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Equivariant log-concavity of independence
sequences of claw-free graphs
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Abstract. We show that the graded vector space spanned by independent vertex sets
of any claw-free graph is strongly equivariantly log-concave, viewed as a graded per-
mutation representation of the graph automorphism group. Our proof reduces the
problem to the equivariant hard Lefschetz theorem on the cohomology of a product
of projective lines, inspired by a combinatorial map of Krattenthaler. Both the result
and the proof generalize our previous result on graph matchings. This also gives a
strengthening and a new proof of results of Hamidoune, and Chudnovsky–Seymour.
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1 Introduction

A graph G is claw-free if no induced subgraph is the bipartite graph K1,3. An indepen-
dent set of a graph G is a set of nonadjacent vertices. The independence sequence of a
claw-free graph is log-concave: for all 1 ≤ k ≤ `, the numbers Ij of independent sets of
size j satisfies that

Ik−1 I`+1 ≤ Ik I`.

This was first proven by Hamidoune [5]. Then, Chudnovsky and Seymour [3] proved it
by showing that the generating polynomial has only real roots, which is well-known to
imply log-concavity with no internal zeros.

It is often interesting to ask if a certain behavior of a mathematical object respects
the underlying symmetry. The notion of equivariant log-concavity was introduced by
Gedeon, Proudfoot and Young [4] as a natural categorification of logarithmic concavity.
Recently, it is used to study various log-concavity behaviors with respect to a natural
group action in the contexts of topology, geometry and combinatorics.

Let Γ be a finite group, a Γ-representation V• is strongly equivariantly log-concave
if for all 1 ≤ k ≤ `,

Vk−1 ⊗V`+1 ⊆ Vk ⊗V`

as a Γ-subrepresentation.
We highlight some known equivariantly log-concave graded representations that are

of combinatorial, geometric, and topological interests in the literature:
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Theorem 1.1. (A) The Vn
• given by the q-binomial coefficients for a fixed n as a GLn(Fq)-

representation is strongly equivariantly log-concave [11, Proposition 6.7].

(B) The rational cohomology H∗(Conf(n, C), Q) of the configuration space of n points in C as
an Sn-representation is strongly equivariantly log-concave for degrees ≤ 14 [10].

(C) The rational cohomology H∗(Conf(n, R3), Q) of the configuration space of n points in C

as an Sn-representation is strongly equivariantly log-concave for degrees ≤ 14 [10].

(D) The Vn
• of even degrees of the intersection homology of the complex affine hypertoric variety

of the root system of sln, viewed as an Sn-representation is strongly equivariantly log-
concave for degrees ≤ 14 [10].

(E) The VG
• given by matchings in a graph G as an Aut(G)-representation is strongly equiv-

ariantly log-concave [9].

(F) The Vn
• given by k-subsets in [n] as an Sn-representation is strongly equivariantly log-

concave (as a special case of [9]).

The aim of this paper is to study the equivariant log-concavity of the following
graded representation. Let G be a claw-free graph. Let Ik denote the set of independent
vertex sets of size k. The automorphism group Aut(G) naturally acts on all independent
vertex sets, and each Ik is invariant under this action. Define the graded representation
of Aut(G)

VG
• =

⊕
k≥0,I∈Ik

CI,

and it admits a grading given by cardinalities. We have the following theorem.

Theorem 1.2. For any claw-free graph G, the graded Aut(G)-representation VG
• is strongly

equivariantly log-concave.

Remark 1.3. Our proof uses combinatorics inspired by the work of Krattenthaler [8] to
reduce the problem to the equivariant hard Lefschetz theorem on a Boolean algebra, or
the cohomology of a product of projective lines, a generalization of the method in the
author’s previous work on graph matchings [9]. The result specializes to our previous
result on graph matchings by taking the line graph L(G) of a graph G: The line graph
L(G) of a graph G consists of vertices each for every edge in G and edges each for every
common vertex shared by two edges in G. For example, every cycle graph Cn with n
edges has its line graph isomorphic to itself, and the line graph of K4 is the 1-skeleton of
the hypersimplex ∆(2, 4). A matching on G of size k yields an independent vertex set in
L(G) of size k. Line graphs are claw-free, by construction, but not all claw-free graphs
are line graphs.
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Remark 1.4. Taking dimensions immediately covers the previous results of Hamidoune,
and Chudnovsky–Seymour, thus giving new proofs to these results.

Remark 1.5. Communicated by Eric Ramos and Nick Proudfoot, the group consisting
of Melody Chan, Chris Eur, Dane Miyata, Nick Proudfoot, Eric Ramos, Lorenzo Vecchi,
Claudia Yun, was studying if the graded Aut(T)-representation of the independence
sequence of a tree T is strongly equivariantly log-concave. They provided a counterex-
ample, the star graph with 6 leaves, to disprove the statement. Note that this counterex-
ample is “claw-ful", quite the opposite of “claw-free". Morally speaking, the enigmatic
“claw" structure seems to be an obstruction to the equivariant log-concavity of indepen-
dence sequence of a tree, but the lack thereof turns out to be crucial in our proof of
Theorem 1.2.

Remark 1.6. During FPSAC 2023, an audience member and later the FPSAC committee
chairs pointed out a third proof, prior to this paper, of log-concavity of the independence
sequences of claw-free graphs by [15], of which we were not aware. The construction is
similar to our construction in the reduction to the injectivity of the raising operator of
an sl2(C)-representation. One of the standard proofs of the hard Lefschetz theorem for a
compact Kähler manifold is by exhibiting an sl2(C)-action on the relevant vector space,
where the hard Lefschetz operator coincides with the raising operator of the sl2(C)-
action. See, for example, Chern’s proof [2]. Our setup features the presence of a group
action on the graded vector space, which naturally arises from the underlying objects,
and is respected by the hard Lefschetz operator. A priori, the raising operator of a sl2(C)-
representation or the hard Lefschetz operator needs not be equivariant with respect to
the natural group action. For example, at the end of [15], Wagner recovers the well-
known log-concavity of Stirling numbers of the second kind by constructing a claw-free
graph for each n. However, we have shown, in an unpublished joint work with Siddarth
Kannan, that the graded permutation representation of Sn spanned by partitions of the
set [n] is not Sn-equivariantly log-concave. The Sn-equivariant embeddings fail when
n = 7, 8.1 It would be fascinating to see if there exist other natural categorifications of
the Stirling numbers of the second kind, perhaps inspired by Wagner’s construction, that
are Sn-equivariantly log-concave.

2 Proof of the main theorem

In this section, we prove the main theorem. The main idea is to construct a family of
Aut(G)-equivariant injections

Vk−1 ⊗V`+1 ↪→ Vk ⊗V`

1Explicit computations are available at our GitHub repository: https://github.com/shiyue- li/

eqStir/blob/main/eqStir.sage

https://github.com/shiyue-li/eqStir/blob/main/eqStir.sage
https://github.com/shiyue-li/eqStir/blob/main/eqStir.sage
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for all 1 ≤ k ≤ ` by reducing to the equivariant hard Lefschetz operator on a Boolean
algebra, or the cohomology of a product of projective lines, via the combinatorics of the
independent vertex sets. This method is inspired by Krattenthaler’s combinatorial proof
of the log-concavity of graph matching sequence [8].

Fix a graph G and 1 ≤ k ≤ `, for each pair I, J in Ik−1 × I`+1, consider the induced
subgraph on the symmetric difference of I and J, i.e., (I r J) ∪ (J r I), denoted by GI,J .
The components in GI,J can only be either a path or a cycle, because G is claw-free and
I, J are independent vertex sets. Consider all the components in GI,J that are paths of
even lengths, i.e., paths that contain odd number of vertices in I ∪ J, denoted as CI,J . ("C"
for "chains".) Color vertices from I with blue, and J with pink. Note that each path in
CI,J has both endpoints colored blue or pink. Now we do some counting: Let PI,J resp.
BI,J be the number of paths with pink resp. blue endpoints in CI,J . We have that

PI,J + BI,J = |CI,J |, and PI,J − BI,J = (`+ 1)− (k− 1) ≥ 2.

From these, we know

2BI,J ≤ BI,J + PI,J − 2 = |CI,J | − 2, and therefore, BI,J ≤
|CI,J |

2
− 1. (2.1)

Our next step is to decompose each of Vk−1 ⊗ V`+1 and Vk ⊗ V` into a direct sum of
Boolean algebras on certain partitions in Ik−1 × I`+1 and Ik−1 × I`+1.

Definition 2.1. Two pairs (I, J), (I′, J′) of independent vertex sets are equivalent if I ∪ J =
I′ ∪ J′ and I resp. J agrees with I′ resp. J′ outside of CI,J or CI′,J′ .

One verifies using arguments in [9] that this indeed gives partitions Πk−1,`+1 and Πk,`
on Ik−1 × I`+1 and Ik × I` respectively.

For any part P ∈ Πk−1,`+1 and each pair (I, J) in P, we associate a set of pairs of
independent vertex sets in Ik−1 × I`+1 as follows. For each path in CI,J with endpoints
colored blue, we swap the colors on all the vertices in this path from pink to blue and
from blue to pink. This swapping produces a path in CI,J with endpoints colored pink.
Now collect all the blue resp. pink vertices in GI,J and record that as I′ resp. J′. Since I′

resp. J′ now has k resp. ` vertices, the pair (I′, J′) is in Ik × I`. Repeat for every path in
CI,J , we obtain a subset NI,J in Ik × I`. See Figure 1 for an example on the 6-cycle graph
for k = ` = 2. Using a similar argument as in [9, Section 2.2], we verify that NI,J is a part
of Πk,`, denoted as P′. Now define a map

Φk,` : Vk−1 ⊗V`+1 → Vk ⊗V`, I ⊗ J 7→ 1
|NI,J | ∑

(I′,J′)∈NI,J

I′ ⊗ J′.

Using similar argument as in [9, Section 2.2], one verifies that Φk,` is Aut(G)-equivariant.



Equivariant log-concavity of independence sequences of claw-free graphs 5

I J

I′1 J′1

I′2 J′2

Figure 1

To show injectivity, we consider the following vector space for any part P in Πk−1,`+1

Vk−1,`+1(P) := SpanF{I ⊗ J | (I, J) ∈ P}.

We now realize Vk−1,`+1(P) as a categorification of the BPth level of the Boolean lattice
on CP. Consider the map

βP : P→
(

CP

BP

)
, (I, J) 7→ the set of paths with blue endpoints in CI,J .

It is well-defined by the construction of paths of blue endpoints in CP and bijective using
a similar argument in [9]. Next, we consider the vector space

VCP,BP := SpanF

{
B | B ∈

(
CP

BP

)}
,

and define

βP : Vk−1,`+1(P)→ VCP,BP , I ⊗ J 7→ the set of paths with blue endpoints in CI,J .

It is an isomorphism of vector spaces, because βP is a bijection on the bases.
Then, we do the same procedure for Ik × I`. We define vector spaces Vk,`(P′), VCP,BP′

and the maps βP′ and βP′ similar to those for P. Note that, by construction,

BP′ = BP + 1 and CP′ = CP.

Finally, for each P in Πk−1,`+1, define the linear map

LP : VCP,BP → VCP′ ,BP+1, B 7→ 1
|CP| − BP

∑
B⊆B′∈( CP

BP+1)

B′.
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Crucially, LP is a hard Lefschetz operator on the Boolean algebra spanned by all subsets
of CP, where the grading is given by cardinality. It is injective for degrees

BP ≤ |CP|/2− 1.

This operator and its injectivity on the lower half graded pieces have been studied in
various contexts. We invite the reader to see proofs of various flavors: [12], [13, The hard
Lefschetz theorem], [6, Proposition 7], [7], [14, Theorem 4.7] and [1, Theorem 1.1(3)].

By construction, the following diagram commutes:

Vk−1,`+1(P) VCP,BP

Vk,`(P′) VCP′ ,BP+1.

βP
∼=

Φk,` LP

βP′
∼=

Therefore, Φk,` is injective from Vk−1,`+1(P) to Vk,`(P′).
Note that by construction,

Vk−1 ⊗V`+1 =
⊕

P∈Πk−1,`+1

Vk−1,`+1(P) ∼=
⊕

P∈Πk−1,`+1

VCP,BP .

Then the last sentence of the previous paragraph implies that Φk,` is injective on the
tensor product Vk−1 ⊗V`+1.
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