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Double Dimers and Super Ptolemy Relations

Gregg Musiker*1, Nick Ovenhouse†2, and Sylvester W. Zhang‡1

1School of Mathematics, University of Minnesota, Minneapolis, MN, USA
2Department of Mathematics, Yale University, New Haven, CT, USA

Abstract. Ptolemy’s theorem relates the lengths of the diagonals and sides of a quadri-
lateral inscribed in a circle, and this is the inspiration for the mutation relation in
a cluster algebra associated to a triangulated surface. A super-symmetric version of
the Ptolemy relation was introduced recently by Penner and Zeitlin, involving anti-
commuting variables. Previous work of the first author and Schiffler gave a formula
for cluster variables in terms of perfect matchings of some planar graph. Motivated
by this, we investigate certain algebraic expressions, obtained via iterating the super
Ptolemy relation, that may be given as a sum over double dimer covers of this graph.
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1 Introduction

Ptolemy’s theorem is a well-known identity between the lengths of the diagonals and
sides of a quadrilateral inscribed in a circle, as exemplified in Figure 1.
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Figure 1: A quadrilateral inscribed in a circle. Ptolemy’s relation says xy = ac + bd.

In a way, the Ptolemy relation is like a “skein relation”, in the sense that it realizes a
product of crossing edges by a sum of products of non-crossing ones. More generally,
if a polygon is inscribed in a circle, then using the Ptolemy relation iteratively, one may
express a product of any number of crossing diagonals as an expression involving only
products of non-crossing ones. For example, consider the inscribed pentagon in Figure 2,
and the product of the lengths of the three diagonals shown.
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Figure 2: A pentagon inscribed in a circle, and three distinguished diagonals.

Let xij be the length of the diagonal between vertices labeled i and j (including the
boundary sides xi,i+1). Then using the Ptolemy relation twice, we can re-write the prod-
uct of the three diagonals shown in Figure 2 as follows.

x14x25x35 = (x12x45 + x15x24) x35

= x12x45x35 + x15x24x35

= x12x45x35 + x15 (x23x45 + x34x25)

= x12x45x35 + x15x23x45 + x15x34x25

Note that the diagonals (2, 5) and (3, 5) give a triangulation of the pentagon. By
dividing both sides of the equation above by x25x35, we obtain

x14 =
1

x25x35
(x12x45x35 + x15x23x45 + x15x34x25)

In particular, this expresses x14 as a subtraction-free expression in terms of the lengths
of the edges in the triangulation. This is an example of the following fact.

Theorem 1. [10] Let T be a fixed triangulation of a polygon inscribed in a circle. The length of
any diagonal not in T is expressible as a Laurent polynomial with positive integer coefficients in
terms of the lengths of the diagonals in T.

2 Perfect Matching Formula for Diagonal Lengths

In [6], the first author and Schiffler showed that when one uses the Ptolemy relation to
re-write the length of a diagonal in terms of lengths from a triangulation, the resulting
Laurent polynomial expression is a sum over perfect matchings of some planar graph.
We will recall this result below, after some definitions.

Definition 1. A snake graph is a planar graph consisting of a sequence of square faces,
where each square is attached either above or to the right of the previous one.
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Figure 3: The snake graph Gγ for γ = (5, 8).

Remark 1. In terms of the language of Young diagrams, a snake graph is the same
thing as a border strip skew Young diagram. That is, a skew Young diagram λ/µ which
contains no 2 × 2 block of boxes.

To each diagonal in a triangulated polygon, we will associate a particular snake
graph, with some edge labeling.

Definition 2. Let T be a triangulation of an inscribed polygon and γ = (a, b) an arc not
in T. Let t1, t2, · · · , tk be the diagonals in T which cross γ. For each ti, let Sti be the
quadrilateral in T containing ti as its diagonal. For each pair of adjacent diagonals, their
corresponding tiles Sti , Sti+1 share a common edge. Connect all St1 , · · · , Stk by identifying
the common edges, and call the resulting graph the snake graph of γ, denoted Gγ.

Remark 2. Note that in order to attach the tiles as described in Definition 2, the even-
numbered tiles (the second, fourth, etc.) must have opposite orientation from the corre-
sponding quadrilateral in T.

Example 1. Figure 3 shows an example of the snake graph associated to a diagonal in
an octagon. The vertices of the snake graph are labeled by the corresponding vertices
in the polygon. Although edge labels are not shown in the figure, assume each edge is
labeled by xij, the length of the corresponding diagonal.

Definition 3. Let G be a graph. A perfect matching of G (also called a dimer cover) is a
subset M of the edges of G, such that each vertex is incident to exactly one edge of M.
We will write D(G) for the set of dimer covers of G. If G has an edge-weighting, then
wt(M) is defined as the product of the edge weights in M.

Theorem 2. [6, Theorem 3.1] Let T be a triangulation of an inscribed polygon, and let γ be a
diagonal not in T. Then the length xγ is given by

xγ =
1

xi1 xi2 · · · xik
∑

M∈D(Gγ)

wt(M)
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where xi1 , xi2 , . . . , xik are the lengths of the diagonals which γ crosses.

Example 2. Consider the triangulated pentagon shown in Figure 2, with triangulation
consisting of the diagonals (2, 5) and (3, 5). The snake graph of γ = (1, 4) is shown
below.

1 2

35 4

5

This graph has three dimer covers, corresponding to the three terms in the expression
given earlier:

x14 =
1

x25x35
(x12x45x35 + x15x23x45 + x15x34x25)

3 The Super Ptolemy Relation

In this section, we will review a simplified version of the setup from [9]. Informally, in
addition to variables xij representing diagonal lengths, we will also consider some extra
non-commuting variables.

Definition 4. A super algebra is an associative algebra A = A0 ⊕ A1 with a Z2-grading.
That is, Ai Aj ⊆ Ai+j. A super algebra is called super-commutative (or often just commu-
tative) if xy = (−1)ijyx whenever x ∈ Ai and y ∈ Aj. In other words, elements of A0,
called even, are central (they commute with everything), and elements of A1, called odd,
anti-commute with each other.

Given a triangulation T of an inscribed polygon, and a choice of orientation of each
of its edges, we define a commutative superalgebra AT as follows. Recall that xij de-
notes the length of diagonal (i, j). If the triangulation T has edges e1, · · · , e2n−3, let
C∞(xe1 , · · · , xe2n−3) be the commutative algebra of all smooth functions in the xei vari-
ables corresponding to these lengths. Also let E be the exterior algebra on the (n − 2)-
dimensional space with basis vectors θijk, corresponding to triangles in T with vertices
i, j, k. Then we define AT to be

AT := C∞(xe1 , . . . , xe2n−3)⊗ E

By definition, the generators of AT correspond to edges and triangles from a trian-
gulation T. Penner and Zeitlin defined a super Ptolemy transformation [9], which can
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be iterated to produce new elements xij and θijk of AT corresponding to diagonals and
triangles which are not in T. We will describe this transformation now.

When two triangulations are related by a flip, as in Figure 4, one can define new
elements of AT by the following “super Ptolemy relations” [9, Theorem B]:

e f = ac + bd +
√

abcd σθ σ′ =

√
bd σ −

√
ac θ√

ac + bd
θ′ =

√
bd θ +

√
ac σ√

ac + bd
(3.1)

A flip alters the orientation of one of the edges, as depicted in Figure 4. In particular,
the order of multiplying the odd variables σ and θ are dictated by the orientation of the
edge being flipped, as in Figure 4.

a b

cd

e θ

σ

a b

cd

f
θ′ σ′

Figure 4: Super Ptolemy relation. The orientation of the edge b is changed by the flip.

4 Double Dimer Covers

Similar to the ordinary Ptolemy relation, one may iteratively apply the super Ptolemy
relation to write xij in terms of the original generators, corresponding to a fixed trian-
gulation T. In [4], the authors showed that this can be calculated using the same snake
graph, but summing over double dimer covers, which we define as follows.

Definition 5. Let G be a graph. A double dimer cover is a multi-set M of edges in G,
such that every vertex of G is contained in exactly two elements of M. In other words, a
double dimer cover is the superposition of two dimer covers. Denote DD(G) the set of
all double dimer covers of G.

We will now define the weight of a double dimer cover of a snake graph Gγ. Observe
that every double dimer cover consists of doubled edges and cycles. For each cycle we
associate a product of two odd variables to it. Let c be a cycle, with i, j, k being the
three vertices of on the bottom-left corner of c and p, q, r being the three vertices on the
top-right corner of c, as illustrated below.

k

q

r

j

i

p
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Associate a product of two odd variables to c by ν(c) := θijkθpqr, which are the odd
variables corresponds to the triangles (i, j, k) and (p, q, r). We then define the weight of
a double dimer cover M ∈ DD(Gγ) to be

wt(M) = ∏
e∈M

√
xe ∏

c a cycle in M
ν(c) (4.1)

Example 3. Consider the following double dimer cover of the snake graph in Figure 3.
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Its weight is x45x17x78
√

x67x46x47x27x23x37 θ467θ237.

In [4], we proved the following result, generalizing Theorem 2.

Theorem 3. [4, Theorem 6.1] Let T be a triangulation T, and let γ = (i, j) be a diagonal not
in T. Then xij is given by

xγ = xij =
1

xi1 xi2 · · · xik
∑

M∈DD(Gγ)

±wt(M)

where xi1 , xi2 , . . . , xik are the lengths of the diagonals which γ crosses. In particular, all xγ’s are
Laurent polynomials in √xij’s and polynomials in θijk’s.1

There is a stronger version of Theorem 3, which says there there is a special orienta-
tion on T, called the default orientation, and a total ordering on the odd variables, called
the positive order (See Section 2.2 of [4] for details), with the property that all terms in the
sum in Theorem 3 have positive sign when the odd variables in wt(M) are multiplied in
the positive order.

In [3, Proposition 1.4] , the authors showed that every choice of orientation is equiv-
alent to a default orientation, after negating some of the odd θijk variables. This allows
one to explicitly determine the signs in Theorem 3 for an arbitrary choice of orientation.

Remark 3. For a snake graph Gγ, there is a special family of double dimer covers which
only uses doubled edges and no cycles. The weights of these double dimer covers are
exactly the same as that of the (single) dimer cover using the same set of edges (but
only once). Therefore the set of double dimer covers of Gγ naturally contains the set of
(single) dimer covers as a weight-preserving subset.

1In [4, Theorem 6.1 part (b)], formulas for some odd variables are given, however, they are not Laurent
polynomials.
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We now give an example of Theorem 3.

Example 4. Consider the same pentagon as in Figure 2 and its snake graph as in Exam-
ple 2.
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The super-length x14 is given by

x14 =
1

x25x35

(
x12x45x35 + x15x23x45 + x15x34x25 + x15

√
x23x25x45x34 θ235θ345

+ x45
√

x15x12x23x35 θ125θ235 +
√

x15x12x25x45x34x35 θ125θ345

)
The terms in parentheses are exactly the weighted sum of the six double dimer covers
shown below.

x12x35x45 x15x23x45 x15x25x34

x15
√

x23x25x45x34θ235θ345 x45
√

x15x12x23x35θ125θ235
√

x15x12x25x45x34x35θ125θ345

5 Partial Order on Double Dimer Covers

In [7], it was noted (Theorem 5.2) that the set of dimer covers of a snake graph (and
hence also the set of terms in the Laurent polynomial expression of xij) has a partial
order making it into a distributive lattice. We will recall this partial order, and then see
that the set of double dimer covers also has a natural partial order.

There are exactly two dimer covers of a snake graph which contain only boundary
edges. Define the minimal dimer cover M0 of a snake graph to the dimer cover, using
only boundary edges, which contains the bottom edge of the first square. An example
is shown in Figure 5.

The partial order on the set of dimer covers is defined as follows. Number the squares
of the snake graph 1, 2, . . . , N from bottom-left to top-right. For a dimer cover M, con-
sider the double dimer cover M ∪ M0. Define a subset s(M) ⊆ [N] as the set of squares
which are surrounded by cycles of M ∪ M0. The partial order is then defined as M ≤ M′

if s(M) ⊆ s(M′). An example is shown in Figure 6. Denote PD(G) the poset of dimer
covers on G.
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Figure 5: The minimal dimer cover of a snake graph.

Figure 6: Left: The poset of dimer covers of a snake graph. Middle: the corresponding
double dimer covers, after superimposing the minimal dimer cover. Right: Lattice of
order ideals of the fence poset, where a blue circle indicate elements in the order ideal.

Alternatively, we can construct the PD(Gγ) inductively by “flipping” the dimer covers
on tiles of the snake graph. If a tile of snake graph is covered by two dimer edges, then
one can perform a flip on that tile as follows to obtain a new dimer cover.

⇐⇒

Let M be a dimer cover of Gγ and M′ is obtained from M via a flip, then either M′ is
covered by M or M is covered by M′. If we require the poset to have a unique minimum
element, then the above rule and the choice of minimal element (the minimal dimer
cover M0) are sufficient to determine the entire poset.

Moreover, for a snake graph G, the poset PD(G) is a distributive lattice and can be
realized as the poset of order ideals of the fence poset associated to G , denoted FG. See
the right image in Figure 6. We refer the reader to Section 9 of [4] for more details about
fence posets.

In the case of double dimer covers, there exists a similar natural partial order struc-
ture. We first define the minimal double dimer cover M̃0 of a snake graph Gγ to be the super
position of two identical copies of the minimal dimer covers of Gγ. In other words, the
minimal double dimer cover looks exactly the same as the minimal single dimer cover
but with doubled edges instead.

For a snake graph G, denote PDD(G) the poset of double dimer covers of G. We can
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Figure 7: Left: the partial order on double dimer covers of a snake graph. Right: the
poset of order ideals of the corresponding doubled fence poset.

then define PDD(G) in the same way by performing flips (of a pair of single edges) on
the tiles of G. Note we are allowed to flip a pair of singled edges inside some doubled
edges. The possible local flips are summarized as follows.

⇐⇒ ⇐⇒ ⇐⇒ ⇐⇒

Similar to the single dimer case, these flips corresponds to covering relations in the
poset. Therefore starting with the minimal double dimer cover M̃0 and applying flips
inductively generates the entire partial order.2 See Figure 7 for example.

Similar to the single dimer case, the poset PDD(G) is also a distributive lattice. In
this case, it can be realized as the poset of order ideals on the doubled fence poset that is
the product of the fence poset associated to G and a two element chain: {0, 1} × FG. See
Figure 7 for example.

6 Special Cases: Zig-zag and Straight Snake Graphs

We conclude with a discussion on two special cases of snake graphs: the zig-zag and the
straight snake graphs.

2Note that we can define PDD(G) in a way similar to the first definition we gave for PD(G), by super
imposing every double dimer cover with the minimal double dimer cover. However it is more complicated
to illustrate in the case of double dimer covers, therefore we omit this definition.
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Zig-zag Snakes Graphs. Zig-zag snake graphs corresponds to the longest arc in a fan
triangulation, i.e. the triangulation where all triangles share a common vertex. Let Zn
be the zig-zag snake graph with n tiles. Then the number of double dimer covers of Zn
is the binomial coefficient (n+2

2 ). Moreover, there is a q-analogue of this statement, given
in the following theorem, a special case of a more general result from work in progress
of the authors and R. Schiffler [2].

Theorem 4. For a double dimer cover M ∈ PDD(Zn), let rk(M) denote its rank in the poset.
Then we have

∑
M∈PDD(Zn)

qrk(M) =

(
n + 2

2

)
q

In fact, the poset PDD(Zn) is isomorphic to the poset of lattice paths on the 2 × n
board, whose rank generating function is well known to be the q-binomial coefficient.
See Figure 8 for an illustration.

Figure 8: Left: The poset of double dimer covers on a zig-zag snake graph. Right: The
poset of lattice path on 2 × n grid.

Straight Snakes Graphs and Super Fibonacci Numbers. Another interesting family
of snake graphs are the straight snake graphs. Let Ln denote the straight snake graph
that is a horizontal row of n tiles. The number of dimer covers of Ln gives a nice com-
binatorial interpretation of Fibonacci numbers. More precisely, |D(Ln)| = fn+1 where
f0 = f1 = 1 and fn+1 = fn + fn−1. In the case of double dimer covers, this gives rise to a
generalization which we call super Fibonacci numbers.



Double Dimers and Super Ptolemy Relations 11

Definition 6. Consider the family of double dimer covers D(Ln) on Ln such that every
M ∈ D(Ln) has at most one cycle, and that cycle has odd length. Further, define D0(Ln)
to be the set of double dimers without cycles and D1(Ln) := D(Ln) \ D0(Ln). Denote
yn = |D1(Ln−1)| and recall that |D0(Ln−1)| = |D(Ln−1)| = fn. Finally, define the n-th
super Fibonacci number to be

Fn := |D0(Ln−1)|+ |D1(Ln−1)|ε = fn + ynε

where ε2 = 0.

Super Fibonacci numbers live in the super algebra Z ⊗∧
(ε) with one odd generator,

i.e. the algebra of dual numbers.

Remark 4. The reason why we forbid multiple cycles and cycles of even length is related
to the hyperbolic geometry of the annulus, which we do not explain here. See Section
11 of [4] for more details. In fact, in [5] we showed that Fn’s can be interpreted as certain
“super-lengths” on a marked annulus.

The Fn’s satisfy several identities, generalizing those of the classical Fibonacci num-
bers. To better state these identities, we make a simple adjustment to the definition of
super Fibonacci numbers as follows. Define

ỹn :=

{
yn if n is odd.
yn − 1 if n is even.

and Fn := fn + ỹnε. In terms of double dimer covers, Fn corresponds to disallowing the
double dimer cover that is the longest cycle.

Theorem 5. The ‘simpler’ super Fibonacci numbers Fn satisfy the recurrence

F0 = 1 − ε, F1 = 1, Fn+1 = (1 + ε)Fn +Fn−1,

and its generating function is

∑
n
Fnxn =

1 − ε

1 − (1 + ε)x − x2

The ratio of Fibonacci numbers has a nice continued fraction expansion:

fn

fn+1
= [1, · · · , 1︸ ︷︷ ︸

n times

] = 1 +
1

1 + 1
1+···

There is a similar identity for ratios of the Fn’s.
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Theorem 6.
Fn

Fn+1
= [1 + ε, · · · , 1 + ε︸ ︷︷ ︸

n times

] = 1 + ε +
1

1 + ε + 1
1+ε+ 1

···

In addition, by analysing the generating function, we are able to write the super
Fibonacci numbers in terms of the golden ratio:

Theorem 7. Let Φ± = 1±
√

5
2 +

(
1± 1√

5
2

)
ε = 1±

√
5

2

(
1 ± 1√

5
ε
)

. Then we have

Fn =
1√
5

(
1 − 6

5
ε

)(
Φn+1

+ − Φn+1
−

)
Remark 5. Note that yn is the OEIS sequence A054454 as well as the third column of the
triangular array A054453. The super Fibonacci numbers also appeared in [8] under the
name of “shadow sequences”. An analogue of Theorem 6 has also been obtained in [1]
for shadow Fibonacci numbers as an example of super continued fractions.
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