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Abstract. For a partition ν, let λ, µ ⊆ ν be two distinct partitions such that |ν/λ| =
|ν/µ| = 1. Butler conjectured that the divided difference Iλ,µ[X; q, t] = (TλH̃µ[X; q, t]−
TµH̃λ[X; q, t])/(Tλ − Tµ) of modified Macdonald polynomials of two partitions λ and
µ is Schur positive. By introducing a new LLT equivalence called column exchange
rule, we give a combinatorial formula for Iλ,µ[X; q, t], which is a positive monomial
expansion. We also prove Butler’s conjecture for some special cases.
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1 Introduction

In his seminal paper [19], Macdonald introduced the Macdonald P- polynomials Pµ[X; q, t]
which are (q, t)-extension of Schur functions indexed by partitions µ. The modified Mac-
donald polynomials H̃µ[X; q, t] are introduced as a combinatorial version of the Macdonald
P-polynomials.

For a partition µ ⊢ n, the Garsia–Haiman module Vµ is defined by the subspace in the
polynomial ring C[x1, . . . , xn, y1, . . . , yn] spanned by partial derivatives of the polynomial
∆µ analogous to the Vandermonde determinant:

∆µ := det
[

x
pj
i y

qj
i

]
i,j=1,...,n

,

where (pj, qj) runs over cells in µ and the symmetric group Sn acts diagonally permuting
x and y variables [8]. Later, Haiman [13] proved that the Garsia–Haiman module plays
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a role as a representation-theoretic model for the modified Macdonald polynomial, i.e.,
the (bigraded) Frobenius characteristic of Vµ coincides with H̃µ[X; q, t].

Bergeron and Garsia [4] studied relationships among Garsia–Haiman modules called
Science Fiction conjecture. Among the variety of its implications, they studied the inter-
section of Garsia–Haiman modules. To elaborate, Science Fiction conjecture implies the
following.

Conjecture 1.1. Let ν be a partition and µ(1), . . . , µ(k) ⊆ ν be k distinct partitions such that
|ν/µ(1)| = · · · = |ν/µ(k)| = 1. Then the bigraded Sn-module

⋂k
i=1 Vµ(i) is of dimension

n!
k , and its Frobenius characteristic is

Frob

(
k⋂

i=1

Vµ(i) , q, t

)
=

k

∑
i=1

∏
j ̸=i

Tµ(j)

(Tµ(j) − Tµ(i))
H̃µ(i) [X; q, t], (1.1)

where Tµ := ∏(i,j)∈µ ti−1qj−1.

The first assertion is called n!
k -conjecture, and Armon recently proved the n!

2 -conjecture
for hook shapes [2]. The second implication of Science Fiction conjecture gives a for-
mula for the Frobenius characteristic of the intersection of the Garsia–Haiman mod-
ules as a linear combination of the modified Macdonald polynomials. We will call the
symmetric function in the right-hand side of (1.1) an Macdonald Intersection polynomial
of µ(1), . . . , µ(k) and denote it by Iµ(1),...,µ(k) [X; q, t]. In the companion paper of the au-
thors [15], we study a remarkable connection between Iµ(1),...,µ(k) [X; q, t], ∇ek−1 which
is the Frobenius characteristic of the diagonal harmonics [14], and the Shuffle formula
Dk−1[X; q, t] in [10, 7]. In this paper, we focus more on the case when k = 2, which
is related to Butler’s conjecture. In 1994, Butler observed a surprising behavior of the
modified Macdonald polynomials.

Conjecture 1.2. (Butler’s conjecture [6]) Let ν be a partition and λ, µ ⊆ ν be two distinct
partitions such that |ν/λ| = |ν/µ| = 1. Then the Macdonald intersection polynomial

Iλ,µ[X; q, t] = Tλ H̃µ[X;q,t]−Tµ H̃λ[X;q,t]
Tλ−Tµ

is Schur positive.

Note that Science Fiction conjecture implies Butler’s conjecture, as mentioned in [4].
To be more precise, the Macdonald intersection polynomial Iλ,µ[X; q, t] is given as a
Frobenius characteristic of an Sn–module Vλ ∩ Vµ, thus Schur positive.

We divide the main results in this paper into three parts. The first part gives a
combinatorial formula (F-expansion, monomial expansion) for Iλ,µ[X; q, t] (Theorem 4.1,
Corollary 4.2). The second part is to prove partial cases for Butler’s conjecture (Theo-
rem 5.1, Corollary 5.2). The third part provides combinatorial formulas for (q, t)-Kostka
polynomials which are consistent with Butler’s conjecture (Theorems 6.1 and 6.2).
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2 Generalization of modified Macdonald polynomials

A (general) diagram D is a collection of points (cells) in Z+×Z+, and a bottom cell of D is
a cell located in the lowest position on each column. A filled diagram (D, f ) is a diagram
together with a filling

f : D \ {bottom cells of D} → F

that assigns a scalar in F for each cell of D that is not a bottom cell. Throughout this
paper, we let F = C(q, t). We visualize (D, f ) by writing the corresponding value of f
for each cell. For example, see Figure 1.

q2 t

q3t

Figure 1: A filled diagram

We denote a diagram by its row numbers for each column: D = [D(1), D(2), . . . , ],
where D(j) is the set of i′s such that (i, j) ∈ D. Throughout this paper, we assume that for
every diagram D, each column D(i) is an interval [a, b] = {a, a + 1, . . . , b} for some a ≤ b.
For example, the diagram in Figure 1 can be represented as D = [[1, 3], [2, 3], [2, 2]], and
the Young diagram for a partition µ = (µ1, . . . , µℓ) can be written as µ = [[µ′

1], . . . , [µ′
µ1
]],

where µ′ is the conjugate of µ.

Definition 2.1. We give a total order on cells in D row by row, top to bottom, and left
to right within each row. We denote such total order with ND : D → [|D|]. For a filled
diagram (D, f ), we define functions invD : S|D| → F and maj(D, f ) : S|D| → F as follows:
For a permutation w ∈ S|D|, we say that a pair (u, v) of cells in D is an inversion with
respect to w if wND(u) > wND(v) and either

• u = (i, j), v = (i, j′) and j < j′ or

• u = (i, j), v = (i − 1, j′) and j > j′.

Then we define
invD(w) := ∏

(u,v)
q,

where the product is over all pairs (u, v) of cells in D that are inversions with respect to
w. For a permutation w ∈ S|D|, we say that a cell u = (i, j) in D is a descent with respect
to w if wND(u) > wND(v) where v = (i − 1, j) is the cell just below u. Then we define

maj(D, f )(w) := ∏
u

f (u)
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where the product is over all cells that are descents with respect to w. Finally we define
a function stat(D, f ) : S|D| → F as

stat(D, f )(w) := invD(w)maj(D, f )(w).

We defined stat(D, f )(w) for a permutation w ∈ S|D|. However, we note that stat(D, f )(w)
can be defined in the same way for any length |D| word of positive integers w. We define
a generalization of the modified Macdonald polynomial H̃(D, f ) for a filled diagram (D, f )
as

H̃(D, f )[X; q, t] = ∑
w∈Sn

stat(D, f )(w)FiDes(w),

where FS[X] is the fundamental quasisymmetric functions.

Given a partition µ, we define the standard filling of µ,

f st
µ : µ \ {bottom cells of µ} → F

by f st
µ (u) = q− armµ(u)tlegµ(u)+1. Then the modified Macdonald polynomial for the filled

diagram (µ, f st
µ ) is the usual modified Macdonald polynomial

H̃(µ, f st
µ )[X; q, t] = H̃µ[X; q, t],

by Haglund–Haiman–Loehr formula [12].

Example 2.2. Let (D, f ) be a filled diagram as depicted below,

0 α ,

where α ∈ F. Then the statistics are given in the following table.

w ∈ S3 123 132 213 231 312 321
iDes(w) ∅ {2} {1} {1} {2} {1, 2}
invD(w) 1 1 q 1 q q

maj(D, f )(w) 1 α 1 α 1 α

Thus, the modified Macdonald polynomial for (D, f ) is

H̃(D, f )[X; q, t] = F∅ + (q + α)F{1} + (q + α)F{2} + qαF{1,2}.

Two distinct filled diagrams (D, f ) and (D′, f ′) can give the same modified Macdon-
ald polynomials. For example, given a filled diagram (D, f ) where

D = [D(1), D(2), . . . , D(ℓ)].
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Consider a diagram
D′ = [D(2), . . . , D(ℓ), D(1) + 1],

where I + 1 = {a + 1 : a ∈ I} for an interval I. In other words, D′ is a diagram obtained
by moving the leftmost column of D to the end of the right and placing it one cell up.
Cells in D and D′ are naturally in bijection, and we give a filling f ′ on D′ inherited from
the filling f on D. We define cycling(D, f ) := (D′, f ′). Then the following is well-known.

Lemma 2.3. (Cycling rule) Let (D, f ) be a filled diagram and (D′, f ′) = cycling(D, f ). Then
we have

H̃(D, f )[X; q, t] = H̃(D′, f ′)[X; q, t].

In Section 3 and in the omitted proofs in Section 5, we exhibit a variety of relations
between the modified Macdonald polynomials (or LLT polynomials).

3 Column exchange rule and Butler permutations

3.1 Column exchange rule

We introduce the column exchange rule, which concerns the equidistribution of two statis-
tics over permutations. We use this rule to exchange the columns of filled diagrams.

Proposition 3.1. (column exchange rule) Let (D, f ) and (D′, f ′) be filled diagrams that are the
same except for the i-th and i + 1-th columns. In addition, let i-th, and i + 1-th column of (D, f )
is of the form µ = [[n], [m]] and of (D′, f ′) is of the form λ = [[m], [n]] for some n > m, and
fµ : µ → F and fλ : λ → F be fillings such that

• fµ(i, 1) = fλ(i, 2) for i > m + 1,

• α := q−1 fµ(m + 1, 1) = fλ(m + 1, 2), and

• fµ(i, 1) = α fµ(i, 2) = α fλ(i, 1) = fλ(i, 2) for 1 < i ≤ m,

Then there is a stat, iDes, and content-preserving bijection ϕ
(D, f )
i from S|D| to S|D′|. In partic-

ular, we have
H̃(D, f )[X; q, t] = H̃(D′, f ′)[X; q, t].

For example, filled diagrams (µ, fµ) and (λ, fλ) depicted in Figure 2 satisfy the con-

ditions in Proposition 3.1. In what follows, we abuse our notation to write ϕ
(D, f )
i = ϕi

for convenience.
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(µ(n), fµ(n)) =
qα

αa1 a1

αa2 a2

. . . . . .

αan−2 an−2

(λ(n), fλ(n)) =
α

a1 αa1

a2 αa2

. . . . . .

an−2 αan−2

Figure 2: Filled diagrams (µ, fµ) and (λ, fλ)

Remark 3.2. When (D, f ) = (µ, f st
µ ) for a partition µ and standard filling f st

µ , the impli-
cation

H̃(D, f )[X; q, t] = H̃(D′, f ′)[X; q, t]

of the above Proposition follows from [11, Theorem 5.1.1]. Our proof gives a bijective
proof of their theorem, answering a question of Haglund [1]. In addition, we would
like to highlight a few differences and advantages of the column exchange rule (and its
proof).

First of all, the bijection ϕ preserves not only stat, iDes, but also content. This fact will
be a crucial point in Section 5, and in the upcoming paper [15]. Moreover, the bijections
ϕ and ψ appear in the construction of the map ζ, which will be the main ingredient
of Proposition 3.4. Finally, the conditions in Proposition 3.1 is more flexible than the
conditions in [11, Theorem 5.1.1].

3.2 Butler permutations

For a directed perfect matching M = {(a1, a2), . . . , (a2n−1, a2n)}, we say an arc (a, b) is in
the forward direction if a < b and in the reverse direction otherwise. An arc (a, b) is nested
by the other arc (c, d) if min{c, d} < a, b and max{c, d} > a, b. We say that the pair of
arcs (a, b) and (c, d) is crossing if min{a, b} < min{c, d} < max{a, b} < max{c, d} or
min{c, d} < min{a, b} < max{c, d} < max{a, b}. If not, we say the pair is noncrossing.

Definition 3.3. For a permutation w = w1 . . . w2n ∈ S2n. Consider a directed perfect
matching M(w) on {0, 1, . . . , 2n + 1} with directed arcs α1(w), α2(w), . . . as follows:
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• α1(w) is a directed arc from wn to n + 1,

• αi(w) is a directed arc from wn−2(i−1) to wn−2(i−1)+1 for 2 ≤ i ≤ n
2 , and

• α n
2+1(w) is a directed arc from 0 to w1.

Let k(w) the smallest integer k such that the pair of arcs αk(w) and αk+1(w) is noncrossing
if exists. We say that w is a Butler permutation if either

• αk+1(w) is nested by αk(w) and αk(w) is in the reverse direction, or

• αk+1(w) is not nested by αk(w) and αk(w) is in the forward direction.

If there is no such k, we let k(w) to be n
2 . We say that w is a Butler permutation if αk(w) is

in the reverse direction. We denote the set of Butler permutations of length 2n by B2n.

Let w be a word of weight α = (α1, α2, . . . ), i.e. number of i’s in w is αi. The
standardization std(w) of w is given by replacing 1’s with the numbers [1, α1] in increasing
order from left to right, replacing 2’s with the numbers in [α1 + 1, α1 + α2] in increasing
order from left to right, and so on. For example, we have std(3155) = 2134.

3.3 Main Lemma

Proposition 3.4. Suppose n > m. Let µ̄ = [[n], [m] \ {1}], ν̄ = [[m + 1], [m] \ {1}] ⊆ µ, and
λ̄ = [[m], [n] \ {1}]. Let fµ̄ : µ̄ → F and fλ̄ : λ̄ → F be fillings such that

• fµ̄(i, 1) = fλ̄(i, 2) for i > m + 1,

• α := q−1 fµ̄(m + 1, 1) = fλ̄(m + 1, 2),

• fµ̄(i, 1) = α fµ̄(i, 2) = α fλ̄(i, 1) = fλ̄(i, 2) for 2 < i ≤ m, and

• fµ̄(2, 1) = α fλ̄(2, 1).

Then, for any filled diagram (D, fD),

H̃((D,µ̄),( fD, fµ̄))[X; q, t]− αH̃((D,λ̄),( fD, fλ̄))
[X; q, t]

1 − α
= ∑

w
stat(µ̄, fµ̄) FiDes(w),

where the sum is over all permutations w ∈ Sn+m−1+|D| such that std(w↓(D,µ̄)
µ̄ ) ∈ B2m .
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4 Combinatorial formulas for Iλ,µ[X; q, t].

4.1 Proof of a combinatorial formula for the F-expansion for Iλ,µ[X; q, t].

Theorem 4.1. For a partition ν, let µ, λ ⊆ ν be two distinct partitions such that |ν/µ| =
|ν/λ| = 1. Moreover, suppose the cells ν/µ, and ν/λ are in i-th and j-th column respectively
for i < j. Then the fundamental quasisymmetric expansion of Iλ,µ[X; q, t] is given by

Iλ,µ[X; q, t] = ∑
w∈Bµ,λ

stat(µ, f st
µ )(w)FiDes(w)[X]. (4.1)

Here, Bµ,λ is the set of permutations w of S|D| such that restriction of

std(ϕν1−1 · · · ◦ ϕj ◦ ϕ1 ◦ · · · ◦ ϕi−1(w))

to the first m + 1 rows of the last two columns is a Butler permutation.

We sketch a proof of Theorem 4.1 by giving an example. Let λ = [[4], [3], [3], [2], [1]]
and µ = [[4], [4], [3], [1], [1]]. First of all, the filled diagram (λ, f st

λ ) is

t

q−2t2 q−1t t

q−3t3 q−2t2 q−1t2 t

.

After applying the column exchange rule to move the second column to the left and the
fourth column to the right, then cycling rule to move the first column to the last, we
obtain the filled diagram (Dλ, fDλ

)

q−1t q−1t

q−2t2 t q−2t2

q−3t3 q−1t2 q−1t

.
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On the other hand, the filled diagram (µ, f st
µ ) is

q−1t t

q−2t2 q−1t2 t

q−2t3 q−1t3 t2

.

After applying the column exchange rule to move the fourth column to the left and the
second column to the right, then cycling rule to move the first column to the last, we
obtain the filled diagram (Dµ, fDµ)

q−1t q−1t

q−2t2 t q−1t2

q−3t3 q−1t2 q−3t3

.

One can check that the filled diagrams (Dλ, fDλ
) and (Dµ, fDµ) are the same except

for the last two columns. In addition, the last two columns satisfy the condition of
Proposition 3.4 where α = q2t2.

We end this section with two implications of Theorem 4.1. The first one is a monomial
expansion of Iλ,µ[X; q, t], and the second one is about the specialization Iλ,µ[X; 1, 1].

Corollary 4.2. For a partition ν, let µ, λ ⊆ ν be two distinct partitions such that |ν/λ| =
|ν/µ| = 1. Then the monomial expansion of Iλ,µ[X; q, t] is given by

Iλ,µ[X; q, t] = ∑
ν⊢n

∑
w∈Bµ,λ,ν

stat(µ, f st
µ )(w)mν[X]. (4.2)

Here, Bµ,λ,ν is the set of words w of weight ν whose standardization std(w) is a Butler permuta-
tion of (µ, λ).

Corollary 4.3. For a partition ν, let µ, λ ⊆ ν be two distinct partitions such that |ν/λ| =
|ν/µ| = 1. Then we have

Iλ,µ[X; 1, 1] = h(2,1n−2)[X],

which is independent of µ and λ. In particular, this is consistent with n!
2 -conjecture.
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5 Schur positivity of Iλ,µ[X; q, t]

The first Schur positivity result is the Schur positivity of Iλ,µ[X; q, t] when we move a cell
in the first or the second row of λ to obtain µ. The proof of the following theorem relies
on the theory of LLT polynomials [16]. More precisely, we used Schur positivity of LLT
polynomials [9] and LLT equivalences given in [17, 20, 18].

Theorem 5.1. For a partition ν, let µ, λ ⊆ ν be two distinct partitions such that |ν/λ| =
|ν/µ| = 1. Moreover, suppose ν/λ is a cell in the first or the second row. Then Iλ,µ[X; q, t]
positively expands in LLT polynomials. In particular, Iλ,µ[X; q, t] is Schur positive.

As a corollary, we prove Butler’s conjecture for q = 1 or t = 1 (for general µ and λ).

Corollary 5.2. Let λ be a partition and µ be a partition obtained from λ by moving a cell of a
partition λ to the upper row. Then Iλ,µ[X; q, 1] (or Iλ,µ[X; 1, q]) is Schur positive.

6 Combinatorial formulas for (q, t)-Kostka polynomials

The modified (q, t)-Kostka polynomial K̃µ,ν(q, t) is the Schur coefficient of the modified
Macdonald polynomial:

H̃µ[X; q, t] = ∑
λ

K̃µ,λ(q, t)sλ[X].

This section provides combinatorial formulas for (q, t)-Kostka polynomials when µ is a
two-column partition or a hook.

6.1 Two-column case

For n ≥ 1, we define a directed weighted graph G(n) on 2-bounded partitions p of size
between n and 2n, where there is a directed edge from p to q if and only if p =⇒ q
is a strong marked cover. The weight of each edge is the spin statistic for each corre-
sponding strong marked cover. Then one may think of vertical strong marked tableaux
of (2n) as paths of the (hexagonal) graph, defined on 2-bounded partitions with edges
corresponding to strong marked cover, from top to bottom. For a path P, we define the
end partition End(P) of P as the 2-bounded partition corresponding to the end point of P
and weight wt(P) of the path P as the sum of weights of the edges in P. We now give a
combinatorial formula for 2−Schur expansion for the modified Macdonald polynomials
of two-column partitions. The formula is motivated by the vertical dual Pieri rule, and
the shift invariance of k-Schur functions studied by Blasiak, Morse, Pun, and Summers
[5]. While working on this paper, we found that our formula is equivalent to Zabrocki’s
formula [21].
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Theorem 6.1. Let n and m be positive integers with n ≥ 2m. Then we have

ω
(

H̃(2m,11n−2m)[X; q, t]
)
= ∑

P
wt(P) ∏

i∈L(P)

q
ti s(2)End(P), (6.1)

where ω is the conjugate map on the symmetric function ring given by hn → en for n ≥ 1 and
s(2)µ [X] is the 2-Schur function. In particular, this formula is consistent with Butler’s conjecture.

6.2 Hook case

In [3], Assaf defined the bijections Ak for k ≥ 1. Using these bijections, she gave a
combinatorial formula for the Schur expansion of the modified Macdonald polynomials
indexed by hook partitions. This formula is indeed consistent with Butler’s conjecture.
By showing this, we provide the following formula, which only involves the ‘ordinary’
major statistic.

Theorem 6.2. For µ = (n − k, 1k) a hook partition, we have

H̃µ[X; q, t] = ∑
λ⊢n

∑
w∈SS(λ)

 ∏
1≤i≤k−1,
i∈Des(w)

tmaj(w|[k]) ∏
k≤i≤n−1,
i∈Des(w)

qn−i

ti

 sλ[X],

where SS(λ) is the set of superstandard tableaux of shape λ. In particular, this formula is
consistent with Butler’s conjecture.
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