
Séminaire Lotharingien de Combinatoire 89B (2023) Proceedings of the 35th Conference on Formal Power
Article #84, 12 pp. Series and Algebraic Combinatorics (Davis)

Semistandard Parking Functions and a Finite
Shuffle Theorem

Nicolle González*1, José Simental†2, and Monica Vazirani‡3

1Department of Mathematics, University of California, Berkeley, USA
2Instituto de Matemáticas, Universidad Nacional Autónoma de México, CDMX, México
3Department of Mathematics, University of California, Davis, USA

Abstract. We introduce the higher rank rational (q, t)-Catalan polynomials and prove
these are equal to finite truncations of the Hikita polynomial. We also generalize
results of Gorsky-Mazin-Vazirani and construct an explicit bijection between semistan-
dard parking functions and affine compositions. Using these results we prove a finite
analogue of the Rational Shuffle Theorem in the context of spherical double affine
Hecke algebras.
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1 Introduction

The Catalan numbers Cn are some of the most ubiquitous quantities throughout mathe-
matics, naturally counting objects across a vast array of fields. Their many generaliza-
tions, ranging from the so-called rational Catalan numbers C(m,n) to their bivariate (q, t)
counterpart C(m,n)(q, t), have played a central role in the deep connections between (q, t)-
combinatorics and important problems arising in the K-theory of Hilbert schemes, the
homology of torus knots, the geometry of Gieseker varieties, and other areas of algebraic
geometry, topology, and representation theory.

A particularly important family of objects counted by Catalan numbers is the set
of Dyck paths, lattice paths in a square that do not cross the diagonal. Particular la-
belings of these paths give rise to parking functions. Originally introduced by Konheim
and Weiss [12] in their study of hashing problems, parking functions were afterwards
generalized by Armstrong, Loehr and Warrington [2] to the rational setting. A new
perspective on parking functions, inspired by Anderson [1] and studied extensively by
Gorsky-Mazin-Vazirani [7], gives an explicit bijection between the set of parking func-
tions PF(m, n) and a certain set of affine permutations. More recently, motivated by the
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representation theory of quantizations of the Gieseker moduli space [5] Simental, jointly
with Etingof-Krylov-Losev, generalized these constructions further by introducing the
higher rank rational Catalan numbers C(r)

(m,n) and higher rank semistandard parking functions

SSPFr(m, n). As in the classical and rational cases, | SSPFr(m, n)| = C(r)
(m,n).

We generalize this further by extending the bijection given in [7] to a bijection be-
tween SSPFr(m, n) and affine compositions, which through an explicit standardization
procedure, allows us to define a “dinv” statistic on these new sets of objects. We use
this statistic to introduce the higher rank rational (q, t)-Catalan polynomial C(r)

(m,n)(X; q, t). In
[6] we further show how the dinv statistic corresponds precisely to the dimension of an
associated affine space in an affine paving of a parabolic Springer fiber.

Tying much of this theory together are the celebrated Shuffle Theorems. In the classi-
cal setting, the Shuffle Theorem gives a combinatorial formula for the bigraded Frobe-
nius character of the space of diagonal harmonics. While the Frobenius character of
this representation was computed by Haiman geometrically in the early 2000’s [10] and
its combinatorial expression, given as a sum over parking functions, was conjectured
by Haglund-Haiman-Loehr-Remmel-Ulyanov [9] shortly thereafter, the conjecture was
open for 15 years until Carlsson and Mellit [4] proved it. Unexpectedly arising in their
studies of knot invariants via Cherednik algebras, Gorsky and Neguţ proposed a ratio-
nal generalization of the Shuffle Conjecture. In particular, they conjectured that a certain
elliptic Hall algebra element acting on 1 inside the ring of symmetric functions gave rise
to the Frobenius character of a certain bigraded Sn representation. The combinatorial
formula for this character, eponymously named the Hikita polynomial, had previously
been computed by Hikita [11] as a certain sum over PF(m, n). Using similar methods as
in the classical case, Mellit [13] successfully proved this Rational Shuffle Theorem.

We connect our results to the Shuffle Theorems by first proving that our higher rank
rational (q, t)-Catalan polynomial corresponds precisely to the truncation of the Hikita
polynomial to a finite number of variables. Then, using the fact that the elliptic Hall
algebra arises as the inverse limit of the spherical double affine Hecke algebra (DAHA)
SH(r)++, we show there is an action of SH(r)++ on the ring of symmetric polynomials
whose action on 1 results in these higher rank rational (q, t)-Catalan polynomials. Since
in the r → ∞ limit this agrees with the rational generalization of Gorsky-Neguţ, our
construction gives a finite analogue of the Rational Shuffle Theorem.

2 Background

Let m, n ∈ Z>0 satisfy gcd(m, n) = 1. An (m, n)-Dyck path is a lattice path consisting of
only north and west steps from (n, 0) to (0, m) bounded by the lines x = 0, y = 0, and
mx + ny = mn. Denote by D(m, n) the set of all (m, n)-Dyck paths and let N(D) be the
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set of north steps for any D ∈ D(m, n).
Let v1, v2, . . . , vm and u1, u2, . . . , un be the north and west steps of D ∈ D(m, n) read

from (n, 0) to (0, m). We denote by dinv(D) the number of diagonal inversions of D,
which consist of pairs (ur, vs) over all 1 ≤ r ≤ n and 1 ≤ s ≤ m, such that both ur and vs
are intersected by some line ℓ of slope −m

n and vs lies southeast of ur in D. The area of a
Dyck path D ∈ D(m, n) is the number of lattice cells fully contained between the path D

and the diagonal line mx + ny = mn. We set co-dinv(D) = (m−1)(n−1)
2 − area(D).

Example 1. The Dyck path D in Figure 2 has area(D) = 2 , dinv(D) = 4 and thus
co-area(D) = (m−1)(n−1)

2 − 2 = 4, co-dinv(D) = (m−1)(n−1)
2 − 4 = 2.

It is a well known fact that the number of (m, n)-Dyck paths for coprime m, n is
given by the rational Catalan numbers, C(m,n) := 1

n (
n+m−1

m ). The (q, t)-Catalan number is the
bivariate deformation given by the polynomial

C(m,n)(q, t) := ∑
D∈D(m,n)

qarea(D)tdinv(D). (2.1)

2.1 Parking Functions and the Hikita Polynomial

An (m, n)-parking function is a pair (D, φ), where D is an (m, n)-Dyck path and φ :
N(D) → {1, . . . , m} is a bijection that is strictly decreasing when reading upward on
consecutive north steps. We will denote by PF(m, n) the set of (m, n)-parking functions.

For example, in Figure 1, the three rightmost diagrams correspond to all possible
(3, 2)-parking functions for the given Dyck path.

Parking functions are in bijection with a certain set of affine permutations. To explain
this bijection we recall the affine symmetric group,

S̃m :=

{
σ : Z→ Z | σ is a bijection, σ(x + m) = σ(x) + m, and

m

∑
i=1

σ(i) =
(

m + 1
2

)}
.

By the periodicity condition σ ∈ S̃m is completely determined by σ(1), . . . , σ(m). We
will use window notation and write σ = [σ(1), . . . , σ(m)]. We say σ ∈ S̃m is n-stable if
σ(x+ n) > σ(x) for all x ∈ Z and denote by S̃n

m the set of all n-stable affine permutations.
In [7], the third author jointly with Gorsky and Mazin study a bijection (see Sec-

tion 3.1)
A : PF(m, n)→ S̃n

m, (2.2)

Using this, for σ = A(D, φ), we define

co-dinv(D, φ) := |{(i, h) ∈ {1, . . . , m} × {1, . . . , n} | σ(i + h) < σ(i)}|. (2.3)

and set dinv(D, φ) := (m−1)(n−1)
2 − co-dinv(D, φ).
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Figure 1: A (3, 2)-semistandard parking function (D, φ) and all (3, 2)-parking func-
tions for D, of which the second from the left is the unique standardization std(D, φ)

determined by γ. A box with upper right corner (x, y) is marked by γ(x, y).

Gessel defined the fundamental quasisymmetric functions for any subset S ∈ {1, . . . , m}
as the series

QS(X) := ∑
i1≤···≤im

j∈S⇒ij<ij+1

xi1 . . . xim . (2.4)

These functions interpolate between elementary and complete symmetric functions and
form a basis for the space of quasisymmetric functions in an infinite number of variables.

Let area(D, φ) := area(D) for any (D, φ) ∈ PF(m, n). Then, the Hikita polynomial is
the q, t-symmetric function given by

H(m,n)(X; q, t) := ∑
(D,φ)∈PF(m,n)

qarea(D,φ)tdinv(D,φ)QDes(σ−1)(X), (2.5)

where Des(σ−1) := {1 ≤ j ≤ m | σ−1(j + 1) < σ−1(j)} denotes the descent set of σ−1

for σ = A(D, φ) ∈ S̃n
m. When paired with the complete symmetric function hm(X) under

the Hall inner product, the Hikita polynomial returns the rational (q, t)-Catalan number,
that is ⟨H(m,n), hm⟩ = C(m,n)(q, t).

2.2 Higher Rank Catalans and Semistandard Parking Functions

Motivated by the representation theory of quantizations of the Gieseker moduli space, in
[5] Etingof, Krylov, Losev and the second author introduced the following generalization
of parking functions.

Definition 2. Let r, m, n ∈ Z>0. A rank r semistandard (m, n)-parking function is a pair
(D, φ) with D ∈ D(m, n) and a function φ : N(D) → {1, . . . , r} that is weakly decreasing
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when reading upward on consecutive north steps. Let SSPFr(m, n) be the set of all rank
r semistandard (m, n)-parking functions.

In the special case when r = m, and φ is a bijection, then the filling will automat-
ically become standard, recovering the original set of (m, n)-parking functions PF(m, n)
considered in [2].

Given any (D, φ) ∈ SSPFr(m, n), we let area(D, φ) := area(D), define the weight of
(D, φ) as the composition of m given by wt(D, φ) := (|φ−1(1)|, |φ−1(2)|, . . . , |φ−1(r)|).
Let SSPFr

w(m, n) denote the set of all rank r semistandard (m, n)-parking functions with
weight w. Note that for any (D, φ) ∈ PF(m, n), we have wt(D, φ) = (1m).

Example 3. Consider (D, φ), the semistandard (5, 4)-parking function in Figure 2 (left).
Then (D, φ) has rank r = 3, area(D, φ) = 2, and wt(D, φ) = (1, 3, 1). By comparison, the
(5, 4)-parking function in Figure 2 (right) has the same area but rank 5 and weight (15).

In [5, Theorem 2.28], Etingof, Krylov, Losev and the second author defined the rank r
(m, n)-Catalan number C(r)

(m,n) to be the cardinality of SSPFr(m, n) and proved that when
m and n are coprime,

C(r)
(m,n) := | SSPFr(m, n)| = 1

n

(
nr + m− 1

m

)
. (2.6)

3 Higher Rank Rational (q, t)-Catalan Polynomial

As mentioned above, there exists a map A : PF(m, n) → S̃n
m. We will recall this bijection

and construct a generalization for SSPF (m, n). Denote by [r] the set {1, . . . , r} ⊂ Z.

Definition 4. Let m, r ∈ Z>0. An (m, r)-affine composition is a function f : Z → Z

satisfying the following properties:

(1) f (x + m) = f (x) + r for all x ∈ Z.

(2) The set f−1[r] has exactly one element from each residue class mod m.

(3) ∑x∈ f−1[r] x = (m+1
2 ).

Denote by AC(m, r) the set of all (m, r)-affine compositions. See Examples 5 and 7.

Just as for affine permutations, by the periodicity of condition (1) above, we use
window notation and write f = [ f (1), . . . , f (m)]r. The weight of f is given by

wt( f ) = (| f−1(1)|, | f−1(2)|, . . . , | f−1(r)|).

Note that an affine composition of weight (1m) is simply an affine permutation. As
before, f ∈ AC(m, r) is n-stable if f (x + n) ≥ f (x) for all x ∈ Z. Then, let ACw(m, r)
be the set of all (m, r)-affine compositions with weight w and denote by ACn

w(m, r) the
subset of ACw(m, r) consisting of those affine compositions that are n-stable.
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Example 5. Let m, r ∈ Z>0 and consider the (m, r)-affine composition f ∈ AC(m, r) that
in window notation is f = [1, 1, . . . , 1]r. Note that f−1[r] = [m] so that f is indeed an
affine composition of weight (m, 0, . . . , 0) ∈ Zr

≥0. We leave it to the reader to verify that
f is the function f (x) = r⌊ x−1

m ⌋+ 1.

3.1 Semistandard Parking Functions are Affine Compositions

We now describe A : SSPFr(m, n) → ACn(m, r) which is a generalization of the map
A : PF(m, n)→ S̃n

m.
Given any (D, φ) ∈ SSPFr(m, n), index the north steps v1, . . . , vm ∈ N(D) by their

topmost coordinate, so that vj = (aj, j) for each 1 ≤ j ≤ m and in particular am = 0.
Define the function fφ : Z→ Z as follows:

Step 1: Define γ : Z2 → Z by γ(x, y) = mn−mx− ny.

Step 2: Set f̃ (γ(vj)) = φ(vj) for j ∈ [m], so that f̃−1(i) = γ(φ−1(i)) for i ∈ [r].

Step 3: For any x ̸∈ {γ(vj)}1≤j≤m, write x = γ(vj) + pm for some p ∈ Z and j ∈ [m] and
set f̃ (x) := f̃ (γ(vj)) + pr.

Step 4: Let k = n(m−1)−(m+1)
2 −∑m

j=1 aj, and set fφ(x) := f̃ (x + k) for all x ∈ Z.

Then we set A(D, φ) = fφ. Note that since m, n are coprime then the set {γ(vj)}1≤j≤m

contains exactly one element per residue class mod m. Thus f̃ is well-defined.

Theorem 6. Let r, m, n ∈ Z>0 with gcd(m, n) = 1. The map A : SSPFr(m, n) → ACn(m, r)
sending (D, φ) 7→ fφ is a weight-preserving bijection. Hence, given any r-part weak composition
w of m, the construction above gives an isomorphism of sets,

Aw : SSPFr
w(m, n)→ ACn

w(m, r).

In the special case when r = m and w = (1m), so that ACn
(1m)(m, m) = S̃n

m, Theorem 6

recovers the map A : PF(m, n) → S̃n
m constructed in [7]. For example, in Figure 4 we list

the affine permutations for all the (3, 2)-parking functions.

Example 7. Set m = 5, n = 4 and r = 3. Let (D, φ) be the rank 3 semistandard (5, 4)-
parking function in Figure 2 (left). Note that wt(D, φ) = (1, 3, 1). From the figure we can
read that

γ(φ−1(1)) = {0}, γ(φ−1(2)) = {3, 4, 7}, γ(φ−1(3)) = {6}.

Thus, setting f̃ (γ(vj) + 5p) := f̃ (γ(vj)) + 3p we find that f̃ is the following map:

· · · −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 · · ·
· · · −3 −4 −1 −1 1 0 −1 2 2 4 3 2 5 5 7 · · ·
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Figure 2: A semistandard (5, 4)-parking function with rank r = 3 (left), and its stan-
dardization (right). A box with upper right corner (x, y) is marked by γ(x, y).

Now since the x-coordinates of the north steps {vj = (aj, j)}1≤j≤7 are given by a1 = 2,
a2 = a3 = 1, and a4 = a5 = 0, it follows that k = 1. Thus, setting fφ(x) = f̃ (x + 1) we
find that fφ = [−1, 2, 2, 4, 3]3, thus wt( fφ) = wt( f̃ ) = (1, 3, 1), as expected. Notice that
by construction f−1

φ [3] = {γ(vj) − 1} = {−1, 2, 3, 5, 6} which, modulo 5, is equivalent
to the set {1, . . . , 5}. Summing the entries in this set we get (6

2), hence fφ is indeed a
(5, 3)-affine composition, which by inspection can be seen to be 4-stable.

3.2 Standardization and Diagonal Inversions

The bijection in Theorem 6 allows us to compute co-dinv via Equation (2.3), provided
that (D, φ) ∈ PF(m, n). Thus, in order to define the diagonal inversions for any semistan-
dard parking function we utilize a standardization map from SSPF(m, n) → PF(m, n).

For w = (w1, . . . , wr), an r-part weak composition of m, let Sw = Sw1 × · · · × Swr be
the parabolic subgroup of S̃m indexed by w. Denote by (Sw\S̃m)min the set of minimal
length right coset representatives and let (Sw\S̃n

m)
min = (Sw\S̃m)min ∩ S̃n

m .

Proposition 8. Let m, r ∈ Z>0. Given w = (w1, . . . , wr), an r-part weak composition of m, let
w f be the affine composition of weight w given by w f := [1, . . . , 1︸ ︷︷ ︸

w1

, 2 . . . , 2︸ ︷︷ ︸
w2

, . . . , r, . . . , r︸ ︷︷ ︸
wr

]r. Then

the map
Sw : (Sw\S̃m)

min → ACw(m, r)

sending σ 7→ w f ◦ σ is a bijection. Moreover, Sw preserves n-stability and thus restricts to a
bijection Sn

w : (Sw\S̃n
m)

min → ACn
w(m, r) for any n ∈ Z>0 coprime to m.

Definition 9. For any (D, φ) ∈ SSPFr
w(m, n) the standardization of (D, φ) is the parking
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function std(D, φ) ∈ PF(m, n) given by,

std(D, φ) := A−1S−1
w Aw(D, φ).

Theorem 10. For any (D, φ) ∈ SSPFr
w(m, n), its standardization std(D, φ) is the (m, n)-

parking function (D, α) with α : N(D)→ {1, . . . , m} the unique bijection satisfying:

(1) α(φ−1(a)) < α(φ−1(b)) for all 1 ≤ a < b ≤ r, and

(2) α(vi) < α(vj) whenever φ(vi) = φ(vj) and γ(vi) < γ(vj).

As seen in Figure 1 conditions (1) and (2) ensure a unique standard representative
of a semistandard parking function (D, φ).

Hence, for any rank r semistandard (m, n)-parking function (D, φ) we set

dinv(D, φ) := dinv(std(D, φ)). (3.1)

Example 11. Consider the rank r = 3 semistandard (5, 4)-parking function (D, φ) in
Figure 2 (left) with preimages φ−1(1) = {v5}, φ−1(2) = {v2, v3, v4}, and φ−1(3) = {v1}.
Since γ(v2) = 7, γ(v3) = 3, and γ(v4) = 4, then α(v5) < α(v3) < α(v4) < α(v2) < α(v1).
Hence α is the unique map from N(D)→ {1, . . . , 5} given in Figure 2 (right).

Example 12. Consider the rank 2 semistandard (3, 2)-parking function in Figure 1 (left).
We have that A(std(D, φ)) = [1, 2, 3], the identity permutation which does not have
inversions and thus has codinv 0. Then dinv(D, φ) = (2−1)(3−1)

2 − 0 = 1. By comparison,
the affine permutations corresponding to the two rightmost parking functions in Figure 1
are [1, 3, 2] and [2, 1, 3] both of which have inversions.

While we do not expand upon this here, it is important to note that the affine
spaces in an affine paving of a parabolic affine Springer fiber are indexed by the set
SSPFr(m, n) and the co-dinv statistic is the dimension of the corresponding affine space.
Each parabolic affine Springer fiber admits a surjection from the affine Springer fiber in
the full affine flag variety, and the latter variety has an affine paving indexed by park-
ing functions, see [7]. The standardization procedure is related to properties of this
surjection, see [6] for details.

Definition 13. Let m, n, r ∈ Z>0 with gcd(m, n) = 1. The rank r rational (q, t)-Catalan
polynomial is the polynomial in Q[q, t][x1, . . . , xr] given by

C(r)
(m,n)(x1, . . . , xr; q, t) := ∑

(D,φ)∈SSPFr(m,n)
qarea(D)tdinv(D,φ)xwt(φ).

Example 14. It can be shown that C(1)
(m,n)(x1; q, t) = xm

1 C(m,n)(q, t), where C(m,n)(q, t) is
the usual (q, t)-Catalan polynomial. In this sense, Definition 13 generalizes that of (q, t)-
Catalan polynomials. As seen in Figure 3, for r = 2, m = 3, n = 2 we have

C(2)
(3,2) = (x3

1 + x3
2)(q + t) + (x2

1x2 + x1x2
2)(q + 1 + t).
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Figure 3: All the semistandard (3, 2)-parking functions of rank 2 and their contribution
to C(2)

(3,2)(x1, x2; q, t).

Using the standardization procedure above it can be shown that the restriction to r
variables of Gessel’s quasisymmetric function QDes(σ−1)(X)|x1,...,xr is naturally indexed
by the rank r semistandard parking functions (D, φ) that standardize to (D, α), where
A(D, α) = σ and Des(σ−1) is the descent set of σ−1. Namely,

QDes(σ−1)(X)|x1,...,xr = ∑
(D,φ)∈std−1(D,α)

xwt(D,φ). (3.2)

Combining (2.5) and (3.2) we obtain the following theorem.

Theorem 15. Given any m, n, r ∈ Z>0 with gcd(m, n) = 1, the truncation of the Hikita
polynomial to r variables is given by the rank-r rational (q, t)-Catalan polynomial,

H(m,n)(X; q, t)|x1,...,xr = C(r)
(m,n)(x1, . . . , xr; q, t).

Thus, C(r)
(m,n)(x1, . . . , xr; q, t) is a (q, t)-symmetric, Schur positive polynomial, and hence also

symmetric in x1, . . . , xr.

Example 16. Let us compute the Hikita polynomial H(3,2)(X; q, t). There are four (3, 2)-
parking functions (D, φ), which are listed together with their associated affine permuta-
tions A(D, φ) in Figure 4. From here, we compute the Schur expansion:

H(3,2)(X; q, t) = qQ{3} + Q{2} + tQ∅ + Q{1} = (q + t)s(3) + s(2,1).

It is straightforward to verify that the truncation to 2-variables of this polynomial coin-
cides with the computation of C(2)

(3,2)(x1, x2; q, t) in Example 14.
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Figure 4: The (3, 2)-parking functions and their associated affine permutations under
the bijection A , which can easily be read from γ(x, y) for each lattice point (x, y) on D.

4 Spherical DAHA and a Finite Shuffle Theorem

The elliptic Hall algebra E++ is the C(q, t)-algebra consisting of an infinite family of
generators {P(m,n) | (m, n) ∈ Z2

≥0 \ (0, 0)}modulo some relations, see e.g. [14]. Although
E++ originally arose as the Hall algebra of the category of coherent sheaves on an elliptic
curve, it has since had various topological and combinatorial incarnations and played a
central role in connecting q, t-combinatorics and the Shuffle Theorems to many recent
results in the theory of homological and geometric invariants for knots and links.

There is a well-known geometric action of E++ on the ring of symmetric functions
Λq,t whose fixed points correspond to the modified Macdonald polynomials H̃λ(X; q, t) [14].
Denote this representation by Vgeom and by P ∞

(m,n)( f ) the image of f ∈ Λq,t under this
action. The Rational Shuffle Theorem, conjectured by Gorsky and Neguţ [8] and proved by
Mellit [13], states the following.

Theorem 17 ([13]). For coprime m, n ∈ Z>0, P ∞
(m,n)(1) = H(m,n)(X; q, t).

The spherical DAHA SH(r) is the spherical subalgebra of the double affine Hecke
algebra of type gl(r). We consider the subalgebra SH(r)++ of SH(r) generated by ele-
ments P(r)

(m,n) with (m, n) ∈ Z2
≥0 \ (0, 0). Schiffmann-Vasserot show that under the natural

map SH(r)++ → SH(r − 1)++ sending P(r)
(m,n) 7→ P(r−1)

(m,n) , the algebra E++ arises as an
inverse limit of the spherical DAHAs. Namely,

E++ ∼= lim←−
r

SH(r)++ (4.1)

under which
P(m,n) = lim←−

r
P(r)
(m,n).
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The algebra SH(r)++ comes equipped with a faithful polynomial representation on
Q(q, t)[x1 . . . , xr]Sr , denoted Pol(r), that is compatible with (4.1) above and the inverse
limit Λq,t ∼= lim←−r

Q(q, t)[x1 . . . , xr]Sr . Thus, there is an induced polynomial representation
Valg of E++ on Λq,t. This representation is nontrivially isomorphic to the geometric one
of Schiffmann-Vasserot.

Proposition 18 ([14]). There is an isomorphism of E++ representations Φ : Valg → Vgeom

given by the plethystic substitution that sends F(X; q, t) 7→ F
[

X
1−t−1 ; q, t−1

]
.

By combining this proposition with Theorems 15 and 17 we obtain the following
finite analogue of the Rational Shuffle Theorem.

Theorem 19. Given any m, n, r ∈ Z>0 with gcd(m, n) = 1, there exists an action of SH(r)++

on Q(q, t)[x1 . . . , xr]Sr satisfying

P(r)
(m,n)(1) = C(r)

(m,n)(x1, . . . , xr; q, t).

In particular, this action is nontrivially isomorphic to the polynomial representation Pol(r).

This action is compatible with the geometric action of E++ on Λq,t under all the

inverse limits above, with P ∞
(m,n) = lim←−r

P(r)
(m,n) as operators, so that as r → ∞ it recovers

the Rational Shuffle Theorem.
Given the complicated nature of plethystic substitution, finding the explicit action

of SH(r)++ on Q(q, t)[x1 . . . , xr]Sr in Theorem 19 is quite difficult. In particular, even
describing the action for r = 1 explicitly is unclear since although SH(1)++ is straight-
forward, the rational Catalan numbers C(m,n)(q, t) are not. Nonetheless, it would be very
interesting to find an explicit description of this action.

5 The Non-Coprime Case and a Bizley-Type Formula

Naturally, one asks how much of these constructions can be extended to the non-coprime
case. Unfortunately it is neither easy nor obvious how to proceed. A starting point,
however, is the computation of C(r)

(m,n) = | SSPF
r(m, n)| in the case m, n are not coprime.

Below we give a Bizley-type formula for these numbers.

Theorem 20. Let m, n, r ∈ Z>0 with gcd(m, n) = 1. There is an equality of formal power
series:

1 +
∞

∑
k=1

C(r)
(mk,nk)z

k = exp

(
∞

∑
k=1

1
nk

(
nkr + mk− 1

mk

)
zk

)
.
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One can apply similar techniques to obtain a Bizley-type formula for the number
of parking functions. This is, however, much more elegantly expressed by Aval and
Bergeron in [3], who adapt Bizley’s proof incorporating symmetric function arguments
to find the Frobenius characteristic of the Smk-representation CPF(mk, nk). One can adapt
the arguments in this paper to show that

C(r)
(mk,nk) = Frob(CPF(mk, nk))|x1=···=xmk=1,xmk+1=···=0.
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