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Abstract. We give a new proof of the combinatorial invariance conjecture for lower
intervals of the symmetric group. This conjecture posits that Kazhdan–Lusztig poly-
nomials associated to intervals in the Bruhat order depend only on the poset struc-
ture of the interval. For lower intervals of the symmetric group, this was originally
shown by Brenti using special matchings. Our proof uses a different combinatorial
structure, called a hypercube decomposition, which was recently introduced by Blun-
dell, Buesing, Davies, Veličković, and Williamson as an approach to proving combi-
natorial invariance for arbitrary intervals. Instead of studying the Kazhdan–Lusztig
polynomials directly, we apply hypercube decompositions to the related family of R̃-
polynomials. We prove a new, explicit combinatorial recurrence for R̃-polynomials
using certain hypercube decompositions.
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1 Introduction

Kazhdan–Lusztig polynomials Pu,v(q) are polynomials associated to a pair u, v of ele-
ments of a Coxeter group W. They were first introduced in [17] as transition functions
between the standard basis of the Hecke algebra of W and the Kazhdan–Lusztig basis.
The polynomials can also be defined geometrically: if Xu, Xv are the Schubert cells asso-
ciated to u and v in a flag variety, and x ∈ Xu is any point, then Pu,v(q) is the Poincare
polynomial of the stalk at x of the intersection cohomology sheaf on the Schubert variety
Xv. Recall that the Bruhat order is a partial order on Coxeter group elements such that
u ≤ v if and only if Xu is contained in the Schubert variety Xv. In particular, Pu,v(q) = 0
unless u ≤ v. The combinatorial invariance conjecture is the assertion, proposed by Dyer
[13] and Lusztig, that if the Bruhat intervals [u, v] and [u′, v′] are isomorphic as posets,
then Pu,v(q) = Pu′,v′(q).
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If u = u′ = e, so that both [u, v] and [u′, v′] are lower intervals in Bruhat order, then
the combinatorial invariance conjecture is a theorem. This was first proven when W = Sn
by Brenti [6] using special matchings of the Hasse diagram of [e, v]. Du Cloux [10] then
extended the result to a large class of Coxeter groups using an analysis of isomorphisms
between lower intervals. Finally combinatorial invariance of lower intervals was shown
for all Coxeter groups by Delanoy [11] and independently by Brenti–Caselli–Marietti [7]
via a classification of all possible special matchings of these posets. Little is known about
special matchings in intervals that are not lower, and there exist non-lower intervals
which have no special matchings. As a result, the technique used by these authors does
not extend to all intervals, and there are few other cases where combinatorial invariance
is known. These include intervals with no subinterval isomorphic to Bruhat order on S3
[4], intervals of Sn with length up to 8 [13, 15, 16], intervals in the infinite group Ã2 [8],
and intervals where Pu,v(q) = 1 [9, 12].

Here we will give a new proof of combinatorial invariance for lower intervals in the
symmetric group, which is quite distinct from the earlier proofs using special matchings.
Our method gives hope for proving combinatorial invariance for an arbitrary interval of
Sn, because the combinatorial structure it relies upon exists in every such interval (in
contrast to special matchings). Following the conventions in this area, we will say that a
notion is combinatorial if it depends only on the isomorphism class of the poset [u, v].

Our proof is inspired by recent work of Blundell, Buesing, Davies, Veličković, and
Williamson [3], in which the authors created a machine learning model to predict Pu,v(q)
from the Bruhat graph associated to [u, v]. They found that the model placed more im-
portance on edges that formed a subgraph shaped like the edges of a hypercube. A
more refined analysis led them to the notion of a hypercube decomposition. A hypercube
decomposition of [u, v] is a subinterval [u, z] whose complement contains many hyper-
cubes (see Definition 2.5). The authors conjecture an intriguing combinatorial recursion
for Pu,v(q) that should hold for any hypercube decomposition. They also show that the
formula is true for a certain (non-combinatorial) standard hypercube decomposition which
exists in any interval of the symmetric group.

In this paper we do not prove their conjecture, or even study the polynomials Pu,v(q)
directly at all. Instead we prove a more explicit recursion for a related family of poly-
nomials, the R̃-polynomials. For elements u ≤ v of a Coxeter group W, Theorem 5.1.4
of [2] implies that combinatorial invariance of R̃u,z(q) for all z ∈ [u, v] is equivalent to
combinatorial invariance of Pu,z(q) for all z ∈ [u, v]. We also specialize to certain strong
hypercube decompositions (see Definition 2.6), which include the standard hypercube
decomposition. In the next section we define a combinatorial polynomial H̃u,z,v(q) asso-
ciated to a hypercube decomposition and depending on the polynomials R̃u,x for x ≤ z.
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Main Theorem. Let W = Sn. Then for any v ∈ W, and any z ≤ v such that [e, z] gives a
strong hypercube decomposition of [e, v], we have

R̃e,v(q) = H̃e,z,v(q).

Furthermore, for any u < v in Sn, there exists u ≤ z < v such that [u, z] gives a strong
hypercube decomposition of [u, v], and we have

R̃u,v(q) = H̃u,z,v(q). (∗)

As a result of these two facts, the polynomial R̃e,v(q) depends only on the isomorphism class
of [e, v] as a poset.

The first fact alone is not enough to imply combinatorial invariance for lower inter-
vals: without the second fact (for u = e), our combinatorial recursion for R̃e,v may not
reach a base case. But also the second fact of the theorem alone does not imply any cases
of combinatorial invariance, because the z produced there is not defined combinatorially.

In light of the theorem statement, one might ask whether (∗) always holds for any
strong hypercube decomposition of [u, v]. The answer is no; a (minimal) counterexample
is given by

u = [132546], z = [612345], v = [651234].

However, we make the following conjecture, which when combined with the main the-
orem implies combinatorial invariance. For polynomials P and Q, we write P ≤ Q to
mean that the coefficient of qk in P is less than or equal to that in Q, for all k.

Conjecture. For any interval [u, v] in Sn, and any strong hypercube decomposition [u, z], we
have

R̃u,v ≤ H̃u,z,v.

The main theorem is a summary of Theorems 1, 2, and 3. To state these theorems
requires some details on hypercube decompositions, which are given in the next section.

The authors have generalized the results announced in this extended abstract in order
to prove new interesting cases of combinatorial invariance. For the details, see [1]. That
same reference contains the details of many proofs which are omitted here.

2 Hypercube decompositions

Let W be a Coxeter group with generating set S and reflection set T := {wsw−1 | w ∈
W, s ∈ S}. Elements of these sets are called simple generators and reflections, respec-
tively. For the Main Theorem it will suffice to take W = Sn, S = {(12), (23), . . . , (n −
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1, n)}, and T = {(ab) | a < b}, but some of the results hold for any Coxeter group. Here
we write (ab) or (a, b) to denote the transposition swapping a and b. We will also use
one-line notation for permutations: [3124] and [3, 1, 2, 4] both denote the permutation
sending 1 7→ 3, 2 7→ 1, 3 7→ 2, 4 7→ 4. The length of a Coxeter group element w the
minimal number of simple generators needed to express w and is denoted ℓ(w).

Definition 2.1. The Bruhat graph ΩW is the directed graph with vertices given by the
elements of W and an edge from u to v if and only if ℓ(u) < ℓ(v) and vu−1 is a reflection.
We make this an edge-labeled graph by labeling the edge u → v by the unique reflection
t ∈ T such that tu = v. We denote this by u t−→ v.

We say u ≤ v in Bruhat order if there is path from u to v in the Bruhat graph. The
Bruhat graph Ωu,v is the induced subgraph of ΩW on the elements of [u, v].

From this description there are two facts that aren’t obvious about the Bruhat graph:

Proposition 2.2 ([14, Proposition 3.3]). The Bruhat order is a graded poset with rank function
ℓ. In particular, the Hasse diagram of Bruhat order is a subgraph of ΩW . Furthermore, the
unlabeled graph underlying Ωu,v is determined by the poset isomorphism class of [u, v].

As a result of this proposition, we are allowed to use the (unlabeled) edges of Ωu,v
in constructing combinatorial invariants. The following definition introduces our main
object of study, the R̃-polynomials.

Definition 2.3. A reflection order is a total ordering ≺ on the reflections T satisfying
certain properties (see [2, Section 5.2]). If W = Sn, reflection orders are exactly those
such that whenever 1 ≤ a < b < c ≤ n, we have either

(ab) ≺ (ac) ≺ (bc) or (bc) ≺ (ac) ≺ (ab)

Fix a reflection order ≺. An increasing path of length k in the Bruhat graph Ωu,v is a

path u
t1−→ u1

t2−→ · · · tk−→ uk = v such that t1 ≺ t2 ≺ · · · ≺ tk in the reflection order. The
R̃-polynomial is defined by

R̃u,v(q) =
ℓ(v)−ℓ(u)

∑
k=0

(# of length-k increasing paths in Ωu,v) · qk.

Proposition 2.4 ([2, Theorems 5.1.4 and 5.3.4]). The R̃-polynomials are independent of the
choice of reflection order. Furthermore, the Kazhdan–Lusztig polynomial Pu,v(q) can be computed
from the family R̃u,z(q) as z varies in [u, v]. In particular, combinatorial invariance for R̃-
polynomials implies combinatorial invariance for Kazhdan–Lusztig polynomials.
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The proposition implies that the Kazhdan–Lusztig polynomials can be computed
from Ωu,v as an abstract digraph with its edge-labeling by elements of T. We will be
especially interested in certain configurations of edges introduced in [3]. First we define
a useful family of directed graphs. The k-hypercube is the Hasse diagram of the Boolean
lattice with k atoms, equivalently the 1-skeleton of an k-dimensional hypercube. The
2-hypercube is also called a diamond.

Figure 1: The 2-hypercube and the 3-hypercube.

Fix x ∈ [u, v]. Let Y be a collection of k elements of Ωu,v which each have incoming
edges from x. We say that Y spans a hypercube at x if Y is the set of atoms of a subgraph
of Ωu,v which is isomorphic to the k-hypercube. If Y spans a unique hypercube at x,
then we define θx(Y) to be the top vertex of the hypercube spanned by Y.

Definition 2.5. Let [u, v] be a Bruhat interval. Let z ∈ [u, v]. We say that I = [u, z] is a
hypercube decomposition (following [3]) if these two properties hold:

(D) If

w

y y′

x

is a subgraph of Ωu,v and x, y, y′ are all in I, then w is in I.

(H) If x ∈ I and Y = {y1, y2, . . . , yk} ⊆ [u, v] is such that x → yi and yi ̸∈ I for all i, and
the {yi} are pairwise incomparable, then Y spans a unique hypercube.

For x in a hypercube decomposition I, define the set Yx := {y ∈ [u, v] \ I | x → y}.
For any antichain Y ⊆ Yx, property (H) implies that θx(Y) is well-defined. The function
θx is called the hypercube map; in [3] its domain is extended to all subsets of Yx. Note that
θx(∅) = x. To simplify exposition, in the remainder of this abstract we will assume that
if Y, Y′ ⊆ Yx are distinct antichains, then θx(Y) ̸= θx(Y′). We also define for each x ∈ I a
subset Y◦

x ⊆ Yx which is the unique antichain satisfying θx(Y◦
x ) = v if it exists. If such a

subset does not exist, we set Y◦
x := ∅.
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We can now define the polynomial

H̃u,z,v(q) := ∑
x∈I

θx(Y◦
x )=v

q|Y
◦
x |R̃u,x(q),

where the sum is taken over x ∈ [u, z] such that there is an antichain contained in
Yx which spans a hypercube with top v. We are almost ready to state our theorem
computing R̃e,v. We first need a special condition on a hypercube decomposition.

Definition 2.6. We say that the hypercube decomposition I of [u, v] is strong if it satisfies
the following condition:

(U) For all x ∈ I and antichains Y, Y′ ⊆ Yx with |Y| = |Y′| = |Y ∩ Y′|+ 1, if

w

θx(Y) θx(Y′)

θx(Y ∩ Y′)

is a subgraph of Ωu,v, then Y ∪ Y′ is an antichain and w = θx(Y ∪ Y′).

Theorem 1. Let W = Sn and z ≤ v any two elements such that I = [e, z] gives a strong
hypercube decomposition of [e, v]. Then

R̃e,v = H̃e,z,v.

Proof sketch. The left-hand side is the generating function which counts increasing paths
γ from e to v, weighted by qℓ(γ), where ℓ(γ) is the number of edges in γ. The right hand
side is the generating function which counts pairs (x, γ′), where x is in I and γ′ is an
increasing path from e to x. Such a pair is weighted by qℓ(γ

′)+|Y◦
x |. To prove the inequality,

it will suffice to give a bijective, weight-preserving map from the objects counted by the
left-hand side to the objects counted by the right-hand side.

Given an increasing path γ from e to v, we define x to be the last vertex of γ which
is in I. The path γ′ is defined as the initial section of γ which ends at x. We would
like to show that γ is the unique completion of γ′ to an increasing path from e to v, and
furthermore that ℓ(γ) = ℓ(γ′) + |Y◦

x |. This reduces to two facts: that every hypercube
subgraph of ΩW contains a unique increasing path, and that once γ leaves I, every
remaining vertex used by γ is in the image of θx. The proof of the latter fact uses (U),
but it also requires that we define increasing paths using a reflection order with special
properties. That such a reflection order exists is a consequence of property (D) and uses
the fact that [e, v] is a lower Bruhat interval.
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We would also like to know that the map γ 7→ (x, γ′) is surjective. This amounts
to checking, for each x ∈ J with θx(Y◦

x ) = v, that the unique increasing path in the
hypercube spanned by Y◦

x may be concatenated to the end of any increasing path from e
to x to produce a path that is still increasing. Again this relies on a specially constructed
reflection order. See [1] for more details.

If the only strong hypercube decomposition is the trivial one where z = v, then this
formula gives us no information. Fortunately, in the symmetric group, there are always
nontrivial strong hypercube decompositions. If v = [v(1), v(2), . . . , v(n)] is the one-line
notation for v, and i is the minimal index such that v(i) ̸= i, then the standard hypercube
decomposition of [e, v] is I = {x ∈ [e, v] | x(i) = i}. One can similarly define the standard
hypercube decomposition in any nontrivial interval of Sn.

The following is a strengthening of [3, Theorem 5.1], and its proof can be extracted
from the explicit description of the hypercube map in Section 5 of that paper.

Theorem 2. For every u < v in Sn, the standard hypercube decomposition of [u, v] is strong.

Finally we have the following result applying to non-lower intervals. Remarkably,
Brenti proved essentially the same result in [5, Corollary 3.9], long before the invention
of hypercube decompositions. Our proof is quite different from Brenti’s, and proceeds
in the same way as that of Theorem 1.

Theorem 3. For every u < v in Sn, the standard hypercube decomposition I = [u, z] of [u, v]
satisfies

R̃u,v(q) = H̃u,z,v(q).

Theorem 3, when combined with our Conjecture, implies that

R̃u,v = min
u≤z<v

[u,z]=strong hyp. dec.

H̃u,z,v.

Here the comparison of polynomials is taken coefficient-wise. If the Conjecture is true,
then this gives a recursion for R̃u,v depending only on the unlabeled graph structure for
Ωu,v, hence proving the combinatorial invariance conjecture for Sn.
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