstract. A central open problem in algebraic combinatorics is to find a combinatorial
formula for the Kostka-Macdonald polynomials K̃λµ(q, t), which describe the expan-
sion of the Macdonald polynomial H̃µ(Z; q, t) in the Schur basis. Haiman proved that
K̃λµ(q, t) has nonnegative integer coefficients by proving that the dimension of the
Garsia-Haiman module Hµ equals n!, demonstrating an intricate relationship between
the Kostka-Macdonald polynomials and this module. This relationship was further
expounded upon by Bergeron and Garsia, whose "science fiction" heuristics conjecture
certain intersection properties of Garsia-Haiman modules which mirror observed sym-
metries in the Kostka-Macdonald coefficients. The most potent of these heuristics is the
n!
k conjecture, which asserts that the dimension of the intersection of k Garsia-Haiman

modules should have dimension n!
k . We solve the special case of the n!

k conjecture
where the indexing partitions have hook shape by constructing an explicit basis for the
intersection, using two maps in the spirit of Foata’s.
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1 Introduction

The (transformed) Macdonald polynomials {H̃µ(Z; q, t) : µ an integer partition} form
a notable basis for the ring of symmetric functions, as they simultaneously generalize
the Schur functions, Hall-Littlewood polynomials, and Jack symmetric functions, among
others. As such, they have become a central object of study since their introduction
by Macdonald in [11]. Of particular interest is their expansion in the basis of Schur
functions {sλ(Z)}:

H̃µ(Z; q, t) = ∑
λ

K̃λµ(q, t)sλ(Z).

A priori we have K̃λµ(q, t) ∈ Q(q, t), but Macdonald’s positivity theorem asserts that
K̃λµ(q, t) is in fact a polynomial in q and t with nonnegative integer coefficients. It
remains an important open problem to provide a combinatorial proof of Macdonald
positivity — e.g. writing K̃λµ(q, t) as a (q, t)-weighted sum over some set of combina-
torial objects — but Haiman [10] resolved the positivity theorem algebraically, using a
representation-theoretic analog Hµ of H̃µ(Z; q, t).
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For µ an integer partition of n ∈ N, the Garsia-Haiman module Hµ is a bigraded sym-
metric group module defined as follows (see [7] for full details). Let X = x1, x2, . . . , xn,
Y = y1, y2, . . . , yn, and define

Iµ = { f ∈ Q[X, Y] : f ( ∂
∂x1

, . . . , ∂
∂xn

; ∂
∂y1

, . . . , ∂
∂yn

)∆µ = 0}

to be the ideal of polynomials whose corresponding differential operator annihilates a
certain Sn-alternating, doubly homogeneous polynomial ∆µ ∈ Q[X, Y], so that Iµ is
Sn-invariant. The Garsia-Haiman module is defined as Hµ = Q[X, Y]/Iµ; it inherits
the diagonal action of Sn on Q[X, Y], and is afforded a bigrading since ∆µ is doubly
homogeneous, so we may write

Hµ =
⊕
i,j

(Hµ)i,j.

Haiman made the following connection between Hµ and the Macdonald polynomials:

Theorem 1 ([9]). If the dimension of Hµ is n!, then the bigraded Frobenius series of Hµ given
by

FrobHµ
(Z; q, t) = ∑

i,j
qitjch((Hµ)i,j),

where ch is the Frobenius map which sends the irreducible Sn-module Sλ to the Schur function
sλ, equals the transformed Macdonald polynomial H̃µ(Z; q, t).

Due to known identities involving Macdonald polynomials it is necessary that Hµ

afford a bigraded version of the regular representation, hence the dimension condition,
but in fact this is also sufficient.

Haiman proved that dim(Hµ) = n! in [10], thus resolving the Macdonald positivity
theorem by realizing K̃λµ(q, t) as encoding the doubly graded multiplicity of the irre-
ducible Sn-module Sλ in Hµ. Haiman’s proof, however, is algebro-geometric in nature,
and does not afford an explicit basis for Hµ. The construction of such a basis in general
remains an open problem, although some special cases have been solved, in particular
when µ has hook shape (see [1],[2],[3],[4],[8],[12]).

With an eye towards a combinatorial proof of Macdonald positivity, it is desirable
to study Hµ more combinatorially. Along these lines, Bergeron and Garsia undertook
a speculative study of some of the remarkable intersection properties possessed by the
modules Hµ in [5]. Their most potent assertion is the following n!

k conjecture:

Conjecture 1 ([5]). Let λ be an integer partition of n + 1, and let µ(1), . . . , µ(k) be partitions of
n each obtained from λ by removing a removable cell from the Young diagram of λ. Then,

dim

(
k⋂

i=1

Hµ(i)

)
=

n!
k

.
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In the case that λ has hook shape — i.e. λ = (a, 1, 1, . . . 1) = (a, 1ℓ) for some a ≥ 2, ℓ ≥
1 — we resolve the n!

k conjecture by constructing an explicit basis for H(a,1ℓ−1) ∩H(a−1,1ℓ).

2 The n!
k conjecture for hook shapes

Adin, Remmel and Roichman define a plethora of different bases for Hµ when µ has
hook shape in [1]. To tackle the n!

k conjecture in this special case, we adopt a different
viewpoint on their Artin basis. This basis is indexed by permutations w ∈ Sn and each
basis element encodes information about certain inversions in w which depend on the
partition µ. We restate this basis in terms of standard fillings of µ.

Throughout, we identify a partition µ = (µ1 ≥ µ2 ≥ · · · ) with its Young diagram,
opting for French (coordinate) notation, so that µ is depicted diagramatically as an array
of bottom- and left-justified cells with µi cells in row i. We call a cell c ∈ µ removable if
the diagram µ − {c} still has partition shape.

Definition 1. For any partition µ of n ∈ N, a standard filling of µ is a bijective map S : µ →
{1, 2, . . . , n}, i.e. an assignment of the numbers 1, 2, . . . , n to the cells of (the Young diagram of)
µ. The set of all standard fillings of µ is denoted SF(µ).

By assigning any arbitrary order to the cells of µ, we obtain a bijection between SF(µ)
and Sn, i.e. |SF(µ)| = n!. For instance, the 3! = 6 standard fillings of µ = (2, 1) are:

3
1 2 ,

2
1 3 ,

3
2 1 ,

1
2 3 ,

2
3 1 ,

1
3 2 .

For any standard filling S, we let Si,j denote the entry in row i, column j of S. We now
hone in on the case where µ = (a, 1ℓ) has hook shape.

Definition 2. Given S ∈ SF(a, 1ℓ), define a row inversion to be a pair S1,i > S1,j where i < j.
Similarly, define a column inversion to be a pair Sj,1 > Si,1 for i < j (note the swapped indices).
Denote the collection of row (resp. column) inversions in S by

rowInv(S) = {(t, r) : t > r, t left of r in row 1 of S},
colInv(S) = {(d, c) : d > c, d above c in column 1 of S}.

Definition 3. Given S ∈ SF(a, 1ℓ), define the polynomial φS(X, Y) ∈ Q[X, Y] by

φS(X, Y) = ∏
(d,c)∈colInv(S)

xd ∏
(t,r)∈rowInv(S)

yr (2.1)

(cf. [1], Definition 1.6).
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This definition is seen to be equivalent to [1] by associating a standard filling S of µ

with its reading word wS ∈ Sn. Note also that φS(X, Y) encodes only the information of
the larger elements in column inversions, and of the smaller elements in row inversions:

Example 1. The following standard filling of µ = (5, 14):

S =

4
1
9
7
5 6 3 2 8

has

colInv(S) = {(4, 1), (9, 7), (9, 5), (7, 5)},
rowInv(S) = {(5, 3), (5, 2), (6, 3), (6, 2), (3, 2)},

so φS(X, Y) = x4x7x2
9y3

2y2
3.

Theorem 2 ([1], Corollary 1.7). The set

{φS(X, Y) : S ∈ SF(a, 1ℓ)}

forms a basis for the Garsia-Haiman module H(a,1ℓ).

Equipped with this basis, we prove the following special case of the n!
k conjecture:

Theorem 3 ( n!
k for hook shapes). The n!

k conjecture holds for the hook shape λ = (a, 1ℓ), i.e.

dim(H(a,1ℓ−1) ∩H(a−1,1ℓ)) =
n!
2

.

As a hook shape has at most two removable boxes (one at the end of the first row, and
one at the end of the first column), this result is as strong as possible for hook shapes
since the case k ≥ 3 is trivial.

The Artin basis of [1] is as "nice" as can be in the sense that, not only do we prove
that H(a,1ℓ−1) ∩ H(a−1,1ℓ) has the correct dimension, we actually obtain an explicit basis
for the intersection by finding exactly n!

2 standard fillings of (a, 1ℓ−1) and of (a − 1, 1ℓ)
which yield the same basis element.

To ease the notational burden, we fix once and for all the partitions µ = (a, 1ℓ−1) and
ρ = (a − 1, 1ℓ), for some a ≥ 2 and ℓ ≥ 1. Define the following subsets of SF(µ) and
SF(ρ):

SF<(µ) = {S ∈ SF(µ) : S1,1 < S1,a}, SF<(ρ) = {T ∈ SF(ρ) : Tℓ+1,1 < T1,1}. (2.2)
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Then clearly |SF<(µ)| = |SF<(ρ)| = n!
2 . We show in turn that

{φS(X, Y) : S ∈ SF<(µ)} = {φT(X, Y) : T ∈ SF<(ρ)} (2.3)

by defining a bijective map θ : SF<(µ) → SF<(ρ) which satisfies φθ(S) = φS.
Heuristically, the standard fillings in (2.2) are the "right" candidates for a basis of

Hµ ∩Hρ because no standard filling of ρ has a row inversion whose elements are a units
apart, and conversely no standard filling of µ has a column inversion whose elements
are ℓ+ 1 units apart.

As a first naïve step, we may define a simple auxiliary map which translates between
standard fillings of µ and of ρ:

Definition 4. For any S ∈ SF(µ), define a standard filling bump(S) ∈ SF(ρ) by moving each
entry in the first column of S up one row, and then pushing each remaining entry in the first row
to the left one column.

Then bump : SF(µ) → SF(ρ) is a bijection whose inverse is given by first pushing the
first row to the right, and then pushing the first column down. The problem, however,
is that bump does not restrict to a bijection SF<(µ) → SF<(ρ):

Example 2. For µ = (4, 13) and ρ = (3, 14), we have

bump


5
1
2
6 4 3 7

 =

5
1
2
6
4 3 7

.

Then S ∈ SF<(µ) since 6 < 7, yet bump(S) ̸∈ SF<(ρ) since 5 > 4.

In addition to correcting this deficiency, we must also ensure that the row and column
inversions in the resulting standard filling align with the original. Thus after performing
bump, we must take the following into consideration:

1. There may be row inversions in S, created by u = S1,1, which are no longer present
in bump(S). We thus must rearrange the first row so as to reintroduce these lost
row inversions.

2. After rearranging the first row of bump(S), there is a new entry v in row 1, column
1, so we may have introduced some column inversions which were not present in
S. Thus we must rearrange the first column both in order to negate these newly
introduced column inversions, and in order to ensure that the (ℓ + 1, 1)-entry is
less than the (1, 1)-entry, so that the resulting filling lies in SF<(ρ).
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To this end, we define a map armu which reintroduces the row inversions removed in 1.,
and a map legv which negates the column inversions introduced in 2.; by appropriately
composing these maps with bump, we obtain a map which proves (2.3).

Definition 5. For a fixed u ∈ N, consider the set of words

Au = {w1w2 · · ·wm : m ∈ N, wm > u}.

For any w = w1w2 · · ·wm ∈ Au, define a new word armu(w) as follows: let b1, b2, . . . , bj denote
the indices for which wbi < u. If there are no such indices, then define armu(w) = w. Otherwise,

1. Draw a vertical bar immediately to the left of wbi if either wbi−1 > u, or if i = 1 and
b1 = 1.

2. Within each newly created block which contains at least one of the wbi ’s, move the leftmost
entry which is > u to the front of the block, immediately right of the (leftmost) vertical bar.

Define the resulting word to be armu(w).

In context, for S ∈ SF<(µ) and u = S1,1, we wish to perform armu on the word
S1,2S1,3 · · · S1,a consisting of the entries in the first row of S which lie strictly right of the
first column (note that by construction this word lies in Au). We then determine which
entries in row 1 of S are < u, as these correspond precisely to the row inversions in S
that are lost in bump(S) when u gets bumped into the second row. A larger number
is then shuffled to the left of each of these entries in order to reintroduce the lost row
inversions.

Example 3. Let w = 49263187 ∈ A5. To compute arm5(w) we draw vertical bars to the left of
4, 2, and 3, and within each block shuffle the leftmost number > 5 to the front:

4 9 2 6 3 1 8 7 7−→ 9 4 6 2 8 3 1 7

So, arm5(w) = 94628317. Note also that in the word 5w = 549263187, we have inversions
5 > 4, 5 > 2, 5 > 3, 5 > 1 which are not present in w. However, when we perform arm5 on w,
we obtain new inversions 9 > 4, 6 > 2, 8 > 3, 8 > 1 and no others, so the smaller entries in the
inversions of 5w and of arm5(w) are the same.

After shuffling around the first row of bump(S) to correct for the lost row inversions,
we must appropriately reorder the first column, for which we need the following map.

Definition 6. For a fixed v ∈ N, consider the set of words

Lv = {w1w2 · · ·wm : m ∈ N, w1 < v}.

For any w = w1w2 · · ·wm ∈ Lv, define a new word legv(w) as follows: let c1, c2, . . . , ck denote
the indices for which wci > v. If there are no such indices, then define legv(w) = w. Otherwise,
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1. Draw a vertical bar immediately to the right of wci if either wci+1 < v, or if i = k and
ck = m.

2. Within each newly created block which contains at least one of the wci ’s, move the rightmost
entry which is < v to the end of the block, immediately left of the (rightmost) vertical bar.

Define the resulting word to be legv(w).

Note that legv is in a sense "dual" to armu, in that armu shuffles larger entries to
the left, and legv shuffles smaller entries to the right. Again, for a bit of context, we
wish to perform legv on the first column of a filling after performing bump, and then
armS1,1 , on some S ∈ SF<(µ), when a new entry is introduced into row 1, column 1.
Denoting the resulting filling by T, we will have v = T1,1 < T2,1 by construction, so
that T2,1T3,1 · · · Tℓ+1,1 ∈ Lv, and legv then shuffles smaller numbers further up in the first
column to negate the column inversions created by v.

Example 4. Let w = 48731926 ∈ L5. To compute leg5(w) we draw vertical bars to the right of
7, 9, and 6, and within each block shuffle the rightmost number < 5 to the end:

4 8 7 3 1 9 2 6 7−→ 8 7 4 3 9 1 6 2

So, leg5(48731926) = 87439162. Since in practice we read the entries in the first column from
bottom to top, the coinversions in the resulting word will correspond to column inversions.
With this in mind, note that word 5w has coinversions 5 < 8, 5 < 7, 5 < 9, 5 < 6 which are
not present in w. However, when we perform leg5 on w, we remove the coinversions 4 < 8, 4 <
7, 1 < 9, 2 < 6 and no others, so the larger entries in the coinversions of 5w and of leg5(w)
agree.

Remark 1. Note the similarity of armu and legv to the maps γx introduced by Foata [6], which
he used to bijectively prove that the major index and inversion number are equidistributed over
Sn. We point out that these maps are not, in fact equivalent; one immediate difference is the
manner in which the respective maps factor a word w into subwords. In Example 3, for instance,
Foata’s map γ5 would factor w as |49|26|3|187 and cyclicly rotate the entries within each block.
When performing arm5 on w, however, the factorization is different and the manner in which we
reorder each block is as well.

By composing these maps, we obtain our desired bijection θ : SF<(µ) → SF<(ρ):

Definition 7. Given S ∈ SF<(µ), let u = S1,1, and let v be the leftmost entry in the first row of
S which is > u. Then define

θ(S) = legv ◦ armu ◦ bump(S),
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where armu acts only on the first row of bump(S) — that is, we replace the first row of bump(S)
with armu(S1,2S1,3 · · · S1,a) — and legv acts on the first column of armu(bump(S)), strictly above
the first row, so that these entries are replaced by legv(S1,1S2,1 · · · Sℓ,1), entered from bottom to
top.

Since S1,a > u and u < v for any S ∈ SF<(µ), each step in the composition is defined;
thus θ is well-defined. Furthermore we have θ(S)ℓ+1,1 < v = θ(S)1,1 by construction, so
that θ(S) ∈ SF<(ρ).

Example 5. Let µ = (5, 14) and ρ = (4, 15), and let

S =

9
1
7
4
5 6 3 2 8

∈ SF<(µ).

Then in the language of the above definition, we have u = 5, v = 6, so that

θ(S) = leg6 ◦ arm5 ◦ bump(S) = leg6 ◦ arm5



9
1
7
4
5
6 3 2 8



= leg6



9
1
7
4
5
6 8 3 2

 =

1
9
4
7
5
6 8 3 2

∈ SF<(ρ).

Note that φS = φθ(S) = x2
7x4

9y3
2y2

3.

Finally, we have:

Theorem 4. For partitions µ = (a, 1ℓ−1) and ρ = (a − 1, 1ℓ), the map θ : SF<(µ) → SF<(ρ)
defined above satisfies φS = φθ(S) for every S ∈ SF<(µ). Furthermore θ is a bijection, and
dim(Hµ ∩Hρ) ≥ n!

2 .

Proof. (Sketch) By construction, we have

{r : (t, r) ∈ rowInv(S) for some t} = {r′ : (t′, r′) ∈ rowInv(θ(S)) for some t′}
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and

{d : (d, c) ∈ colInv(S) for some c} = {d′ : (d′, c′) ∈ colInv(θ(S)) for some c′},

and these sets uniquely determine φS (resp. φθ(S), so φS = φθ(S).
We furthermore have

θ(S) = θ(T) ⇒ φθ(S) = φθ(T) ⇒ φS = φT ⇒ S = T,

so θ is injective and therefore also bijective, thus

{φS : S ∈ SF<(µ)} ⊂ Hµ ∩Hρ.

The reverse assertion, that dim(Hµ ∩Hρ) ≤ n!
2 , follows from a comparatively clunkier

argument.

Theorem 5. For µ = (a, 1ℓ−1), ρ = (a − 1, 1ℓ), we have dim(Hµ ∩Hρ) ≤ n!
2 .

Proof. (Sketch) We show that φS ̸∈ Hρ for any S ∈ SF(µ) − SF<(µ) by demonstrating
that from any such polynomial φS, one can infer that there must be at least a distinct
entries in the first row of S, i.e. that φS can not be achieved from any filling in SF(ρ)
(resp. φT ̸∈ Hµ for any T ∈ SF(ρ)− SF<(ρ) by an analogous argument).

Combining Theorems 4 and 5 proves this special case of the n!
k conjecture.

Remark 2. Garsia and Haiman noted in [7] that one may define the Garsia-Haiman module as

Dµ = span{ f ( ∂
∂x1

, . . . , ∂
∂xn

; ∂
∂y1

, . . . , ∂
∂yn

)∆µ : f ∈ Q[X, Y]},

the span of all partial derivatives of all orders of ∆µ, and an isomorphism Hµ
∼→ sDµ is given by

f (X, Y) 7→ f ( ∂
∂X , ∂

∂Y )∆µ.
It is worth remarking that the "science fiction" heuristics in [5], which establish remarkable

connections between Garsia-Haiman modules and the Kostka-Macdonald coefficients K̃λµ(q, t),
are formulated in terms of Dµ, rather than Hµ. The restriction of the Artin basis to Hµ ∩ Hρ

does not immediately yield a basis for Dµ ∩ Dρ in the sense that

{φS(
∂

∂X , ∂
∂Y )∆µ : S ∈ SF<(µ)} ̸= {φT(

∂
∂X , ∂

∂Y )∆ρ : T ∈ SF<(ρ)}.

In fact, experimental evidence suggests that these sets are disjoint.
As the above isomorphism is bidegree-complementing, the optimistic (some would say naïve)

conjecture would be that the complement SF(µ)− SF<(µ) (resp. ρ) indexes a basis for Dµ ∩ Dρ.
However, it is not true in general that φS(

∂
∂X , ∂

∂Y )∆µ ∈ Dρ for arbitrary S ∈ SF(µ)− SF<(µ),
so this basis is not particularly well-equipped to make this paradigm shift.



10 Sam Armon

Acknowledgements

I am grateful to Sami Assaf for introducing me to this problem, and for offering support
along the way.

References

[1] R. M. Adin, J. B. Remmel, and Y. Roichman. “The combinatorics of the Garsia-Haiman
modules for hook shapes”. Electron. J. Combin. 15.1 (2008), Research Paper 38, 42.

[2] E. E. Allen. “Bitableaux bases for some Garsia-Haiman modules and other related mod-
ules”. Electron. J. Combin. 9.1 (2002), Research Paper 36, 59.

[3] S. Assaf and A. Garsia. “A kicking basis for the two column Garsia-Haiman modules”.
21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009).
Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2009, pp. 103–114.

[4] J.-C. Aval. “Monomial bases related to the n! conjecture”. Discrete Math. 224.1-3 (2000),
pp. 15–35.

[5] F. Bergeron and A. M. Garsia. “Science fiction and Macdonald’s polynomials”. Algebraic
methods and q-special functions (Montréal, QC, 1996). Vol. 22. 1999, pp. 1–52.

[6] Foata, Dominique. “On the Netto inversion number of a sequence”. Proc. Amer. Math. Soc.
19 (1968), 236–240.

[7] A. Garsia and M. Haiman. “A graded representation model for Macdonald’s polynomials”.
Proc. Nat. Acad. Sci. U.S.A. 90.8 (1993), pp. 3607–3610.

[8] A. Garsia and M. Haiman. “Some natural bigraded Sn-modules and q, t-Kostka coeffi-
cients”. Electron. J. Combin. 3.2 (1996), Research Paper 24, approx. 60.

[9] M. Haiman. “Macdonald polynomials and geometry”. New perspectives in algebraic combi-
natorics (Berkeley, CA, 1996–97) 38.207–254 (1999).

[10] M. Haiman. “Hilbert schemes, polygraphs, and the Macdonald positivity conjecture”. J.
Amer. Math. Soc. 14.4 (2001), pp. 941–1006.

[11] I. Macdonald. “A new class of symmetric functions”. Actes du 20 ◦ Séminaire Lotharingien
(1988), pp. 131–171.

[12] J. R. Stembridge. “Some particular entries of the two-parameter Kostka matrix”. Proc.
Amer. Math. Soc. 121.2 (1994), pp. 367–373.


	Introduction
	The  n!k conjecture for hook shapes

