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RSK for 3-free posets
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Abstract. A long-standing open problem is to find an RSK-like correspondence be-
tween permutations and pairs of tableaux coming from Gasharov’s decomposition of
Stanley’s chromatic symmetric functions into Schur functions. In this, we present such
a correspondence RSKP for incomparability graphs of 3-free posets P that moreover
preserve the descent and inversion statistics. We then extend RSKP to bijections from
proper colorings and multicolorings providing new combinatorial proofs for the Schur
expansions of Gasharov for the chromatic symmetric function, of Shareshian–Wachs
for the chromatic quasisymmetric function, and of Hwang for the multichromatic qua-
sisymmetric function, and its refinement to equivalence classes of acyclic orientations
in the case that P is 3-free.
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1 Introduction

The famous Robinson-Schensted-Knuth RSK correspondence is a bijection

Sn →
⊔

λ⊢n

SYTλ × SYTλ (1.1)

where Sn is the set of permutations on [n] := {1, . . . , n} and SYTλ is the set of standard
Young tableaux of shape λ. This is a row-insertion algorithm taking each letter wi of a
permutation w = w1 · · ·wn ∈ Sn and inserting into a pair (Ti−1, Ri−1) of size i− 1 by a
bumping procedure in Ti−1 and a recording procedure in Ri−1 to make a pair (Ti, Ri) of
size i. The bijection takes w to (Tn, Rn) (see [12, Chapter 7]).

A general form of RSK is a bijection

Pn →
⊔

λ⊢n

SSYTλ × SSYTλ (1.2)

where SSYTλ is the set of semistandard Young tableaux of shape λ and where Pn is
the set of size n generalized permutations, which are multisets {(ui

vi
)}n

i=1 of biletters (ui
vi
)
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where ui and vi are positive integers. These can be written as two-line arrays so that if(
u
v

)
=

(
u1 u2 . . . un
v1 v2 . . . vn

)

then u is weakly increasing and if ui = uj and i < j, then vi < vj. This general RSK
inserts the bottom word v into the first tableau and records the procedure with top word u.

If we restrict to when the top word u is 12 · · · n, we get a bijection from the set Pn of
length n words on the alphabet P of positive integers

Pn →
⊔

λ⊢n

SSYTλ × SYTλ. (1.3)

If we restrict to when the bottom word v is a permutation in Sn, we get another bijection

{(u, v) ∈ Pn | v ∈ Sn} →
⊔

λ⊢n

SYTλ × SSYTλ. (1.4)

The bijection (1.3) provides a combinatorial proof of the decomposition of the com-
plete homogeneous symmetric function h1n in terms of Schur functions

h1n = ∑
λ⊢n

f λsλ

and the bijection (1.1) provides a bijective proof of

n! = ∑
λ⊢n

( f λ)2

where f λ is the number of standard Young tableaux of shape λ ⊢ n.
Gasharov [5] obtains the following decomposition of Stanley’s chromatic symmetric

function [11] for the incomparability graph Inc(P) of a (3 + 1)-free poset P,

XInc(P)(x, t) = ∑
λ⊢n

f P
λ sλ (1.5)

where f P
λ counts a certain class of Young tableaux TP,λ called P-tableaux of shape λ.1 This

specializes to
n! = ∑

λ⊢n
f λ
P f λ. (1.6)

Gasharov obtains (1.5) by applying Jacobi–Trudi and then a sign-reversing involution. A
long-standing open problem then is to find an RSK-like bijection proving (1.5) and (1.6)
directly.

1Definitions to be given in the next section
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Progress has been made on this problem for certain classes of (3 + 1)-free posets
by Sundquist–Wagner–West and Chow [13, 4] for a large class of subposets and Kim–
Pylyavskyy [8] for a slightly smaller one.

In this extended abstract2, we first note that proper colorings can be represented
as generalized permutations whose bottom word is a permutation and hence (1.5) is
equivalent to existence of a bijection analogous to that in (1.4). We then construct a
relatively simple RSK-like bijection when P is 3-free (or, length at most 1): this row-
insertion algorithm inserts bottom letters of a generalized permutation representing the
coloring and records the procedure with the top word, just as in RSK. Although the
previous algorithms apply to much broader classes of posets, ours is much simpler.

Also, for 3-free natural unit interval orders, our RSK gives a bijective proof of the
Shareshian–Wachs [9, 10] refinement of (1.5) for chromatic quasisymmetric functions.
Hwang [7] further generalizes (1.5) to multichromatic quasisymmetric functions, which
involve multicolorings of a graph. By viewing these multicolorings as generalized per-
mutations, we extend our RSK to a bijective map from multicolorings to pairs of semis-
tandard P-tableaux and semistandard Young tableaux, thereby attaining an analogue to
a dual form of (1.2). This provides a bijective proof of Hwang’s generalization in the case
of 3-free natural unit interval orders. Moreover, we can restrict our RSK to colorings of
Hwang’s equivalence classes of acyclic orientations, which provides a bijective proof of
the Schur expansion for his pieces of the chromatic quasisymmetric function in the case
of 3-free natural unit interval orders.

This extended abstract is organized as follows: In Section 2, we provide the relevant
definitions and background for chromatic (quasi)symmetric functions and P-tableaux.
In Section 3, we describe the RSK for 3-free posets on permutations (Definition 3.1,
Theorem 3.4) and then show how to extend RSK to obtain bijective proofs of the Schur
expansions of Gasharov, Shareshian–Wachs (Theorem 3.10) and Hwang (Theorems 3.13
and 3.14).

2 Chromatic Symmetric Functions and P-tableaux

Stanley’s chromatic symmetric function [11] is defined for a graph G = ([n], E) to be

XG(x) = ∑
κ∈K(G)

xκ(1) · · · xκ(n)

where K(G) is the set of proper colorings of G. The incomparability graph of a poset
P, denoted Inc(P), is the graph whose vertices are the elements of P and whose edges
correspond to pairs of incomparable elements of P.

2See [2] for the full paper
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Figure 1: A poset P and a P-tableaux

A P-tableau3 is a Young tableau of size |P| = n filled with the elements of P such that

• each element of P appears exactly once,

• if x is immediately to the left of y, then x ̸>P y, and

• if x is immediately above of y, then x <P y.

See Figure 1 for an example.
Let TP,λ be the set of P-tableaux of shape λ and f λ

P = |TP,λ|. Recall that a poset is
(a + b)-free if it contains no induced subposet that is the disjoint union of an a-chain and
a b-chain. For a partition λ, let λ∗ denote its conjugate. Then, Gasharov showed the
following by applying the Jacobi–Trudi identity and then a sign-reversing involution.

Theorem 2.1 ([5, Theorem 4]). For a (3 + 1)-free poset P, XInc(P)(x) = ∑λ⊢n f λ
P sλ∗ .

A row-strict Young tableau is one where the rows strictly increase and the columns
weakly increase. Let RSTλ be the set of row-strict tableaux of shape λ. If R ∈ RSTλ,
then its conjugate R∗ ∈ SSYTλ∗ . Hence, sλ∗ = ∑R∈RSTλ

xm1(R)xm2(R) · · · where mi(R) is
the number of times i appears in R. We identify the set of permutations Sn with the
subset {κw}w∈Sn ⊂ K(G) given by κw(i) = w−1(i) for w ∈ Sn (why we do this is will be
apparent later, see Remark 2.4). Thus, our problem of finding an appropriate RSK that
would provide direct bijective proofs of Theorem 2.1 and (1.6) is as follows.

Problem 2.2. For a (3 + 1)-free poset P with G = Inc(P), find an RSK-like bijection

RSKP : K(G)→
⊔

λ⊢n

TP,λ × RSTλ

which restricts to a bijection

RSKP : Sn →
⊔

λ⊢n

TP,λ × SYTλ.

3This is the conjugate version of Gasharov’s original definition [5]. We make this change to more
naturally describe the algorithm as a row-insertion algorithm.
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A natural unit interval order (or, NUIO) is a (3 + 1)-free and (2 + 2)-free poset with
a certain natural labeling. Let G = Inc(P) for a natural unit interval order P. The
Shareshian–Wachs [9, 10] chromatic quasisymmetric function for G is

XG(x, t) = ∑
κ∈K(G)

tdes(κ)xκ(1) · · · xκ(n)

where des(κ) is the number of edges ij ∈ E such that i < j and κ(i) > κ(j). This qua-
sisymmetric function specializes to Stanley’s chromatic symmetric function by setting
t = 1. Shareshian and Wachs prove that XG(x, t) is in fact a symmetric function. For a
P-tableaux T ∈ TP define

invG(T) = #{xy ∈ E | x < y and x is to the right of y}.

Let f λ
P,i be the number of P-tableaux T with λ(T) = λ and invG(T) = i.

Theorem 2.3 ([10, Theorem 6.3] ). For a natural unit interval order P,

XInc(P)(x, t) = ∑
i≥0

ti ∑
λ⊢n

f λ
P,isλ∗ . (2.1)

Hence, for RSKP to prove (2.1) bijectively, it must additionally satisfy:

If P is a NUIO and RSKP(κ) = (T, R) then des(κ) = invG(T). (2.2)

Remark 2.4. For w ∈ Sn, the Shareshian–Wachs G-inversion statistic [9, 10] is

invG(w) = #{{w(i), w(j)} ∈ E | i < j, w(i) > w(j)}.

The G-inversion statistic invG(w) is a natural extension of the classical inversion inv(w)
statistic to the graphs we are considering. If κw ∈ K(G) is defined by κw(i) = w−1(i),
then des(κw) = invG(w). Hence, (2.2) for the restriction to Sn is that if RSKP(w) =
(T, R), then invG(w) = invG(T).

In the next section, we will present an RSKP solving Problem 2.2 which additionally
satisfies (2.2) for 3-free posets.

Remark 2.5. The class of 3-free posets have been studied extensively in the literature of
chromatic quasisymmetric functions under a few different, but equivalent, definitions.

• They are length 1 or 0 posets and their incomparability graphs are unit interval
orders with bipartite complement as in Abreu–Nigro [1].

• They correspond to abelian Hessenberg varieties as in Harada–Precup [6].

• They correspond to Dyck paths with bounce number 1 or 0 as in Cho–Huh [3].

The commonality between each of the definitions and interpretations of 3-free posets is
that the resulting theory for chromatic quasisymmetric functions and Hessenberg vari-
eties is quite nice and allows for one to prove e-positivity in a variety of ways. Therefore,
one should expect an RSK for 3-free posets to be just as nice.
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3 RSK for 3-free posets

In this section, we assume that P is a 3-free poset with incomparability graph G. Hence,
any P-tableau T has at most 2 rows.

3.1 RSKP for permutations

We will define a row-insertion algorithm that inserts the letters of permutation w =
w1 · · ·wn one by one to make a series of pairs (T1, R1), . . . , (Tn, Rn) of P-tableau Ti and
standard Young tableau Ri with same shape.

To do so, we must describe a series of local moves on P-arrays (which are defined to
be P-tableaux in columns only). Given a (1, 2, 1) subshape of a P-array T, we change it
into a (2,1,1) shape with the same entries

z x ω

y
−→ z̃ x̃ ω̃

ỹ

Define the change according to the 4 cases as shown in Figure 2.

(1) z x ω

y
x y ω

z

z >P x

(2a) z x ω

y
x z ω

y

z ̸>P x
z ̸<P y
z ̸>P ω

(2b) z x ω

y
ω z x
y

z ̸>P x
z ̸<P y
z >P ω

(3) z x ω

y
z x ω

y

z ̸>P x
z <P y

Figure 2: The 4 local moves

Definition 3.1 (RSK for 3-free P). Let P be a 3-free poset and let w ∈ Sn.

1. For w1, define

T1 = w1 R1 = 1

2. Suppose w1, . . . , wi−1 have been inserted forming a pair (Ti−1, Ri−1) of P-tableau
and standard Young tableaux, respectively, of the same shape λ with |λ| = i− 1.

(a) If wi is not smaller in P than the last number of the first row of Ti−1, then place
wi at the end of the row creating Ti.
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(b) Otherwise, suppose Ti−1 looks like

· · · xk+1 xk xk−1 · · · x1

· · ·

and let xk be the leftmost element of the first row such that xj >P wi for all
j ≤ k (so, xk+1 ̸>P wi). Then replace xk by wi and place xk in the cell directly
below its old cell (this is empty because P is 3-free). Then, apply the local
moves moving this new domino to the left until we have a partition shape.
Call this new tableau Ti.

In either case, if c is the new cell of Ti, set Ri(c) = i.

We write RSKP(w) = (T, R) for the result after inserting the final letter of w.

Example 3.2. Let P be as in Figure 1 and suppose we have

(T5, R5) =
(

3 4 2 5 6 , 1 2 3 4 5
)

and we want to insert w6 = 1. Then we need 3 local moves, which we indicate with an
arrow.

3 4 2 1 6
5

(3)−→ 3 4 2 1 6
5

(2b)−−→ 3 1 4 2 6
5

(2a)−−→ 1 3 4 2 6
5

Example 3.3. Let P be as in Figure 1 and let w = 361452. We show the full RSKP for w
in Figure 3. If we apply a local move during the insertion step to compute Ti, we show
them to the left of the corresponding step.

Theorem 3.4. For 3-free P, the above algorithm w 7→ (T, R) is a bijection

RSKP : Sn →
⊔

λ⊢n

TP,λ × SYTλ

such that if P is additionally a natural unit interval order and RSKP(w) = (T, R), then
invG(w) = invG(T).

Proof (Idea). One needs to check that

(1) local moves create P-tableaux,

(2) each local move has a unique inverse local move, and

(3) each local move preserves G-inversions when P is a natural unit interval order.

Then (1) plus 3-free gives a well-definition; (2) gives the bijective property; and (3) plus
the definition of the insertion gives (2.2).
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Ti Ri

3 1

3 6 1 2

3 1
6

(3)−→ 3 1
6

1 2
3

3 1 4
6

1 2 4
3

3 1 4 5
6

1 2 4 5
3

3 1 4 2
6 5

(2a)−−→ 3 1 2 4
6 5

(3)−→ 3 1 2 4
6 5

1 2 4 5
3 6

Figure 3: RSKP(361452)

1

2

3 123 7→
(

1 2 3 , 1 2 3
)

132 7→
(

1 3 2 , 1 2 3
)

213 7→
(

2 1 3 , 1 2 3
)

312 7→
(

1 2
3

, 1 3
2

)

231 7→
(

1 2
3

, 1 2
3

)
321 7→

(
3 2 1 , 1 2 3

)

Figure 4: RSKP for a poset P on [3]

Example 3.5. In Example 3.3, we have invG(w) = invG(T) = 5. See Figure 4 for a
complete example for n = 3.

Hence, Theorem 3.4 provides a new combinatorial proof of (1.6) when P is 3-free. For
w ∈ Sn, let DES(w) be the usual descent set of a permutation. For a standard Young
tableaux R define DES(R) = {i ∈ [n − 1] | i + 1 is below i}. Then classical RSK has
the property that if RSK(w) = (T, R), then DES(w) = DES(R). For a poset P, define
DESP(w) = {i ∈ [n− 1] | wi >P wi+1}. Then RSKP also “preserves descents", meaning
the following.

Proposition 3.6. For 3-free posets P, if RSKP(w) = (T, R), then DESP(w) = DES(R).

Example 3.7. In Example 3.3, we have DESP(w) = DES(R) = {2, 5}.

Remark 3.8. Chow [4] points out that the Sundquist–Wagner–West algorithm preserves
descents only on a subclass of the posets considered in [13]. This smaller subclass does
not contain 3-free posets. The Kim–Pylyavskyy algorithm satisfies the similar property
that DES(R) = {n− d | d ∈ DESP(w)}.
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3.2 Proper colorings

While section 3.1 was just for permutations, it serves as the foundation for an RSKP
of colorings. For each proper coloring κ ∈ K(G), form the generalized permutation
{(κ(i)

i )}n
i=1 of biletters. Then write this as a two-line array(

κ

w

)
=

(
κ(w1) κ(w2) . . . κ(wn)

w1 w2 . . . wn

)
so that κ = (κ(w1) ≤ κ(w2) ≤ · · · ≤ κ(wn)) and if κ(wi) = κ(wj) and i < j, then wi > wj.

Example 3.9. Let P be as in Figure 1 and let κ be the coloring of Inc(P) below

G 1 2 3 4 5 6
3 2 1 3 2 1κ

(
κ

w

)
=

(
1 1 2 2 3 3
6 3 5 2 4 1

)

Then, the general RSKP inserts the bottom word w (which is a permutation) to get
a P-tableau T as in Definition 3.1 and records the procedure in R with the top word κ.
Our choice of 2-line array ensures that if κ(wi) = κ(wi+1), then wi >P wi+1, so κ(wi) and
κ(wi+1) will be in separate rows of R, and hence R will be row-strict.

Theorem 3.10. For 3-free P, the above algorithm κ 7→ (T, R) is bijection

RSKP : K(G)→
⊔

λ⊢n

TP,λ × RSTλ

such that if RSKP(w) = (T, R) and P is additionally a natural unit interval order, then
des(κ) = invG(T). Moreover, restricting this map to Sn gives the bijection in Theorem 3.4.

Theorem 3.10 hence provides new combinatorial proofs of the Schur bases expansions
given in Theorems 2.1 and 2.3 when P is 3-free.

Remark 3.11. By applying (P, ω)-partition reciprocity, the monomials of ωXG(x, t) are
seen to be indexed by pairs (o, κ) of acyclic orientations o and weak colorings κ of o,
meaning x → y in o implies that κ(x) ≤ κ(y). In the full paper [2], we extend RSKP to
this collection.

3.3 Proper multicolorings

We now come to the fullest generality of RSKP, mirroring the dual of the RSK bijection
(1.2). A proper multicoloring of a graph G is a map κ that assigns each vertex i a finite
set κ(i) ⊂ P such that if ij ∈ E then κ(i) ∩ κ(j) = ∅. Let MKn(G) be the set of proper
colorings so that ∑v∈G |κ(v)| = n. We can turn a multicoloring κ ∈ MKn(G) into
a generalized permutation (κ

w) of length n analogously to how we did colorings. See
Example 3.12.
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Example 3.12. Let P be as in Figure 1 and let κ be the multicoloring of Inc(P) below

G 1 2 3 4 5 6
3
4

2
5
7

1
6

3 2
4

1κ
(

κ

w

)
=

(
1 1 2 2 3 3 4 5 5 6 7
6 3 5 2 4 1 1 5 2 3 2

)

Hence, the analogous version of (1.2)4 is a bijection

RSKP :MKn(G)→
⊔

λ⊢n

SST P,λ × RSTλ

where SST P,λ is the set of semistandard P-tableaux (meaning you can repeat elements
of P) of shape λ. For a multicoloring κ of G, let the type µ of a multicoloring κ be the
composition µ = (|κ(1)|, |κ(2)|, . . . ) and let des(κ) be the number of pairs {(a, i), (b, j)}
such that if a ∈ κ(i), b ∈ κ(j), ij ∈ E(G) and i < j, then a > b. The definition of invG(T)
is easily extended to T ∈ SST P,λ.

Theorem 3.13. If P is 3-free, then for each n, RSKP is a bijection

RSKP :MKn(G)→
⊔

λ⊢n

SST P,λ × RSTλ

such that if RSKP(κ) = (T, R), then the type of κ is the content of T. If P is additionally a
natural unit interval order, then des(κ) = invG(T).

When P is 3-free, Theorem 3.13 provides new bijective proofs of Gasharov’s Schur
expansion [5, Theorem 4] of the multichromatic symmetric function XG(x; µ) and when
P is a natural unit interval order, Hwang’s expansion [7, Theorem 4.19] of the multichro-
matic quasisymmetric function XG(x, t; µ) of type µ. These are both defined analogously
to their chromatic versions,

XG(x, t; µ) = ∑
λ⊢n
|SST P,λ,µ|sλ XG(x, t; µ) = ∑

i≥0
ti ∑

λ⊢n
|SST P,λ,µ,i|sλ

where SST P,λ,µ,i is the set of T ∈ SST P,λ with content µ and invG(T) = i and
SST P,λ,µ =

⊔
i≥0 SST P,λ,µ,i. In particular, we get a direct combinatorial proof that for

each composition µ = (µ1, µ2, . . . ) of n, we have(
n
µ

)
= ∑

λ⊢n
|SST P,λ,µ| f λ.

4More precisely, a dual form of RSK.
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3.3.1 Equivalence Classes of Acyclic Orientations

Hwang [7] gives a further refinement of XG(x, t; µ), but we will just discuss the case of
µ = (1n) for clarity here. A local flip of an acyclic orientation o changes a → b ← c
to a ← b → c provided a and c are covered by b in the poset induced by o. Say o′ is
equivalent to o if it is related by a sequence of local flips, and let [o] be its equivalence
class. Note that if o′ ∈ [o] then des(o′) = des(o). Let K(G, [o]) be the set of colorings
that are compatible (in a sense) with an o′ ∈ [o] and define a quasisymmetric function

XG,[o](x) = ∑
κ∈K(G,[o])

xκ

Note that XG(x, t) = ∑[o] tdes(o)XG,[o](x, t). When G = Inc(P) for a natural unit interval
order P, Hwang uses noncommutative symmetric function theory to prove that this is a
symmetric function with Schur expansion

XG,[o](x) = ∑
T∈TP,[o]

sλ(T).

where TP,[o] is some set of P-tableaux that are compatible (in a sense) with an o′ ∈ [o]. All
T ∈ TP,[o] have invG(T) = des(o). We prove this expansion bijectively using RSKP. Let
TP,[o],λ be the set of T ∈ TP,[o] with shape λ.

Theorem 3.14. Let P be a 3-free natural unit interval order. For each acyclic orientation o of
G = Inc(P), RSKP restricts to a bijection

RSKP : K(G, [o])→
⊔

λ⊢n

TP,[o],λ × RSTλ

Remark 3.15. We show that RSKP can be extended to the beast poset (Figure 5a) or
more generally the beastly poset5 (Figure 5b). The beast poset is explicitly avoided in the
previous algorithms [13, 8].

2

1

3

5

4

(a) The beast poset

2 . . . m− 1

1

m . . .

n

n− 1r r + 1 . . .

(b) The beastly poset

Figure 5

5This is the second e-positive class of posets considered by Cho and Huh [3] with 3-free being the first.
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