Semistandard Parking Functions and a Finite Shuffle Theorem

Nicolle González ${ }^{* 1}$, José Simental ${ }^{+2}$, and Monica Vazirani ${ }^{\ddagger 3}$
${ }^{1}$ Department of Mathematics, University of California, Berkeley, USA
${ }^{2}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, CDMX, México
${ }^{3}$ Department of Mathematics, University of California, Davis, USA

Abstract

We introduce the higher rank rational ($q, t)$-Catalan polynomials and prove these are equal to finite truncations of the Hikita polynomial. We also generalize results of Gorsky-Mazin-Vazirani and construct an explicit bijection between semistandard parking functions and affine compositions. Using these results we prove a finite analogue of the Rational Shuffle Theorem in the context of spherical double affine Hecke algebras.

Keywords: Catalan polynomial, Shuffle Theorem, elliptic Hall algebra, Hikita polynomial, DAHA, spherical DAHA.

1 Introduction

The Catalan numbers C_{n} are some of the most ubiquitous quantities throughout mathematics, naturally counting objects across a vast array of fields. Their many generalizations, ranging from the so-called rational Catalan numbers $C_{(m, n)}$ to their bivariate (q, t) counterpart $C_{(m, n)}(q, t)$, have played a central role in the deep connections between (q, t) combinatorics and important problems arising in the K-theory of Hilbert schemes, the homology of torus knots, the geometry of Gieseker varieties, and other areas of algebraic geometry, topology, and representation theory.

A particularly important family of objects counted by Catalan numbers is the set of Dyck paths, lattice paths in a square that do not cross the diagonal. Particular labelings of these paths give rise to parking functions. Originally introduced by Konheim and Weiss [12] in their study of hashing problems, parking functions were afterwards generalized by Armstrong, Loehr and Warrington [2] to the rational setting. A new perspective on parking functions, inspired by Anderson [1] and studied extensively by Gorsky-Mazin-Vazirani [7], gives an explicit bijection between the set of parking functions $\operatorname{PF}(m, n)$ and a certain set of affine permutations. More recently, motivated by the

[^0]representation theory of quantizations of the Gieseker moduli space [5] Simental, jointly with Etingof-Krylov-Losev, generalized these constructions further by introducing the higher rank rational Catalan numbers $C_{(m, n)}^{(r)}$ and higher rank semistandard parking functions $\operatorname{SSPF}^{r}(m, n)$. As in the classical and rational cases, $\left|\operatorname{SSPF}^{r}(m, n)\right|=C_{(m, n)}^{(r)}$.

We generalize this further by extending the bijection given in [7] to a bijection between $\operatorname{SSPF}^{r}(m, n)$ and affine compositions, which through an explicit standardization procedure, allows us to define a "dinv" statistic on these new sets of objects. We use this statistic to introduce the higher rank rational (q, t)-Catalan polynomial $C_{(m, n)}^{(r)}(X ; q, t)$. In [6] we further show how the dinv statistic corresponds precisely to the dimension of an associated affine space in an affine paving of a parabolic Springer fiber.

Tying much of this theory together are the celebrated Shuffle Theorems. In the classical setting, the Shuffle Theorem gives a combinatorial formula for the bigraded Frobenius character of the space of diagonal harmonics. While the Frobenius character of this representation was computed by Haiman geometrically in the early 2000's [10] and its combinatorial expression, given as a sum over parking functions, was conjectured by Haglund-Haiman-Loehr-Remmel-Ulyanov [9] shortly thereafter, the conjecture was open for 15 years until Carlsson and Mellit [4] proved it. Unexpectedly arising in their studies of knot invariants via Cherednik algebras, Gorsky and Neguţ proposed a rational generalization of the Shuffle Conjecture. In particular, they conjectured that a certain elliptic Hall algebra element acting on 1 inside the ring of symmetric functions gave rise to the Frobenius character of a certain bigraded S_{n} representation. The combinatorial formula for this character, eponymously named the Hikita polynomial, had previously been computed by Hikita [11] as a certain sum over $\operatorname{PF}(m, n)$. Using similar methods as in the classical case, Mellit [13] successfully proved this Rational Shuffle Theorem.

We connect our results to the Shuffle Theorems by first proving that our higher rank rational (q, t)-Catalan polynomial corresponds precisely to the truncation of the Hikita polynomial to a finite number of variables. Then, using the fact that the elliptic Hall algebra arises as the inverse limit of the spherical double affine Hecke algebra (DAHA) $\mathrm{SH}(r)^{++}$, we show there is an action of $\mathrm{SH}(r)^{++}$on the ring of symmetric polynomials whose action on 1 results in these higher rank rational (q, t)-Catalan polynomials. Since in the $r \rightarrow \infty$ limit this agrees with the rational generalization of Gorsky-Neguţ, our construction gives a finite analogue of the Rational Shuffle Theorem.

2 Background

Let $m, n \in \mathbb{Z}_{>0}$ satisfy $\operatorname{gcd}(m, n)=1$. An (m, n)-Dyck path is a lattice path consisting of only north and west steps from $(n, 0)$ to $(0, m)$ bounded by the lines $x=0, y=0$, and $m x+n y=m n$. Denote by $\mathrm{D}(m, n)$ the set of all (m, n)-Dyck paths and let $\mathcal{N}(\mathrm{D})$ be the
set of north steps for any $\mathrm{D} \in \mathrm{D}(m, n)$.
Let $v_{1}, v_{2}, \ldots, v_{m}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the north and west steps of $\mathrm{D} \in \mathrm{D}(\mathrm{m}, \mathrm{n})$ read from $(n, 0)$ to $(0, m)$. We denote by $\operatorname{dinv}(\mathrm{D})$ the number of diagonal inversions of D , which consist of pairs (u_{r}, v_{s}) over all $1 \leq r \leq n$ and $1 \leq s \leq m$, such that both u_{r} and v_{s} are intersected by some line ℓ of slope $\frac{-m}{n}$ and v_{s} lies southeast of u_{r} in D. The area of a Dyck path $\mathrm{D} \in \mathrm{D}(\mathrm{m}, \mathrm{n})$ is the number of lattice cells fully contained between the path D and the diagonal line $m x+n y=m n$. We set co-dinv(D$)=\frac{(m-1)(n-1)}{2}-\operatorname{area}(\mathrm{D})$.
Example 1. The Dyck path D in Figure 2 has area $(D)=2, \operatorname{dinv}(D)=4$ and thus $\operatorname{co-area}(\mathrm{D})=\frac{(m-1)(n-1)}{2}-2=4, \operatorname{co-dinv}(\mathrm{D})=\frac{(m-1)(n-1)}{2}-4=2$.

It is a well known fact that the number of (m, n)-Dyck paths for coprime m, n is given by the rational Catalan numbers, $C_{(m, n)}:=\frac{1}{n}\binom{(n+m-1}{m}$. The (q, t)-Catalan number is the bivariate deformation given by the polynomial

$$
\begin{equation*}
C_{(m, n)}(q, t):=\sum_{\mathrm{D} \in \mathrm{D}(m, n)} q^{\operatorname{area}(\mathrm{D})} t^{\operatorname{dinv}(\mathrm{D})} . \tag{2.1}
\end{equation*}
$$

2.1 Parking Functions and the Hikita Polynomial

An (m, n)-parking function is a pair (D, φ), where D is an (m, n)-Dyck path and φ : $\mathcal{N}(\mathrm{D}) \rightarrow\{1, \ldots, m\}$ is a bijection that is strictly decreasing when reading upward on consecutive north steps. We will denote by $\operatorname{PF}(m, n)$ the set of (m, n)-parking functions.

For example, in Figure 1, the three rightmost diagrams correspond to all possible $(3,2)$-parking functions for the given Dyck path.

Parking functions are in bijection with a certain set of affine permutations. To explain this bijection we recall the affine symmetric group,

$$
\widetilde{S}_{m}:=\left\{\sigma: \mathbb{Z} \rightarrow \mathbb{Z} \mid \sigma \text { is a bijection, } \sigma(x+m)=\sigma(x)+m, \text { and } \sum_{i=1}^{m} \sigma(i)=\binom{m+1}{2}\right\} .
$$

By the periodicity condition $\sigma \in \widetilde{S}_{m}$ is completely determined by $\sigma(1), \ldots, \sigma(m)$. We will use window notation and write $\sigma=[\sigma(1), \ldots, \sigma(m)]$. We say $\sigma \in \widetilde{S}_{m}$ is n-stable if $\sigma(x+n)>\sigma(x)$ for all $x \in \mathbb{Z}$ and denote by \widetilde{S}_{m}^{n} the set of all n-stable affine permutations.

In [7], the third author jointly with Gorsky and Mazin study a bijection (see Section 3.1)

$$
\begin{equation*}
\mathcal{A}: \operatorname{PF}(m, n) \rightarrow \widetilde{S}_{m}^{n} \tag{2.2}
\end{equation*}
$$

Using this, for $\sigma=\mathcal{A}(\mathrm{D}, \varphi)$, we define

$$
\begin{equation*}
\operatorname{co-}-\operatorname{dinv}(\mathrm{D}, \varphi):=|\{(i, h) \in\{1, \ldots, m\} \times\{1, \ldots, n\} \mid \sigma(i+h)<\sigma(i)\}| . \tag{2.3}
\end{equation*}
$$

and set $\operatorname{dinv}(\mathrm{D}, \varphi):=\frac{(m-1)(n-1)}{2}-\operatorname{co-dinv}(\mathrm{D}, \varphi)$.

Figure 1: A (3,2)-semistandard parking function (D, φ) and all (3,2)-parking functions for D , of which the second from the left is the unique standardization $\operatorname{std}(\mathrm{D}, \varphi)$ determined by γ. A box with upper right corner (x, y) is marked by $\gamma(x, y)$.

Gessel defined the fundamental quasisymmetric functions for any subset $S \in\{1, \ldots, m\}$ as the series

$$
\begin{equation*}
Q_{S}(X):=\sum_{\substack{i_{1} \leq \cdots \leq i_{m} \\ j \in S \Rightarrow i_{j}<i_{j+1}}} x_{i_{1}} \ldots x_{i_{m}} \tag{2.4}
\end{equation*}
$$

These functions interpolate between elementary and complete symmetric functions and form a basis for the space of quasisymmetric functions in an infinite number of variables.

Let $\operatorname{area}(\mathrm{D}, \varphi):=\operatorname{area}(\mathrm{D})$ for any $(\mathrm{D}, \varphi) \in \operatorname{PF}(m, n)$. Then, the Hikita polynomial is the q, t-symmetric function given by

$$
\begin{equation*}
\mathcal{H}_{(m, n)}(X ; q, t):=\sum_{(\mathrm{D}, \varphi) \in \operatorname{PF}(m, n)} q^{\operatorname{area}(\mathrm{D}, \varphi)} t^{\operatorname{dinv}(\mathrm{D}, \varphi)} Q_{\operatorname{Des}\left(\sigma^{-1}\right)}(X), \tag{2.5}
\end{equation*}
$$

where $\operatorname{Des}\left(\sigma^{-1}\right):=\left\{1 \leq j \leq m \mid \sigma^{-1}(j+1)<\sigma^{-1}(j)\right\}$ denotes the descent set of σ^{-1} for $\sigma=\mathcal{A}(\mathrm{D}, \varphi) \in \widetilde{S}_{m}^{n}$. When paired with the complete symmetric function $h_{m}(X)$ under the Hall inner product, the Hikita polynomial returns the rational (q, t)-Catalan number, that is $\left\langle\mathcal{H}_{(m, n)}, h_{m}\right\rangle=C_{(m, n)}(q, t)$.

2.2 Higher Rank Catalans and Semistandard Parking Functions

Motivated by the representation theory of quantizations of the Gieseker moduli space, in [5] Etingof, Krylov, Losev and the second author introduced the following generalization of parking functions.

Definition 2. Let $r, m, n \in \mathbb{Z}_{>0}$. A rank r semistandard (m, n)-parking function is a pair (D, φ) with $\mathrm{D} \in \mathrm{D}(m, n)$ and a function $\varphi: \mathcal{N}(\mathrm{D}) \rightarrow\{1, \ldots, r\}$ that is weakly decreasing
when reading upward on consecutive north steps. Let $\operatorname{SSPF}^{r}(m, n)$ be the set of all rank r semistandard (m, n)-parking functions.

In the special case when $r=m$, and φ is a bijection, then the filling will automatically become standard, recovering the original set of (m, n)-parking functions $\operatorname{PF}(m, n)$ considered in [2].

Given any $(D, \varphi) \in \operatorname{SSPF}^{r}(m, n)$, we let area $(D, \varphi):=\operatorname{area}(\mathrm{D})$, define the weight of (D, φ) as the composition of m given by $\mathrm{wt}(\mathrm{D}, \varphi):=\left(\left|\varphi^{-1}(1)\right|,\left|\varphi^{-1}(2)\right|, \ldots,\left|\varphi^{-1}(r)\right|\right)$. Let $\operatorname{SSPF}_{\mathbf{W}}^{r}(m, n)$ denote the set of all rank r semistandard (m, n)-parking functions with weight \mathbf{w}. Note that for any $(\mathrm{D}, \varphi) \in \operatorname{PF}(m, n)$, we have $w t(\mathrm{D}, \varphi)=\left(1^{m}\right)$.
Example 3. Consider (D, φ), the semistandard (5,4)-parking function in Figure 2 (left). Then (D, φ) has rank $r=3$, area $(D, \varphi)=2$, and $w t(D, \varphi)=(1,3,1)$. By comparison, the (5,4)-parking function in Figure 2 (right) has the same area but rank 5 and weight $\left(1^{5}\right)$.

In [5, Theorem 2.28], Etingof, Krylov, Losev and the second author defined the rank r (m, n)-Catalan number $C_{(m, n)}^{(r)}$ to be the cardinality of $\operatorname{SSPF}^{r}(m, n)$ and proved that when m and n are coprime,

$$
\begin{equation*}
C_{(m, n)}^{(r)}:=\left|\operatorname{SSPF}^{r}(m, n)\right|=\frac{1}{n}\binom{n r+m-1}{m} . \tag{2.6}
\end{equation*}
$$

3 Higher Rank Rational (q, t)-Catalan Polynomial

As mentioned above, there exists a map $\mathcal{A}: \operatorname{PF}(m, n) \rightarrow \widetilde{S}_{m}^{n}$. We will recall this bijection and construct a generalization for $\operatorname{SSPF}(m, n)$. Denote by $[r]$ the set $\{1, \ldots, r\} \subset \mathbb{Z}$.
Definition 4. Let $m, r \in \mathbb{Z}_{>0}$. An (m, r)-affine composition is a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying the following properties:
(1) $f(x+m)=f(x)+r$ for all $x \in \mathbb{Z}$.
(2) The set $f^{-1}[r]$ has exactly one element from each residue class mod m.
(3) $\sum_{x \in f^{-1}[r]} x=\binom{m+1}{2}$.

Denote by $\mathcal{A C}(m, r)$ the set of all (m, r)-affine compositions. See Examples 5 and 7 .
Just as for affine permutations, by the periodicity of condition (1) above, we use window notation and write $f=[f(1), \ldots, f(m)]_{r}$. The weight of f is given by

$$
\operatorname{wt}(f)=\left(\left|f^{-1}(1)\right|,\left|f^{-1}(2)\right|, \ldots,\left|f^{-1}(r)\right|\right) .
$$

Note that an affine composition of weight $\left(1^{m}\right)$ is simply an affine permutation. As before, $f \in \mathcal{A C}(m, r)$ is n-stable if $f(x+n) \geq f(x)$ for all $x \in \mathbb{Z}$. Then, let $\mathcal{A C}_{\mathbf{w}}(m, r)$ be the set of all (m, r)-affine compositions with weight \mathbf{w} and denote by $\mathcal{A C}_{\mathbf{w}}^{n}(m, r)$ the subset of $\mathcal{A C}_{\mathbf{w}}(m, r)$ consisting of those affine compositions that are n-stable.

Example 5. Let $m, r \in \mathbb{Z}_{>0}$ and consider the (m, r)-affine composition $f \in \mathcal{A C}(m, r)$ that in window notation is $f=[1,1, \ldots, 1]_{r}$. Note that $f^{-1}[r]=[m]$ so that f is indeed an affine composition of weight $(m, 0, \ldots, 0) \in \mathbb{Z}_{\geq 0}^{r}$. We leave it to the reader to verify that f is the function $f(x)=r\left\lfloor\frac{x-1}{m}\right\rfloor+1$.

3.1 Semistandard Parking Functions are Affine Compositions

We now describe $\mathcal{A}: \operatorname{SSPF}^{r}(m, n) \rightarrow \mathcal{A C}^{n}(m, r)$ which is a generalization of the map $\mathcal{A}: \operatorname{PF}(m, n) \rightarrow \widetilde{S}_{m}^{n}$.

Given any $(\mathrm{D}, \varphi) \in \operatorname{SSPF}^{r}(m, n)$, index the north steps $v_{1}, \ldots, v_{m} \in \mathcal{N}(\mathrm{D})$ by their topmost coordinate, so that $v_{j}=\left(a_{j}, j\right)$ for each $1 \leq j \leq m$ and in particular $a_{m}=0$. Define the function $f_{\varphi}: \mathbb{Z} \rightarrow \mathbb{Z}$ as follows:
Step 1: Define $\gamma: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ by $\gamma(x, y)=m n-m x-n y$.
Step 2: Set $\tilde{f}\left(\gamma\left(v_{j}\right)\right)=\varphi\left(v_{j}\right)$ for $j \in[m]$, so that $\tilde{f}^{-1}(i)=\gamma\left(\varphi^{-1}(i)\right)$ for $i \in[r]$.
Step 3: For any $x \notin\left\{\gamma\left(v_{j}\right)\right\}_{1 \leq j \leq m}$, write $x=\gamma\left(v_{j}\right)+p m$ for some $p \in \mathbb{Z}$ and $j \in[m]$ and set $\tilde{f}(x):=\tilde{f}\left(\gamma\left(v_{j}\right)\right)+p r$.

Step 4: Let $k=\frac{n(m-1)-(m+1)}{2}-\sum_{j=1}^{m} a_{j}$, and set $f_{\varphi}(x):=\tilde{f}(x+k)$ for all $x \in \mathbb{Z}$.
Then we set $\mathcal{A}(\mathrm{D}, \varphi)=f_{\varphi}$. Note that since m, n are coprime then the set $\left\{\gamma\left(v_{j}\right)\right\}_{1 \leq j \leq m}$ contains exactly one element per residue class $\bmod m$. Thus \tilde{f} is well-defined.

Theorem 6. Let $r, m, n \in \mathbb{Z}_{>0}$ with $\operatorname{gcd}(m, n)=1$. The map $\mathcal{A}: \operatorname{SSPF}^{r}(m, n) \rightarrow \mathcal{A C}^{n}(m, r)$ sending $(\mathrm{D}, \varphi) \mapsto f_{\varphi}$ is a weight-preserving bijection. Hence, given any r-part weak composition \mathbf{w} of m, the construction above gives an isomorphism of sets,

$$
\mathcal{A}_{\mathbf{w}}: \operatorname{SSPF}_{\mathbf{w}}^{r}(m, n) \rightarrow \mathcal{A C}_{\mathbf{w}}^{n}(m, r)
$$

In the special case when $r=m$ and $\mathbf{w}=\left(1^{m}\right)$, so that $\mathcal{A L}_{\left(1^{m}\right)}^{n}(m, m)=\widetilde{S}_{m}^{n}$, Theorem 6 recovers the $\operatorname{map} \mathcal{A}: \operatorname{PF}(m, n) \rightarrow \widetilde{S}_{m}^{n}$ constructed in [7]. For example, in Figure 4 we list the affine permutations for all the (3,2)-parking functions.
Example 7. Set $m=5, n=4$ and $r=3$. Let (D, φ) be the rank 3 semistandard $(5,4)-$ parking function in Figure 2 (left). Note that $\operatorname{wt}(D, \varphi)=(1,3,1)$. From the figure we can read that

$$
\gamma\left(\varphi^{-1}(1)\right)=\{0\}, \quad \gamma\left(\varphi^{-1}(2)\right)=\{3,4,7\}, \quad \gamma\left(\varphi^{-1}(3)\right)=\{6\} .
$$

Thus, setting $\tilde{f}\left(\gamma\left(v_{j}\right)+5 p\right):=\tilde{f}\left(\gamma\left(v_{j}\right)\right)+3 p$ we find that \tilde{f} is the following map:

$$
\begin{array}{cccccc|ccccc|cccccc}
\cdots & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots \\
\cdots & -3 & -4 & -1 & -1 & \mathbf{1} & 0 & -1 & 2 & 2 & 4 & 3 & 2 & 5 & 5 & 7 & \cdots
\end{array}
$$

Figure 2: A semistandard (5,4)-parking function with rank $r=3$ (left), and its standardization (right). A box with upper right corner (x, y) is marked by $\gamma(x, y)$.

Now since the x -coordinates of the north steps $\left\{v_{j}=\left(a_{j}, j\right)\right\}_{1 \leq j \leq 7}$ are given by $a_{1}=2$, $a_{2}=a_{3}=1$, and $a_{4}=a_{5}=0$, it follows that $k=1$. Thus, setting $f_{\varphi}(x)=\tilde{f}(x+1)$ we find that $f_{\varphi}=[-1,2,2,4,3]_{3}$, thus $\operatorname{wt}\left(f_{\varphi}\right)=\mathrm{wt}(\tilde{f})=(1,3,1)$, as expected. Notice that by construction $f_{\varphi}^{-1}[3]=\left\{\gamma\left(v_{j}\right)-1\right\}=\{-1,2,3,5,6\}$ which, modulo 5 , is equivalent to the set $\{1, \ldots, 5\}$. Summing the entries in this set we get $\binom{6}{2}$, hence f_{φ} is indeed a $(5,3)$-affine composition, which by inspection can be seen to be 4 -stable.

3.2 Standardization and Diagonal Inversions

The bijection in Theorem 6 allows us to compute co-dinv via Equation (2.3), provided that $(\mathrm{D}, \varphi) \in \mathrm{PF}(m, n)$. Thus, in order to define the diagonal inversions for any semistandard parking function we utilize a standardization map from $\operatorname{SSPF}(m, n) \rightarrow \operatorname{PF}(m, n)$.

For $\mathbf{w}=\left(w_{1}, \ldots, w_{r}\right)$, an r-part weak composition of m, let $S_{\mathbf{w}}=S_{w_{1}} \times \cdots \times S_{w_{r}}$ be the parabolic subgroup of \widetilde{S}_{m} indexed by \mathbf{w}. Denote by $\left(S_{\mathbf{w}} \backslash \widetilde{S}_{m}\right)^{\text {min }}$ the set of minimal length right coset representatives and let $\left(S_{\mathbf{w}} \backslash \widetilde{S}_{m}^{n}\right)^{\min }=\left(S_{\mathbf{w}} \backslash \widetilde{S}_{m}\right)^{\min } \cap \widetilde{S}_{m}^{n}$.

Proposition 8. Let $m, r \in \mathbb{Z}_{>0}$. Given $\mathbf{w}=\left(w_{1}, \ldots, w_{r}\right)$, an r-part weak composition of m, let ${ }_{\mathbf{w}} f$ be the affine composition of weight \mathbf{w} given by $\mathbf{w} f:=[\underbrace{1, \ldots, 1}_{w_{1}}, \underbrace{2 \ldots, 2}_{w_{2}}, \ldots, \underbrace{r, \ldots, r}_{w_{r}}] r$. Then the map

$$
\mathcal{S}_{\mathbf{w}}:\left(S_{\mathbf{w}} \backslash \widetilde{S}_{m}\right)^{\min } \rightarrow \mathcal{A} \mathcal{C}_{\mathbf{w}}(m, r)
$$

sending $\sigma \mapsto{ }_{\mathbf{w}} f \circ \sigma$ is a bijection. Moreover, $\mathcal{S}_{\mathbf{w}}$ preserves n-stability and thus restricts to a bijection $\mathcal{S}_{\mathbf{w}}^{n}:\left(S_{\mathbf{w}} \backslash \widetilde{S}_{m}^{n}\right)^{\min } \rightarrow \mathcal{A C}_{\mathbf{w}}^{n}(m, r)$ for any $n \in \mathbb{Z}_{>0}$ coprime to m.

Definition 9. For any $(D, \varphi) \in \operatorname{SSPF}_{\mathbf{w}}^{r}(m, n)$ the standardization of (D, φ) is the parking
function $\operatorname{std}(\mathrm{D}, \varphi) \in \operatorname{PF}(m, n)$ given by,

$$
\operatorname{std}(\mathrm{D}, \varphi):=\mathcal{A}^{-1} \mathcal{S}_{\mathbf{w}}^{-1} \mathcal{A}_{\mathbf{w}}(\mathrm{D}, \varphi)
$$

Theorem 10. For any $(D, \varphi) \in \operatorname{SSPF}_{\mathbf{w}}^{r}(m, n)$, its standardization $\operatorname{std}(D, \varphi)$ is the (m, n) parking function (D, α) with $\alpha: \mathcal{N}(\mathrm{D}) \rightarrow\{1, \ldots, m\}$ the unique bijection satisfying:
(1) $\alpha\left(\varphi^{-1}(a)\right)<\alpha\left(\varphi^{-1}(b)\right)$ for all $1 \leq a<b \leq r$, and
(2) $\alpha\left(v_{i}\right)<\alpha\left(v_{j}\right)$ whenever $\varphi\left(v_{i}\right)=\varphi\left(v_{j}\right)$ and $\gamma\left(v_{i}\right)<\gamma\left(v_{j}\right)$.

As seen in Figure 1 conditions (1) and (2) ensure a unique standard representative of a semistandard parking function (D, φ).

Hence, for any rank r semistandard (m, n)-parking function (D, φ) we set

$$
\begin{equation*}
\operatorname{dinv}(D, \varphi):=\operatorname{dinv}(\operatorname{std}(D, \varphi)) \tag{3.1}
\end{equation*}
$$

Example 11. Consider the rank $r=3$ semistandard (5,4)-parking function (D, φ) in Figure 2 (left) with preimages $\varphi^{-1}(1)=\left\{v_{5}\right\}, \varphi^{-1}(2)=\left\{v_{2}, v_{3}, v_{4}\right\}$, and $\varphi^{-1}(3)=\left\{v_{1}\right\}$. Since $\gamma\left(v_{2}\right)=7, \gamma\left(v_{3}\right)=3$, and $\gamma\left(v_{4}\right)=4$, then $\alpha\left(v_{5}\right)<\alpha\left(v_{3}\right)<\alpha\left(v_{4}\right)<\alpha\left(v_{2}\right)<\alpha\left(v_{1}\right)$. Hence α is the unique map from $\mathcal{N}(D) \rightarrow\{1, \ldots, 5\}$ given in Figure 2 (right).
Example 12. Consider the rank 2 semistandard (3,2)-parking function in Figure 1 (left). We have that $\mathcal{A}(\operatorname{std}(\mathrm{D}, \varphi))=[1,2,3]$, the identity permutation which does not have inversions and thus has codinv 0 . Then $\operatorname{dinv}(D, \varphi)=\frac{(2-1)(3-1)}{2}-0=1$. By comparison, the affine permutations corresponding to the two rightmost parking functions in Figure 1 are $[1,3,2]$ and $[2,1,3]$ both of which have inversions.

While we do not expand upon this here, it is important to note that the affine spaces in an affine paving of a parabolic affine Springer fiber are indexed by the set $\operatorname{SSPF}^{r}(m, n)$ and the co-dinv statistic is the dimension of the corresponding affine space. Each parabolic affine Springer fiber admits a surjection from the affine Springer fiber in the full affine flag variety, and the latter variety has an affine paving indexed by parking functions, see [7]. The standardization procedure is related to properties of this surjection, see [6] for details.
Definition 13. Let $m, n, r \in \mathbb{Z}_{>0}$ with $\operatorname{gcd}(m, n)=1$. The rank r rational (q, t)-Catalan polynomial is the polynomial in $\mathbb{Q}[q, t]\left[x_{1}, \ldots, x_{r}\right]$ given by

$$
C_{(m, n)}^{(r)}\left(x_{1}, \ldots, x_{r} ; q, t\right):=\sum_{(\mathrm{D}, \varphi) \in \operatorname{SSPF}^{r}(m, n)} q^{\operatorname{area}(\mathrm{D})} t^{\operatorname{dinv}(\mathrm{D}, \varphi)} x^{\mathrm{wt}(\varphi)}
$$

Example 14. It can be shown that $C_{(m, n)}^{(1)}\left(x_{1} ; q, t\right)=x_{1}^{m} C_{(m, n)}(q, t)$, where $C_{(m, n)}(q, t)$ is the usual (q, t)-Catalan polynomial. In this sense, Definition 13 generalizes that of (q, t) Catalan polynomials. As seen in Figure 3, for $r=2, m=3, n=2$ we have

$$
C_{(3,2)}^{(2)}=\left(x_{1}^{3}+x_{2}^{3}\right)(q+t)+\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right)(q+1+t)
$$

2	
2	
2	\ddots
$x_{2}^{3} q$	

Figure 3: All the semistandard (3,2)-parking functions of rank 2 and their contribution to $C_{(3,2)}^{(2)}\left(x_{1}, x_{2} ; q, t\right)$.

Using the standardization procedure above it can be shown that the restriction to r variables of Gessel's quasisymmetric function $\left.Q_{\operatorname{Des}\left(\sigma^{-1}\right)}(X)\right|_{x_{1}, \ldots, x_{r}}$ is naturally indexed by the rank r semistandard parking functions (D, φ) that standardize to (D, α), where $\mathcal{A}(\mathrm{D}, \alpha)=\sigma$ and $\operatorname{Des}\left(\sigma^{-1}\right)$ is the descent set of σ^{-1}. Namely,

$$
\begin{equation*}
\left.Q_{\operatorname{Des}\left(\sigma^{-1}\right)}(X)\right|_{x_{1}, \ldots, x_{r}}=\sum_{(\mathrm{D}, \varphi) \in \operatorname{std}^{-1}(\mathrm{D}, \alpha)} x^{\mathrm{wt}(\mathrm{D}, \varphi)} . \tag{3.2}
\end{equation*}
$$

Combining (2.5) and (3.2) we obtain the following theorem.
Theorem 15. Given any $m, n, r \in \mathbb{Z}_{>0}$ with $\operatorname{gcd}(m, n)=1$, the truncation of the Hikita polynomial to r variables is given by the rank-r rational (q, t)-Catalan polynomial,

$$
\left.\mathcal{H}_{(m, n)}(X ; q, t)\right|_{x_{1}, \ldots, x_{r}}=C_{(m, n)}^{(r)}\left(x_{1}, \ldots, x_{r} ; q, t\right) .
$$

Thus, $C_{(m, n)}^{(r)}\left(x_{1}, \ldots, x_{r} ; q, t\right)$ is a (q, t)-symmetric, Schur positive polynomial, and hence also symmetric in x_{1}, \ldots, x_{r}.

Example 16. Let us compute the Hikita polynomial $\mathcal{H}_{(3,2)}(X ; q, t)$. There are four $(3,2)-$ parking functions (D, φ), which are listed together with their associated affine permutations $\mathcal{A}(\mathrm{D}, \varphi)$ in Figure 4. From here, we compute the Schur expansion:

$$
\mathcal{H}_{(3,2)}(X ; q, t)=q Q_{\{3\}}+Q_{\{2\}}+t Q_{\varnothing}+Q_{\{1\}}=(q+t) s_{(3)}+s_{(2,1)}
$$

It is straightforward to verify that the truncation to 2-variables of this polynomial coincides with the computation of $C_{(3,2)}^{(2)}\left(x_{1}, x_{2} ; q, t\right)$ in Example 14.

Figure 4: The (3,2)-parking functions and their associated affine permutations under the bijection \mathcal{A}, which can easily be read from $\gamma(x, y)$ for each lattice point (x, y) on D .

4 Spherical DAHA and a Finite Shuffle Theorem

The elliptic Hall algebra \mathcal{E}^{++}is the $\mathbb{C}(q, t)$-algebra consisting of an infinite family of generators $\left\{P_{(m, n)} \mid(m, n) \in \mathbb{Z}_{\geq 0}^{2} \backslash(0,0)\right\}$ modulo some relations, see e.g. [14]. Although \mathcal{E}^{++}originally arose as the Hall algebra of the category of coherent sheaves on an elliptic curve, it has since had various topological and combinatorial incarnations and played a central role in connecting q, t-combinatorics and the Shuffle Theorems to many recent results in the theory of homological and geometric invariants for knots and links.

There is a well-known geometric action of \mathcal{E}^{++}on the ring of symmetric functions $\Lambda_{q, t}$ whose fixed points correspond to the modified Macdonald polynomials $\widetilde{H}_{\lambda}(X ; q, t)$ [14]. Denote this representation by $V^{\text {geom }}$ and by $P_{(m, n)}^{\infty}(f)$ the image of $f \in \Lambda_{q, t}$ under this action. The Rational Shuffle Theorem, conjectured by Gorsky and Neguţ [8] and proved by Mellit [13], states the following.

Theorem 17 ([13]). For coprime $m, n \in \mathbb{Z}_{>0}, \quad P_{(m, n)}^{\infty}(1)=\mathcal{H}_{(m, n)}(X ; q, t)$.
The spherical DAHA $\mathrm{SH}(r)$ is the spherical subalgebra of the double affine Hecke algebra of type $\mathfrak{g l}(r)$. We consider the subalgebra $\mathrm{SH}(r)^{++}$of $\mathrm{SH}(r)$ generated by elements $P_{(m, n)}^{(r)}$ with $(m, n) \in \mathbb{Z}_{\geq 0}^{2} \backslash(0,0)$. Schiffmann-Vasserot show that under the natural map $\mathrm{SH}(r)^{++} \rightarrow \mathbb{S} \mathbb{H}(r-1)^{++}$sending $P_{(m, n)}^{(r)} \mapsto P_{(m, n)}^{(r-1)}$, the algebra \mathcal{E}^{++}arises as an inverse limit of the spherical DAHAs. Namely,

$$
\begin{equation*}
\mathcal{E}^{++} \cong \underset{r}{\lim _{r}} \mathrm{SH}(r)^{++} \tag{4.1}
\end{equation*}
$$

under which

$$
P_{(m, n)}={\underset{\zeta}{\varlimsup_{r}}}_{\lim _{r}} P_{(m, n)}^{(r)} .
$$

The algebra $\mathrm{SH}(r)^{++}$comes equipped with a faithful polynomial representation on $\mathbb{Q}(q, t)\left[x_{1} \ldots, x_{r}\right]^{S_{r}}$, denoted $\operatorname{Pol}(r)$, that is compatible with (4.1) above and the inverse limit $\Lambda_{q, t} \cong \lim _{r} \mathbf{Q}(q, t)\left[x_{1} \ldots, x_{r}\right]^{S_{r}}$. Thus, there is an induced polynomial representation $V^{\text {alg }}$ of \mathcal{E}^{++}on $\Lambda_{q, t}$. This representation is nontrivially isomorphic to the geometric one of Schiffmann-Vasserot.

Proposition 18 ([14]). There is an isomorphism of \mathcal{E}^{++}representations $\Phi: V^{\text {alg }} \rightarrow V^{\text {geom }}$ given by the plethystic substitution that sends $F(X ; q, t) \mapsto F\left[\frac{X}{1-t^{-1}} ; q, t^{-1}\right]$.

By combining this proposition with Theorems 15 and 17 we obtain the following finite analogue of the Rational Shuffle Theorem.

Theorem 19. Given any $m, n, r \in \mathbb{Z}_{>0}$ with $\operatorname{gcd}(m, n)=1$, there exists an action of $\operatorname{SH}(r)^{++}$ on $\mathbf{Q}(q, t)\left[x_{1} \ldots, x_{r}\right]^{S_{r}}$ satisfying

$$
P_{(m, n)}^{(r)}(1)=C_{(m, n)}^{(r)}\left(x_{1}, \ldots, x_{r} ; q, t\right) .
$$

In particular, this action is nontrivially isomorphic to the polynomial representation $\operatorname{Pol}(r)$.
This action is compatible with the geometric action of \mathcal{E}^{++}on $\Lambda_{q, t}$ under all the inverse limits above, with $P_{(m, n)}^{\infty}=\lim _{\varlimsup_{r}} P_{(m, n)}^{(r)}$ as operators, so that as $r \rightarrow \infty$ it recovers the Rational Shuffle Theorem.

Given the complicated nature of plethystic substitution, finding the explicit action of $\mathrm{SH}(r)^{++}$on $\mathbb{Q}(q, t)\left[x_{1} \ldots, x_{r}\right]^{S_{r}}$ in Theorem 19 is quite difficult. In particular, even describing the action for $r=1$ explicitly is unclear since although $\mathrm{SH}(1)^{++}$is straightforward, the rational Catalan numbers $C_{(m, n)}(q, t)$ are not. Nonetheless, it would be very interesting to find an explicit description of this action.

5 The Non-Coprime Case and a Bizley-Type Formula

Naturally, one asks how much of these constructions can be extended to the non-coprime case. Unfortunately it is neither easy nor obvious how to proceed. A starting point, however, is the computation of $C_{(m, n)}^{(r)}=\left|\operatorname{SSPF}^{r}(m, n)\right|$ in the case m, n are not coprime. Below we give a Bizley-type formula for these numbers.

Theorem 20. Let $m, n, r \in \mathbb{Z}_{>0}$ with $\operatorname{gcd}(m, n)=1$. There is an equality of formal power series:

$$
1+\sum_{k=1}^{\infty} C_{(m k, n k)}^{(r)} z^{k}=\exp \left(\sum_{k=1}^{\infty} \frac{1}{n k}\binom{n k r+m k-1}{m k} z^{k}\right)
$$

One can apply similar techniques to obtain a Bizley-type formula for the number of parking functions. This is, however, much more elegantly expressed by Aval and Bergeron in [3], who adapt Bizley's proof incorporating symmetric function arguments to find the Frobenius characteristic of the $S_{m k}$-representation $\mathbb{C P F}(m k, n k)$. One can adapt the arguments in this paper to show that

$$
C_{(m k, n k)}^{(r)}=\left.\operatorname{Frob}(\operatorname{CPF}(m k, n k))\right|_{x_{1}=\cdots=x_{m k}=1, x_{m k+1}=\cdots=0 .} .
$$

References

[1] J. Anderson. "Partitions which are simultaneously t_{1} - and t_{2}-core". Discrete Math. 248.1-3 (2002), pp. 237-243. Doi.
[2] D. Armstrong, N. A. Loehr, and G. S. Warrington. "Rational parking functions and Catalan numbers". Ann. Comb. 20.1 (2016), pp. 21-58. Doi.
[3] J.-C. Aval and F. Bergeron. "Interlaced rectangular parking functions". Sém. Lothar. Combin. 81 (2020), Art. B81h, 16.
[4] E. Carlsson and A. Mellit. "A proof of the shuffle conjecture". J. Amer. Math. Soc. 31.3 (2018), pp. 661-697. Doi.
[5] P. Etingof, V. Krylov, I. Losev, and J. Simental. "Representations with minimal support for quantized Gieseker varieties". Math. Z. 298.3-4 (2021), pp. 1593-1621. Dor.
[6] N. González, J. Simental, and M. Vazirani. "Higher Rank (q, t)-Catalan Polynomials, Affine Springer Fibers, and a Finite Rational Shuffle Theorem". 2023. arXiv:2303.15694.
[7] E. Gorsky, M. Mazin, and M. Vazirani. "Affine permutations and rational slope parking functions". Trans. Amer. Math. Soc. 368.12 (2016), pp. 8403-8445. Doi.
[8] E. Gorsky and A. Neguţ. "Refined knot invariants and Hilbert schemes". J. Math. Pures Appl. (9) 104.3 (2015), pp. 403-435. Dor.
[9] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov. "A combinatorial formula for the character of the diagonal coinvariants". Duke Math. J. 126.2 (2005), pp. 195-232. Dor.
[10] M. Haiman. "Hilbert schemes, polygraphs and the Macdonald positivity conjecture". J. Amer. Math. Soc. 14.4 (2001), pp. 941-1006. Doi.
[11] T. Hikita. "Affine Springer fibers of type A and combinatorics of diagonal coinvariants". Adv. Math. 263 (2014), pp. 88-122. Doi.
[12] A. G. Konheim and B. Weiss. "An occupancy discipline and applications". SIAM Journal on Applied Mathematics 14.6 (1966), pp. 1266-1274.
[13] A. Mellit. "Toric braids and (m, n)-parking functions". Duke Math. J. 170.18 (2021), pp. 4123 -4169. Doi.
[14] O. Schiffmann and E. Vasserot. "The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials". Compos. Math. 147.1 (2011), pp. 188-234. Doi.

[^0]: *nicolles@berkeley.edu.
 ${ }^{\dagger}$ simental@im.unam.mx.
 $\ddagger_{\text {vazirani@math.ucdavis.edu. M.Vazirani was partially supported by Simons Foundation Grant } 707426 . ~}^{\text {F }}$

