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Abstract. Catalanimals are rational functions encoding virtual GLl character series.
When truncated to the polynomial characters, they have been shown to recover many
important symmetric function quantities with coefficients in Q(q, t) that arise from the
study of diagonal harmonics, including ∇mek and, more generally, ∇msλ. Providing
Catalanimal representatives of these quantities gave the necessary tools to show ∇msλ

is essentially a positive q, t-weighted sum of distinguished LLT polynomials, thereby
resolving the Loehr-Warrington conjecture. Missing from this story was a Catalanimal
description of the modified Macdonald polynomials H̃µ, which are intimately linked
to the ∇ operator. In this abstract, we give a Catalanimal style expression for the
modified Macdonald polynomials and provide a positivity conjecture on the entire
GLl character series.
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1 Introduction

Macdonald polynomials are a basis of symmetric functions with coefficients in Q(q, t)
exhibiting deep connections to representation theory and algebraic geometry. In par-
ticular, specific specializations of the q, t parameters recover various widely-studied
bases of symmetric functions, such as Hall-Littlewood polynomials, Jack polynomials,
q-Whittaker functions, and Schur functions, among others.

Since their introduction, the Macdonald Positivity Conjecture was central to the study
of Macdonald polynomials. Precisely, the Macdonald Positivity Conjecture was that the
Schur expansion coefficients of the modified Macdonald polynomials H̃µ(X; q, t) lie in
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Z≥0[q, t]. In [8], it was shown that the Macdonald polynomials are doubly graded char-
acters of certain symmetric group modules, known as Garsia-Haiman modules. In [16],
the Macdonald Positivity Conjecture was proved by resolving the n!-Conjecture for the
Garsia-Haiman modules.

Out of this study arose the space of diagonal harmonics, a bigraded Sk-module con-
taining all the Garsia-Haiman modules associated to partitions of k as submodules. It
was conjectured in [9] and proven in [17] that the doubly graded character of the diag-
onal harmonics can be succinctly described as ∇ek for ek the kth elementary symmetric
function and ∇ an operator on symmetric functions with eigenfunctions given by the
Macdonald polynomials. Precisely,

∇H̃µ = tn(µ)qn(µ∗)H̃µ where n(µ) = ∑
i
(i− 1)µi . (1.1)

Haglund et. al [13] conjectured a combinatorial identity expressing ∇ek as a q, t-
weighted sum of LLT polynomials, which are q-analogues of skew Schur functions re-
lated to Kazhdan-Lusztig polynomials and Fock space representations of Uq(ŝln). This
identity, now known as the Shuffle Theorem, was proven in [6]. After being conjectured
in 2005, this formula was generalized in many directions, including the Rational Shuffle
Theorem (conjectured in [1], proven in [21]), the Compositional Shuffle Theorem (conjec-
tured in [14], proven in [6]), the Delta Theorem (conjectured in [15], proven in [7]), and
the Loehr-Warrington Conjecture ([19]) for ∇sµ, where sµ is the Schur function indexed
by any partition µ.

In several previous works, we provide a general class of functions called Catalani-
mals, special cases of which give quantities like ∇msµ and expressions in the Rational
Shuffle Theorem. Catalanimals are defined with 3 “root ideals” and a weight, denoted
H(Rq, Rt, Rqt, γ). Catalanimals are properly thought of as infinite series of virtual GLl
characters, i.e. linear combinations of terms χλ for λ ∈ Zl satisfying λ1 ≥ · · · ≥ λl for
χλ an irreducible GLl-character. To recover symmetric functions, we define polX to be
the truncation of this series to terms χλ satisfying λl ≥ 0, called polynomial terms. This
produces an element of Λ via the identification χλ ↔ sλ.

Using Catalanimals, we gave an alternative proof of the Rational Shuffle Theorem
and provided a generalization whose combinatorics are controlled by Dyck paths below
a line of irrational slope in [5]. In [4], we provide a proof of the Extended Delta Conjec-
ture by expressing it as a simple sum of Catalanimals. In [2], we used the Catalanimals
introduced in [3] to resolve and generalize the Loehr-Warrington Conjecture for ∇msλ.
Missing from these works was any treatment of Macdonald polynomials, the founda-
tion upon which these shuffle theorems lie. In this extended abstract, we now fill in
this missing piece by providing a Catalanimal style formula for a modified Macdonald
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polynomial. Our Catalanimal-style formula reads

Hµ(z; q, t) = σ

(
∏αij∈Rµ\R̂µ

(
1− qarm(µ[i])+1 t−leg(µ[i])zi/zj

)
∏αij∈R̂µ

(
1− qt zi/zj

)
∏αij∈R+

(
1− q zi/zj

)
∏αij∈Rµ

(
1− t zi/zj

) )
, (1.2)

where σ is the Weyl symmetrization operator defined in Section 2.2 and Rµ, R̂µ are
subsets of the set of positive roots for GLl explained in Section 3. Under polynomial
truncation, our formula recovers ωH̃µ(X; q, t).

The proof begins with the Haglund-Haiman-Loehr formula [11] for H̃µ(X; q, t) as a
weighted sum of LLT polynomials. We then apply the operator ∇ and combine this with
a formula for ∇ on an LLT polynomial established in our recent work [3].

This work serves as an extended abstract for a future paper in which we will elaborate
on and further generalize this result.

2 Background

2.1 Partitions and symmetric functions

The (French style) diagram of a partition µ = (µ1 ≥ · · · ≥ µk > 0) is the set {(i, j) ∈ Z2
+ :

1 ≤ j ≤ k, 1 ≤ i ≤ µj}. We identify (i, j) with the lattice square or box whose northeast
corner has coordinates (x, y) = (i, j), and refer to this box as being in column i and row j.
We set |µ| = µ1 + · · ·+ µk and let ℓ(µ) = k be the number of non-zero parts. We write
µ∗ for the transpose of a partition µ. The arm and leg of a box b ∈ µ are the number of
boxes in µ strictly east of b and strictly north of b, respectively.

Example 2.1.1. Below we give the diagram of the partition µ = (2, 2, 1) and we fill box b
with (arm(b), leg(b)):

0,0

1,1 0,0

1,2 0,1 .

For this µ, we have |µ| = 5 and ℓ(µ) = 3.

Let Λ = Λ(X) be the algebra of symmetric functions in infinitely many variables X =
x1, x2, . . ., with coefficients in the field k = Q(q, t). We follow Macdonald’s notation [20]
for the graded bases of Λ, and the automorphism ω : Λ→ Λ given on Schur functions by
ωsλ = sλ∗ . We also work with series and symmetric functions in finitely many variables
z = z1, . . . , zl. If f (X) ∈ Λ is a formal symmetric function, then f (z) or f (z1, . . . , zl)
denotes its specialization with X = z1, . . . , zl, 0, 0, . . ..

Given a symmetric function f ∈ Λ and any expression A involving indeterminates,
the plethystic evaluation f [A] is defined by writing f as a polynomial in the power-sums
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pk and evaluating with pk 7→ pk[A], where pk[A] is the result of substituting ak for every
indeterminate a occurring in A. The variables q, t from our ground field k count as
indeterminates.

By convention, the name of an alphabet X = x1, x2, . . . stands for x1 + x2 + · · · inside a
plethystic evaluation. Then f [X] = f [x1 + x2 + · · · ] = f (x1, x2, . . .) = f (X). For example,
the evaluation f [X/(1− t−1)] is the image of f (X) under the k-algebra automorphism
of Λ that sends pk to pk/(1− t−k).

The modified Macdonald polynomials H̃µ = H̃µ(X; q, t) of [10] are defined in terms of
the Macdonald polynomials Qµ(X; q, t) [20, VI (4.12)] or their integral forms Jµ(X; q, t)
[20, VI (8.3)] by

H̃µ(X; q, t) = tn(µ) Jµ[
X

1− t−1 ; q, t−1] = tn(µ)
(
∏
b∈µ

(1− qarm(b)+1t−leg(b))
)
Qµ[

X
1− t−1 ; q, t−1],

(2.1)
where n(µ) = ∑i(i − 1)µi. The H̃µ(X; q, t) also have a direct combinatorial descrip-
tion [11], which we will recall in Theorem 4.1.1.

When q = 0, the modified Macdonald polynomials reduce to the modified Hall-
Littlewood polynomials

H̃µ(X; 0, t) = tn(µ)Qµ[
X

1− t−1 ; t−1], (2.2)

where the Hall-Littlewood polynomials Qµ(X; t) are as defined in [20, III (2.11)]. At t = 1
and t = ∞, the H̃µ(X; 0, t) specialize to the complete homogeneous symmetric functions
H̃µ(X; 0, 1) = hµ(X) and Schur functions H̃µ(X; 0, ∞) = sµ(X).

Example 2.1.2. The Macdonald polynomial H̃22(X; q, t) has the following expansion into
the basis of Schur functions.

H̃22(X; q, t) = s4 + (q + t + qt)s31 + (q2 + t2)s22 + (qt + q2t + qt2)s211 + q2t2s1111 (2.3)

2.2 Weyl symmetrization and related operators

The Weyl symmetrization operator σ for GLl is defined by

σ( f (z1, . . . , zl)) = ∑
w∈Sl

w
(

f (z1, . . . , zl)

∏i<j(1− zj/zi)

)
= ∑

w∈Sl

w
(

f (z1, . . . , zl)

∏αij∈R+
(1− zj/zi)

)
, (2.4)

where f ∈ k[z±1
1 , . . . , z±1

l ] is a Laurent polynomial, Sl acts by permuting the variables
z1, . . . , zl, and R+ = R+(GLl) = {αij : 1 ≤ i < j ≤ l} denotes the set of positive roots for
GLl, with αij = ϵi − ϵj ∈ Zl.

When zν = zν1
1 · · · z

νl
l for a dominant weight ν (a weight ν ∈ Zl is dominant if

ν1 ≥ · · · ≥ νl), σ(zν) = χν is an irreducible GLl character. For an arbitrary weight
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γ ∈ Zl, either σ(zγ) = ±χν for a suitable dominant weight ν, or σ(zγ) = 0. We
extend σ to an operator on formal k-linear combinations ∑γ∈Zl cγzγ by applying it
term by term, giving an infinite formal linear combination of irreducible GLl charac-
ters ∑ν aνχν = ∑γ∈Zl cγσ(zγ). This makes sense because for each dominant weight ν,
the set of monomials zγ such that σ(zγ) = ±χν is finite.

Recall that the polynomial characters of GLl are the irreducible characters χν for which
ν is a partition, that is, νl ≥ 0. Given any formal k-linear combination ∑ν aνχν of irre-
ducible GLl characters, we define its polynomial truncation by

polX

(
∑
ν

aν χν

)
= ∑

νl≥0
aν sν(X). (2.5)

In principle, the right hand side is an infinite formal sum of symmetric functions, but, for
instance, if ∑ aνχν is homogeneous of degree d, then the right hand side is an ordinary
symmetric function, homogeneous of degree d.

2.3 LLT polynomials

We recall the definition and basic properties of LLT polynomials [18], using the ‘attacking
inversions’ formulation from [13].

A skew diagram is a difference ν = λ/µ of partition diagrams µ ⊆ λ. The content of a
box b = (i, j) in row j, column i of a (skew) diagram is c(b) = i− j.

Let ν = (ν(1), . . . , ν(k)) be a tuple of skew diagrams. We consider the set of boxes in ν

to be the disjoint union of the sets of boxes in the ν(i), and define the adjusted content of
a box a ∈ ν(i) to be c̃(a) = c(a) + iϵ, where ϵ is a fixed positive number such that kϵ < 1.

A diagonal in ν is the set of boxes of a fixed adjusted content, that is, a diagonal of
fixed content in one of the ν(i).

The reading order on ν is the total ordering < on the boxes of ν such that a < b ⇒
c̃(a) ≤ c̃(b) and boxes on each diagonal increase from southwest to northeast. See
Example 2.3.2. An attacking pair is an ordered pair of boxes (a, b) in ν such that a < b in
reading order and 0 < c̃(b)− c̃(a) < 1.

A semistandard tableau on the tuple ν is a map T : ν → Z+ which restricts to a semis-
tandard Young tableau on each component ν(i). The set of these is denoted SSYT(ν). An
attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b). The number of
attacking inversions in T is denoted inv(T).

Definition 2.3.1. The LLT polynomial indexed by a tuple of skew diagrams ν is the gen-
erating function

Gν(X; q) = ∑
T∈SSYT(ν)

qinv(T)xT, (2.6)

where xT = ∏a∈ν xT(a). By [13, 18], Gν(X; q) is known to be symmetric.
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Example 2.3.2. Let ν = ((32)/(10), (33)/(11)) and let ν[1], . . . , ν[8] denote the boxes of ν

in increasing reading order as illustrated in (2.7). We can visualize this by aligning the
shapes of ν along content diagonals and reading diagonals top to bottom and bottom
left to top right along each diagonal.

ν[1] ν[2]

ν[3]

ν[4]

ν[5]

ν[6]

ν[7]

ν[8]

(2.7)

The tuple ν has attacking pairs

{(ν[2], ν[3]), (ν[3], ν[4]), (ν[4], ν[5]), (ν[4], ν[6]),
(ν[5], ν[7]), (ν[6], ν[7]), (ν[7], ν[8])} . (2.8)

Let T ∈ SSYT(ν) be as follows:

T = 1 2

2

1

1

4

4

3
. (2.9)

T has attacking inversions {(ν[3], ν[4]), (ν[7], ν[8])}, so inv(T) = 2. Also, xT = x3
1x2

2x3x2
4.

3 Catalanimals

In [3], we introduced Catalanimals—infinite series of irreducible GLl characters in vari-
ables z = z1, . . . , zl, defined by

H(Rq, Rt, Rqt, λ) = σ

( zλ1
1 · · · z

λl
l ∏αij∈Rqt(1− q t zi/zj)

∏αij∈Rq(1− q zi/zj)∏αij∈Rt(1− t zi/zj)

)
, (3.1)

depending on a weight λ ∈ Zl and subsets Rq, Rt, Rqt of the set of positive roots R+ =
{ϵi − ϵj | 1 ≤ i < j ≤ l} for GLl. Our convention is always to expand the denominator
factors (1− c zi/zj) for c ∈ k and i < j as geometric series (1− czi/zj)

−1 = 1 + czi/zj +
· · · before applying σ.
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2 1 0

1 0 1 0

2 0

2 0

2 1

1 0

λ, as a filling of µ λ, as a filling of ν

2

2

2

1

1

1

0

0

1

0

H1,1
(µ)

2

0

2

2

1

1

0

0H1,1
ν

R+ \ Rq

Rq \ Rt

Rt \ Rqt

Rqt

ω∇s433 = (q t)9(H1,1
(µ)

)pol ω∇Gν = −(q t)4q7(H1,1
ν )pol

Figure 1: (i) The Catalanimal H1,1
(µ)

for µ = (433). (ii) The Catalanimal H1,1
ν for ν =

((32)/(10), (33)/(11)). These are illustrated by drawing the root sets in an ℓ× ℓ grid
labeled by matrix-style coordinates, with the sets R+ \Rq, Rq \Rt, Rt \Rqt, Rqt specified
according to the legend on the right; the weight λ is written on the diagonal with λ1

in the upper left.

Distinguished among Catalanimals are the LLT Catalanimals, denoted H1,1
ν in [3],

whose polynomial part is equal to ω∇ applied to the LLT polynomial Gν, up to a q, t-
monomial scalar factor. The Catalanimal H1,1

ν has root sets R+ ⊇ Rq ⊇ Rt ⊇ Rqt, deter-
mined as follows using the same attacking inversion combinatorics as in the definition
of the LLT polynomial Gν:

• R+ \ Rq ←→ pairs of boxes in the same diagonal in ν,

• Rq \ Rt ←→ the attacking pairs in ν,

• Rt \ Rqt ←→ pairs going between adjacent diagonals ν,

where the boxes of ν are numbered 1, . . . , l in reading order (see Example 2.3.2). The
weight λ is obtained by filling each diagonal D of ν with the value
1 + χ(D contains a row start)− χ(D contains a row end), where χ(P) = 1 if P is true or 0 if
P is false, and then reading this filling in the reading order—see Figure 1.
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Example 3.1.1. Consider ν = (ν(1)) for ν(1) = (111). To construct H(1,1)
ν , we note that

every box is on a different diagonal in ν and no boxes attack each other, so Rq = Rt = R+.
Furthermore, in reading order, boxes 1 and 2 are adjacent and boxes 2 and 3 are adjacent,
so Rqt = {α13}. Finally, every box is both a row start and a row end, so λ = (111).

Therefore, H(1,1)
ν is given by

H(R+, R+, {α13}, (111)) = σ

(
z111(1− q t z1/z3)

∏1≤i<j≤3(1− q zi/zj)(1− t zi/zj)

)
(3.2)

Taking the polynomial part, this becomes

polX H(R+, R+, {α13}, (111))

= s111 + (q + t + q2 + qt + t2)s21 + (qt + q3 + q2t + qt2 + t3)s3

= ω∇e3

(3.3)

Note that the LLT polynomial with ν = (ν(1)) satisfying ν(1) = (111) is equal to e3.

For the purposes of this work, we will need only LLT Catalanimals for ν a tuple of
ribbon shapes. A ribbon is a connected skew shape containing no 2× 2 block of boxes. If
we only consider ribbons with m boxes such that the bottom-right box has content −1,
then the contents of all the boxes are consecutive integers −1,−2, . . . ,−m. Define the
descent set of a ribbon ν to be the set of contents c(u) of the boxes u = (i, j) ∈ ν such that
the box v = (i, j− 1) directly below u also belongs to ν.

Then, to a partition µ and a subset D ⊂ {(i, j) ∈ µ | j > 1}, we associate a tuple of
ribbons ν(µ, D) = (ν(1), . . . , ν(k)) where k = µ1 is the number of columns of µ, and ν(i)

has size µ∗i , box contents {−1,−2, . . . ,−µ∗i }, and descent set Des(ν(i)) = {−j | (i, j) ∈
D}. See Example 4.1.2 for examples of ν(µ, D) for fixed µ as D varies. Let µ[1], . . . , µ[l]
denote the boxes of ν(µ, D) in increasing reading order. Also, let Aµ denote the number
of attacking pairs in ν(µ, D). Note that both the reading order of the boxes of ν(µ, D)
and the number of attacking pairs depend only on µ and not on D. Then, for any box
b = (i, j) ∈ µ, let south(b) = (i, j− 1) and let Vµ = {(µ[i], µ[j]) | south(µ[i]) = µ[j]} be
the set of vertical dominoes in µ.

In this case, the root sets for the LLT Catalanimal indexed by ν(µ, D) become Rq =
R+, and

Rt = Rµ
def
= {αij ∈ R+ | c̃(µ[i]) + 1 ≤ c̃(µ[j])} (3.4)

Rqt = R̂µ
def
= {αij ∈ R+ | c̃(µ[i]) + 1 < c̃(µ[j])} (3.5)

Then, we have the following special case of [3, Corollary 8.4.1].
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Theorem 3.1.2. For a partition µ and a subset D ⊂ {(i, j) ∈ µ | i > 1}, let ν = ν(µ, D) and
S = {(µ[i], µ[j]) ∈ Vµ | µ[i] ∈ D}. Then, we have the following formula for the operator ∇
applied to the LLT polynomial Gν(X; q):

∇Gν(X; q) = ω polX σ

(
(−qt)|µ|−µ1−|D|qAµ

×
z1 · · · zl ∏(µ[i],µ[j])∈Vµ\D zi/zj ∏αij∈R̂µ

(1− qtzi/zj)

∏αij∈R+
(1− qzi/zj)∏αij∈Rµ

(1− tzi/zj)

)
(3.6)

Example 3.1.3. For µ = (2, 2, 1, 1), l = 6, the root sets Rµ and R̂µ are visualized below
drawn in an l × l grid, labeled by matrix-style coordinates and specified by the legend.

µ[1]

µ[2]

µ[3] µ[4]

µ[5] µ[6]

reading order

Rµ

R̂µ

4 Macdonald Catalanimals

4.1 The Haglund-Haiman-Loehr formula

Haglund-Haiman-Loehr [11] gave a formula for the modified Macdonald polynomials
Hµ(X; q, t) as a positive sum of LLT polynomials indexed by a tuple of ribbons. We now
recall this formula.

Theorem 4.1.1. For partition µ,

H̃µ(X; q, t) = ∑
D

(
∏
u∈D

q−arm(u)tleg(u)+1

)
Gν(µ,D)(X; q) , (4.1)

where the sum runs over all subsets D ⊂ {(i, j) ∈ µ | j > 1}.

Example 4.1.2. We illustrate the theorem for µ = (2, 2, 1). Below we draw ν(µ, D) for the
8 possible values of D with boxes labeled in reading order and with the corresponding
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coefficient ∏u∈D q−arm(u)tleg(u)+1.

µ[1]

µ[2] µ[3]

µ[4] µ[5]

µ

0
01

arms

0
01

legs

1

2

3

4

5

D = {µ[1], µ[2], µ[3]}

q91t4
1 2

3

4

5

D = {µ[2], µ[3]}

q91t3

1

2

3

4

5

D = {µ[1], µ[2]}

q91t3
1

2

3

4

5

D = {µ[1], µ[3]}

t2

1 2

3

4

5

D = {µ[2]}

q91t2 1 2

3

4

5

D = {µ[3]}

t
1

2

3

4

5

D = {µ[1]}

t 1 2

3

4

5

D = ∅

1

4.2 Proving the Macdonald Catalanimal formula

Applying ∇ to (4.1) and substituting our Catalanimal formula (3.6) for ∇Gν for each
summand, the resulting sum simplifies and yields the following formula for the modi-
fied Macdonald polynomials H̃µ(X; q, t) (previewed in (1.2)):

Theorem 4.2.1. For every partition µ,

H̃µ(X; q, t) = ω polX Hµ(z; q, t) (4.2)

for Hµ given by

Hµ(z; q, t) = σ

(
∏αij∈Rµ\R̂µ

(
1− qarm(µ[i])+1 t−leg(µ[i])zi/zj

)
∏αij∈R̂µ

(
1− qt zi/zj

)
∏αij∈R+

(
1− q zi/zj

)
∏αij∈Rµ

(
1− t zi/zj

) )
. (4.3)

The work of [11, 12] actually gives many formulae for H̃µ, one for each rearrange-
ment of the columns of µ. In turn, following the same proof technique, we obtain a
Catalanimal style formula for H̃µ for each rearrangement of the columns of µ. More
details will be given in the full version of this paper.

4.3 Positivity of the Macdonald Catalanimal

Finally, we provide a conjecture on the series Hµ in (4.3). It is a theorem of [16] that
the expansion H̃µ(X; q, t) = ∑λ K̃λ,µ(q, t)sλ has positive coefficients K̃λ,µ(q, t) ∈ Z≥0[q, t].
However, computer experimentation suggests that Hµ(z; q, t) exhibits a stronger positiv-
ity as a series of GLl-characters.
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Conjecture 4.3.1. For every partition µ of l, the series Hµ(z; q, t) is a positive sum of irreducible
GLl characters; that is, the coefficients in

Hµ(z; q, t) = ∑
ν

Kν,µ(q, t) χν (4.4)

are polynomials Kν,µ(q, t) ∈ Z≥0[q, t] with non-negative integer coefficients.
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