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On linear intervals in the alt ν-Tamari lattices
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Abstract. Given a lattice path ν, the ν-Tamari lattice and the ν-Dyck lattice are two
natural examples of partial order structures on the set of lattice paths that lie weakly
above ν. In this paper, we introduce a more general family of lattices, called alt ν-
Tamari lattices, which contains these two examples as particular cases. Unexpectedly,
we show that all these lattices have the same number of linear intervals.

Résumé. Étant donné un chemin discret ν, le treillis ν-Tamari et le treillis ν-Dyck sont
deux ordres partiels très naturels sur l’ensemble des chemins qui restent toujours au-
dessus de ν. Dans cet article, nous définissons une famille plus générale de treillis,
appelés les treillis alt ν-Tamari, qui contient ces deux ordres partiels comme cas parti-
culiers. Nous montrons que, de façon surprenante, tous ces treillis possèdent le même
nombre d’intervalles linéaires.
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1 Introduction

The classical Tamari lattice is a partial order on Catalan objects which has inspired a
vast amount of research in various mathematical fields [11]. One direction of research
which has received a lot of attention in recent years regards its number of intervals [7],
which is conjectured to be equal to the dimension of the alternating component in the
study of trivariate diagonal harmonics [10]. Motivated by this intriguing connection,
Bergeron introduced a generalization of the Tamari lattice called the m-Tamari lattice,
and conjectured that its number of intervals again coincides with the dimension of the
alternating component in higher trivariate diagonal harmonics [1]. A formula for their
enumeration and connections to representation theory can be found in [2, 3]. A further
generalization of the Tamari lattice, which includes the m-Tamari lattice, is the ν-Tamari
lattice introduced by Préville-Ratelle and Viennot [12]. These lattices are indexed by a
lattice path ν, and their number of intervals is connected to the enumeration of non-
separable planar maps as shown in [9].
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Inspired by the enumeration of intervals in the classical Tamari lattice and its gener-
alizations, and guided by computer experimentation, Chapoton proposed to study the
enumeration of the simpler class of linear intervals (intervals which are chains). This led
to the work of the second author in [8], where he provides an explicit simple formula
for the number of linear intervals in the classical Tamari lattice, and shows that their
enumeration coincides with the enumeration of linear intervals in the Dyck lattice. The
Dyck lattice, sometimes called the Stanley lattice, is perhaps the most natural poset on
Dyck paths, defined by P ≤ Q if Q is weakly above P. In [8], the author also defines
a new family of posets called alt Tamari posets, which contain the Tamari lattice and
the Dyck lattice as particular cases. He shows that all alt Tamari posets have the same
number of linear intervals of any given length.

In this paper, we generalize the results in [8] by introducing a new family of posets
called alt ν-Tamari posets. We show that they are lattices, and that they all have the
same number of linear intervals of any given length. Figure 1 and Figure 2 illustrate
the three different alt ν-Tamari lattices for ν = ENEENN. In each case, the number
of linear intervals of length k is given by ℓk where ℓ = (ℓ0, ℓ1, ℓ2, ℓ3) = (16, 24, 16, 3).
For instance, 16 represents the trivial intervals of length 0, which are just the elements
of each poset; there are 24 linear intervals of length 1, which correspond to the cover
relations (edges in the figures); there are 16 linear intervals of length 2, and 3 linear
intervals of length 3. The fact that these numbers coincide is somewhat surprising, since
the posets look quite different. As a warm up exercise, the reader is invited to find the 3
linear intervals of length 3 in each of the figures.
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Figure 1: The ν-Tamari lattice and ν-Dyck lattice for ν = ENEENN. They are the
alt ν-Tamari lattices Tamν(δ) for δ = (2, 0, 0) and δ = (0, 0, 0), respectively.

As the figures suggest, the alt ν-Tamari lattices possess a rich underlying geometric
structure, which seems to be realizable as a polytopal complex in some Euclidean space.
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Figure 2: The alt ν-Tamari lattice Tamν(δ) for ν = ENEENN and δ = (1, 0, 0).

This was shown to be true for ν-Tamari lattices in [5], where polytopal complex real-
izations induced by some arrangements of tropical hyperplanes are provided. Similar
geometric realizations in this general context will be presented in forthcoming work.

2 The ν-Dyck lattice

Let ν be a lattice path on the plane consisting of a finite number of north and east unit
steps. We may represent a path ν as a word in the letters E and N for east and north
steps respectively. We may as well represent ν as a sequence of non negative integers
(ν0, ν1, . . . , νk), where k ∈ N is the number of north steps of ν, ν0 is the number of initial
east steps, and νi ≥ 0 is the number of consecutive east steps immediately following the
i-th north step of ν. For instance, the path ENEENNENEEE would correspond to the
sequence (1, 2, 0, 1, 3), while ENEENN corresponds to (1,2,0,0).

A ν-path µ is a lattice path using north and east steps, with the same endpoints
as ν, that is weakly above ν. Alternatively, µ = (µ0, . . . , µk) is a ν-path if and only
if ∑

j
i=0 µi ≤ ∑

j
i=0 νi for all 0 ≤ j ≤ k. The elements of the posets in Figure 1 and

Figure 2 are labelled by ν-paths using this representation, were we omit the commas and
parentheses for simplicity. For instance, the label 1200 is the minimal path (1, 2, 0, 0),
which corresponds to ν = ENEENN.

Definition 1. The ν-Dyck lattice Dyckν is the poset on ν-paths where P ≤ Q if Q is weakly
above P.
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2.1 Left and right intervals in the ν-Dyck lattice

We focus on the special class of linear intervals in a poset. An interval [P, Q] is linear if it
is totally ordered, or equivalently if it is a chain of the form P = P0 < P1 < · · · < Pℓ = Q.
The length of such a linear interval is defined to be ℓ. A linear interval of length zero
(containing only one element) is said to be trivial. The non trivial linear intervals of the
ν-Dyck lattice can be easily characterized into two different classes.

Definition 2. An interval [P, Q] in Dyckν is a left interval if Q is obtained from P by trans-
forming a subpath EℓN into NEℓ for some ℓ ≥ 1. It is a right interval if Q is obtained from P
by transforming a subpath ENℓ into NℓE for some ℓ ≥ 1.

Proposition 3. The left and right intervals in the previous definition are linear intervals of
length ℓ. Moreover, all non trivial linear intervals in Dyckν are either left or right intervals.
Only covering relations are both left and right (when ℓ = 1).

Corollary 4. Left intervals of length ℓ in Dyckν are in bijection with ν-paths marked at a north
step preceded by ℓ east steps. Right intervals of length ℓ in Dyckν are in bijection with ν-paths
marked at an east step followed by ℓ north steps.

3 The ν-Tamari lattice

The ν-Tamari lattices are a generalization of the Tamari lattice. They were defined in
terms of ν-paths by Préville-Ratelle and Viennot in [12]. An alternative description in
terms of ν-trees was presented in [6].

3.1 On ν-paths

For a lattice point p on a ν-path µ, define its ν-altitude altν(p) to be the maximum
number of horizontal steps that can be added to the right of p without crossing ν. Given
a valley EN of µ, let p be the lattice point between the east and north steps. Let q be
the next lattice point of µ such that altν(q) = altν(p), and µ[p,q] be the subpath of µ that
starts at p and ends at q. Let µ′ be the path obtained from µ by switching µ[p,q] with the
east step E that precedes it. The ν-rotation of µ at the valley p is defined to be µ ⋖ν µ′.
An example is illustrated in Figure 3.

Definition 5. The ν-Tamari poset Tamν is the reflexive transitive closure of ν-rotations on ν-
paths.

Theorem 6 ([12]). The ν-Tamari poset is a lattice. Its covering relations are exactly ν-rotations.
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Figure 3: The rotation operation of a ν-path. Each node is labelled with its ν-altitude.

Another approach to define the ν-Tamari lattice is to introduce the ν-elevation of a
subpath as the difference of ν-altitude between its ending point and its starting point.
We thus write elevν(E) = −1 for an east step E and elevν(Ni) = νi if Ni is the i-th north
step of a ν-path µ. For any subpath A of µ, we then have elevν(A) = ∑a∈A elevν(a) as
the sum of the ν-elevation of the steps of A.

The ν-excursion of a north step N of a ν-path µ is defined as the shortest subpath A
of µ that starts with this N and such that elevν(A) = 0. It follows from the definition
of the ν-excursion that exchanging the east step E of a valley with the ν-excursion that
follows it is exactly a covering relation in Tamν.

This alternative description is useful to generalize the ν-Tamari lattice in Section 4.

3.2 On ν-trees

One can also define a poset on ν-trees which is isomorphic to the ν-Tamari lattice.
We denote by Fν the Ferrers diagram that lies weakly above ν in the smallest rect-

angle containing ν. Let Lν denote the set of lattice points inside Fν. We say that two
points p, q ∈ Lν are ν-incompatible if p is strictly southwest or strictly northeast of q, and
the smallest rectangle containing p and q lies entirely in Fν. Otherwise, p and q are said
to be ν-compatible. A ν-tree is a maximal collection of pairwise ν-compatible elements
in Lν. In particular, the vertex at the top-left corner of Fν is ν-compatible with everyone
else, and belongs to every ν-tree. Connecting two consecutive elements in the same row
or column allows us to visualize ν-trees as classical rooted binary trees [6]. The vertex at
top-left corner of Fν is always the root. An example of a ν-tree and the rotation operation
which we now describe is shown in Figure 4.

Let T be a ν-tree and p, r ∈ T be two elements which do not lie in the same row
or same column. We denote by p□r the smallest rectangle containing p and r, and
write p⌞r (resp. p⌝r) for the lower left corner (resp. upper right corner) of p□r.

Let p, q, r ∈ T be such that q = p⌞r and no other elements besides p, q, r lie in p□r.
The ν-rotation of T at q is defined as the set T′ =

(
T \ {q}) ∪ {q′}, where q′ = p⌝r. As

proven in [6, Lemma 2.10], the rotation of a ν-tree is also a ν-tree.
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Figure 4: The rotation operation of a ν-tree.
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Figure 5: Right flushing bijection from ν-paths to ν-trees.

Definition 7. The rotation poset of ν-trees is the reflexive transitive closure of ν-rotations.

Theorem 8 ([6]). The ν-Tamari lattice is isomorphic to the rotation poset of ν-trees.

A bijection between these two posets is given by the right flushing bijection introduced
in [6]. This bijection maps a ν-path µ = (µ0, . . . , µk) to the unique ν-tree with µi + 1 nodes
at height i. This tree can be recursively obtained by adding µi + 1 nodes at height i from
bottom to top, from right to left, avoiding forbidden positions. The forbidden positions
are those above a node that is not the left most node in a row (these come from the initial
points of the east steps in the path µ). In Figure 5, the forbidden positions are the ones
that belong to the wiggly lines. Note that the order of the nodes per row is reversed.

The inverse of the right flushing bijection is called the left flushing bijection, and can
be described similarly, adding points from left to right, from bottom to top, avoiding the
forbidden position given by the wiggly lines.

3.3 Left and right intervals in the ν-Tamari lattice

The description of the ν-Tamari lattice on ν-trees gives an easy description of its linear
intervals.

Definition 9. An interval [T, T′] in the ν-Tamari lattice on ν-trees is a left interval if T′ is
obtained from T by applying ℓ rotations at nodes q0, . . . , qℓ−1 which are (maybe not directly)
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consecutive in the same row, from left to right, for example p13, p12 in Figure 5. It is a right
interval if T′ is obtained from T by applying ℓ rotations at nodes q0, . . . , qℓ−1 which are (maybe
not directly) consecutive in the same column, from bottom to top, for example p3, p4 in Figure 5.

Proposition 10. The left and right intervals in the previous definition are linear intervals of
length ℓ. Moreover, all non trivial linear intervals in Tamν are either left or right intervals.

Remark 11. The left flushing of a left interval on the rotation lattice of ν-trees produces a left
interval [P, Q] of ν-paths in Tamν, where P is of the form AEkBC with B some ν-excursion and
Q is of the form ABEkC. In other words, P is a ν-path with a valley preceded by k east steps.

The left flushing of a right interval on the rotation lattice of ν-trees produces a right inter-
val [P, Q] of ν-paths in Tamν, where P is of the form AEB1 . . . BkC with B1, . . . , Bk being k
consecutive ν-excursions, and Q is of the form AB1 . . . BkEC.

4 The alt ν-Tamari lattice

Given a fixed path ν, the ν-Dyck lattice and the ν-Tamari lattice are two posets defined
on ν-paths with quite similar covering relations. In both cases, a covering relation con-
sists of swapping the east step of a valley with a subpath that follows it. We can in fact
define a whole family of posets that are described in a similar way, and we call them the
alt ν-Tamari posets. We also prove that they are lattices.

4.1 On ν-paths

Let ν = (ν0, . . . , νk) be a fixed path. We say that δ = (δ1, . . . , δk) ∈ Nk is an increment
vector with respect to ν if δi ≤ νi for all 1 ≤ i ≤ k.

Similarly as the ν-elevation, we introduce a notion of δ-elevation of a subpath and
declare that the δ-elevation elevδ(Ni) or δ(Ni) of the i-th north step Ni of any ν-path µ

is equal to δi and that δ(E) = −1 for an east step E. Thus, for any subpath A of µ, its
δ-elevation is δ(A) = ∑a∈A δ(a).

The δ-excursion of a north step N of a ν-path µ is defined as the smallest subpath A
of µ that starts with this N and such that δ(A) = 0. Let EN be a valley of µ and A be
the δ-excursion of N. Let µ′ be the path obtained from µ by switching the step E and the
subpath A. We say that µ ⋖δ µ′ is a δ-rotation.

Definition 12. Let δ be an increment vector with respect to ν. The alt ν-Tamari poset Tamν(δ)
is the reflexive transitive closure of δ-rotations on the set of ν-paths.

Remark 13. For a fixed path ν, there are two extreme choices of increment vector δ. If δi = νi
for all 1 ≤ i ≤ k, the alt ν-Tamari lattice coincides with the ν-Tamari lattice. If δi = 0 for all
1 ≤ i ≤ k, the alt ν-Tamari lattice coincides with the ν-Dyck lattice.
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For a general increment vector δ with respect to ν, it is not a priori clear that Tamν(δ)
is a lattice. This is a consequence of the following results.

Theorem 14. Let ν̌0 = ∑k
i=0 νi − ∑k

i=1 δi and ν̌i = δi ≤ νi. Then ν̌ = (ν̌0, ν̌1, . . . , ν̌k) is a
path below ν whose endpoints are the same as ν. Let 1ν be the ν-path with all north steps at the
beginning. The following hold:

1. The alt ν-Tamari poset Tamν(δ) is the restriction of Tamν̌ to the subset of paths above ν.

2. The restriction of Tamν̌ to the subset of paths above ν is the interval [ν, 1ν] in Tamν̌.

3. The alt ν-Tamari poset Tamν(δ) is a lattice.

Proof. Firstly, we have ∑
j
i=0 ν̌i − ∑

j
i=0 νi = ∑k

i=j+1(νi − δi) ≥ 0, where equality holds for
j = k. Then, δ-rotations of a ν-path µ coincide with ν̌-rotations of µ.

Secondly, the condition on δ ensures that any ν-rotation of a ν-path µ can be achieved
as a sequence of δ-rotations. Thus, all ν-paths are indeed above ν in Tamν̌, thus Tamν(δ)
is indeed an interval in a lattice, and it is therefore a lattice.

4.2 On (δ, ν)-trees

The alt ν-Tamari lattice Tamν(δ) is the interval [ν, 1ν] in Tamν̌. So, it can be described
as the rotation lattice of ν̌-trees that are above the ν̌-tree Tν corresponding to ν in Tamν̌.
These trees can be described as maximal collections of pairwise compatible elements in
a shape Fδ,ν which we will now describe. This point of view will be essential to show
that all alt ν-Tamari lattices have the same number of linear intervals of any length.

Let δ, ν and ν̌ as in Theorem 14. Let Fν̌ be the Ferrers diagram that lies weakly above
ν̌. We consider the lattice path ν̂ that starts at the lowest right corner of Fν̌ (the point
with coordinates (ν̌0, 0)) which consists of the sequence of west and north steps

Wν0 NWγ1 NWγ2 . . . NWγk , for γi = νi − δi.

We define Fδ,ν to be the subset of Fν̌ consisting of the boxes that are not below ν̂, and
denote by Lδ,ν its set of lattice points. A (δ, ν)-tree is a maximal collection of pairwise
ν̌-compatible elements in Lδ,ν. An example is illustrated on the right of Figure 6.

Proposition 15. The (δ, ν)-trees are exactly the ν̌-trees that are above Tν in Tamν̌, where Tν is
the ν̌-tree corresponding to ν under the right flushing bijection with respect to ν̌.

Definition 16. The rotation poset of (δ, ν)-trees is the reflexive transitive closure of ν̌-rotations
on (δ, ν)-trees.

Theorem 17. The alt ν-Tamari lattice Tamν(δ) is isomorphic to the rotation poset of (δ, ν)-trees.
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Proposition 18. For each ν-path µ = (µ0, µ1, . . . , µk), there is a unique (δ, ν)-tree T that has
exactly µi + 1 nodes at height i, for 0 ≤ i ≤ k.

We call the bijection in this proposition the (δ, ν) right flushing bijection from ν-paths
to (δ, ν)-trees. It can be described in exactly the same way as the right flushing bijec-
tion from Section 3.2: we recursively add µi + 1 nodes to the tree inside the shape Fδ,ν
from right to left, from bottom to top, while avoiding the forbidden positions above
a node which is not the left most node in a row. Figure 6 shows the image of the
path µ = (1, 0, 1, 1, 3, 2, 1, 2) for δmax = (1, 0, 2, 2, 0, 3, 0) (left) and for δ = (0, 0, 1, 2, 0, 1)
(right), where the base path is ν = (3, 1, 0, 2, 2, 0, 3, 0).

4.3 Left and right intervals in the alt ν-Tamari lattice

Since Tamν(δ) is an interval in Tamν̌, its linear intervals are linear intervals in Tamν̌.

Proposition 19. The non trivial linear intervals in Tamν(δ) are either left or right inter-
vals [T, T′] where T and T′ are both (δ, ν)-trees.

We identify a left interval [T, T′] of length ℓ in Tamν(δ) with the bottom tree T marked
at the nodes q0, q1, . . . , qℓ, where T′ is obtained by consecutively rotating q0, . . . , qℓ−1 in T.
Here, q0, . . . , qℓ are consecutive initial nodes (left most nodes) of T in some row different
than the top. A Γ -marked (δ, ν)-tree is a tuple (T, q0, . . . , qℓ) obtained this way.

For simplicity in the figures, we represent a left interval by marking an Γ (horizon-
tal L) in T, which connects the nodes q0, . . . , qℓ to each other and the node q0 to the
node directly above it. Figure 6 shows two trees with six different marked Γ’s. They
correspond to six left intervals of lengths 1,1,1,1,2, and 3.

Similarly, we identify a right interval [T, T′] of length ℓ in Tamν(δ) with the top tree T′

marked at the nodes q′0, q′1, . . . , q′ℓ, where T is obtained by consecutively rotating down
q′0, . . . , q′ℓ−1 in T′. Here, q′0, . . . , q′ℓ are consecutive final nodes (top most nodes) of T′ in
some column different than the left most. In addition, the points q′i have the condition
that they are not the bottom lattice point of a north step in the path ν̂; otherwise, a
down rotation could not be performed at the node q′i+1. A

L

-marked (δ, ν)-tree is a
tuple (T′, q′0, . . . , q′ℓ) obtained this way.

For simplicity in the figures, we represent a right interval by marking an

L

(vertical L)
in T′, which connects the nodes q′0, . . . , q′ℓ to each other and the node q′0 to the node
directly to its left. Figure 7 shows two trees with four different marked

L

’s. They
correspond to four right intervals of lengths 1,1,1, and 3.

Proposition 20. The following hold:

1. Left intervals in Tamν(δ) are in bijection with Γ -marked (δ, ν)-trees (T, q0, . . . , qℓ).

2. Right intervals in Tamν(δ) are in bijection with

L

-marked (δ, ν)-trees (T′, q′0, . . . , q′ℓ).

In both cases, the length of the interval is equal to ℓ.
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5 Bijections between linear intervals

As we have seen in Proposition 18, a (δ, ν)-tree T is completely characterized by its row
vector r = (r0, r1 . . . , rk), where ri is the number of nodes of T at height i. The horizontal
flushing bijection φδ,δ′ is the bijection from (δ, ν)-trees to (δ′, ν)-trees that preserves the
number of nodes at each height (preserving the row vector). This naturally extends to a
map φ̃δ,δ′ from Γ -marked (δ, ν)-trees to Γ -marked (δ′, ν)-trees, defined by

φ̃δ,δ′(T, q0, . . . , qℓ) = (φδ,δ′(T), q̃0, . . . , q̃ℓ),

where q̃i is the node of φδ,δ′(T) corresponding to qi in T under the bijection φδ,δ′ . An
example is illustrated in Figure 6.

77 67 4 4 3 3 1 1 13
2
3
4
2
2
1
2

11 64 7 7 7 4 3 3 13
2
3
4
2
2
1
2

Figure 6: Bijection between left intervals for δmax and δ = (0, 0, 1, 2, 0, 1, 0).

Proposition 21. The map φ̃δ,δ′ is a bijection from Γ-marked (δ, ν)-trees to Γ-marked (δ′, ν)-trees.

Theorem 22. For a fixed ν, all alt ν-Tamari lattices have the same number of left intervals of
length ℓ.

In order to define a bijection between right intervals of two alt ν-Tamari lattices we
need a more subtle idea. For this, we use a bijection that "preserves” a modified column
vector of (δ, ν)-trees.

Let δ, ν and ν̌ as in Theorem 14, and m = ν0 + · · ·+ νk. The paths ν and ν̌ start at the
origin (0, 0) and end at the coordinate (m, k). Given a (δ, ν)-tree T, the column vector of T
is the vector c(T) = (c̄0, c̄1, . . . , c̄m) such that c̄i counts the number of nodes in T with
x-coordinate equal to i.

The (δ, ν)-tree T is completely determined by c(T). It can be reconstructed via the
down flushing bijection, which recursively adds points to T in Fδ,ν from right to left, from
bottom to top, avoiding forbidden positions appearing on the left of previously added
nodes that are not the top node in their column (the wiggle forbidden lines are horizontal
in this case).

We call a lattice point in Fδ,ν irrelevant if it is the bottom point of a north step in
the path ν̂ (recall this is the left boundary path of the shape Fδ,ν). All other lattice
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points are called relevant. Given a (δ, ν)-tree T, the δ-column vector of T is the vec-
tor cδ(T) = (c1, . . . , cm) such that ci counts the number of relevant nodes in T with
x-coordinate equal to i. Since the only relevant point with x-coordinate equal to zero
is the top left corner (corresponding to the root of every tree), we note that c0 = 1 for
every tree, and is omitted in the vector cδ(T). In Figure 7, the irrelevant points are drawn
green, and the relevant points brown; the δ-column vectors of the two examples in this
figure are (1, 4, 1, 2, 2, 1, 1, 1, 1, 2, 1) (left) and (1, 2, 2, 2, 1, 4, 1, 1, 1, 1, 1) (right). Note that
one is a permutation of the other.

Proposition 23. A (δ, ν)-tree T is completely determined by its δ-column vector cδ(T).

Let bδ = (b1, . . . , bm) be such that bi counts the number of boxes in column i in the
diagram Fδ,ν. Note that the vector bδ′ is just a permutation of the vector bδ. We define
the permutation σδ,δ′ as the permutation determined by bδ′ = σδ,δ′ ◦ bδ, which sends the
j-th appearance of a number b in bδ to the j-th appearance of b in bδ′ .

Proposition 24. Let T be a (δ, ν)-tree and δ′ another increment vector with respect to ν. There
exists a unique T′ be a (δ′, ν)-tree T′ such that cδ′(T′) = σδ,δ′ ◦ cδ(T), and the irrelevant nodes
in T and T′ have the same heights.

We define the vertical flushing bijection ψδ,δ′ as the bijection between (δ, ν)-trees and
(δ′, ν)-trees that preserves the heights of the irrelevant nodes and that transforms the
δ-column vector according to the permutation σδ,δ′ . That is,

ψδ,δ′(T) = T′, where cδ′(T′) = σδ,δ′ ◦ cδ(T).

An example is illustrated in Figure 7.
This map naturally extends to a map ψ̃δ,δ′ from

L

-marked (δ, ν)-trees to

L

-marked
(δ′, ν)-trees, defined by

ψ̃δ,δ′(T′, q′0, . . . , q′ℓ) = (ψδ,δ′(T′), q̃′0, . . . , q̃′ℓ),

where q̃′i is the node of ψδ,δ′(T′) corresponding to q′i in T′ under the bijection ψδ,δ′ . An
example is illustrated in Figure 7.

Proposition 25. The map ψ̃δ,δ′ is a bijection from

L

-marked (δ, ν)-trees to

L

-marked (δ′, ν)-trees.

Theorem 26. For a fixed ν, all alt ν-Tamari lattices have the same number of right intervals of
length ℓ.

Acknowledgements

This project started during discussions at the SLC 88 conference in Strobl in 2022, and
we are grateful for the pleasant and motivating atmosphere during the conference. We
are specially thankful to Wenjie Fang for interesting discussions that helped us realizing
that the alt ν-Tamari posets are intervals in some ν̌-Tamari lattice, and to Henri Mühle
for allowing us to use Figures 3, 4 and 5, which are reproduced from [4].



12 C. Ceballos, and C. Chenevière

77 67 4 4 3 3 1 1 11 4 1 2 2 1 1 1 1 2 1 11 64 7 7 7 4 3 3 11 2 2 2 1 4 1 1 1 1 1

Figure 7: Bijection between right intervals for δmax and δ = (0, 0, 1, 2, 0, 1, 0).

References

[1] F. Bergeron and L.-F. Préville-Ratelle. “Higher trivariate diagonal harmonics via general-
ized Tamari posets”. J. Comb. 3.3 (2012), pp. 317–341. doi.

[2] M. Bousquet-Mélou, G. Chapuy, and L.-F. Préville-Ratelle. “The representation of the sym-
metric group on m-Tamari intervals”. Adv. Math. 247 (2013), pp. 309–342. doi.

[3] M. Bousquet-Mélou, E. Fusy, and L.-F. Préville-Ratelle. “The number of intervals in the
m-Tamari lattices”. Electron. J. Combin. 18.2 (2011), Paper 31, 26. doi.

[4] C. Ceballos and H. Mühle. “F- and H-triangles for ν-associahedra”. Comb. Theory 2.2 (2022),
Paper No. 3, 26.

[5] C. Ceballos, A. Padrol, and C. Sarmiento. “Geometry of ν-Tamari lattices in types A and
B”. Trans. Amer. Math. Soc. 371.4 (2019), pp. 2575–2622. doi.

[6] C. Ceballos, A. Padrol, and C. Sarmiento. “The ν-Tamari lattice via ν-trees, ν-bracket
vectors, and subword complexes”. Electron. J. Combin. 27.1 (2020), Paper No. 1.14, 31.

[7] F. Chapoton. “Sur le nombre d’intervalles dans les treillis de Tamari”. Sém. Lothar. Combin.
55 (2005/07), Art. B55f, 18.

[8] C. Chenevière. “Linear intervals in the Tamari and the Dyck lattices and in the alt-Tamari
posets”. 2022. arXiv:2209.00418.

[9] W. Fang and L.-F. Préville-Ratelle. “The enumeration of generalized Tamari intervals”.
European J. Combin. 61 (2017), pp. 69–84. doi.

[10] M. D. Haiman. “Conjectures on the quotient ring by diagonal invariants”. J. Algebraic
Combin. 3.1 (1994), pp. 17–76. doi.

[11] F. Müller-Hoissen, J. M. Pallo, and J. Stasheff, eds. Associahedra, Tamari lattices and related
structures. Vol. 299. Progress in Mathematics. Birkhäuser/Springer, Basel, 2012, pp. xx+433.
doi.

[12] L.-F. Préville-Ratelle and X. Viennot. “The enumeration of generalized Tamari intervals”.
Trans. Amer. Math. Soc. 369.7 (2017), pp. 5219–5239. doi.

https://dx.doi.org/10.4310/JOC.2012.v3.n3.a4
https://dx.doi.org/10.1016/j.aim.2013.07.014
https://dx.doi.org/10.37236/2027
https://dx.doi.org/10.1090/tran/7405
https://arxiv.org/abs/2209.00418
https://dx.doi.org/10.1016/j.ejc.2016.10.003
https://dx.doi.org/10.1023/A:1022450120589
https://dx.doi.org/10.1007/978-3-0348-0405-9
https://dx.doi.org/10.1090/tran/7004

	Introduction
	The -Dyck lattice
	Left and right intervals in the -Dyck lattice

	The -Tamari lattice
	On -paths
	On -trees
	Left and right intervals in the -Tamari lattice

	The alt -Tamari lattice
	On -paths
	On (,)-trees
	Left and right intervals in the alt -Tamari lattice

	Bijections between linear intervals

