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Abstract. It is well known that the Eulerian polynomial is the Hilbert series of the coho-
mology of the permutohedral variety. We answer a question of Stembridge on finding
a geometric explanation of the permutation representation this cohomology carries. Our
explanation involves an Sn-equivariant bijection between a basis for the Chow ring of
the Boolean matroid and codes introduced by Stembridge. There are analogous results
for the stellohedral variety. We provide a geometric explanation of the permutation
representation that its cohomology carries. This involves the augmented Chow ring
of a matroid introduced by Braden, Huh, Matherne, Proudfoot and Wang. Along the
way, we also obtain some new results on augmented Chow rings.
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1 Introduction

Consider the (n− 1)-dimensional permutohedron

Πn := conv{(σ1, . . . , σn) ∈ Rn : σ = σ1σ2 . . . σn ∈ Sn}.

Its normal fan Σn = Σ(Πn) can be obtained from the braid arrangement Hi,j := {x ∈
Rn : xi = xj} for 1 ≤ i < j ≤ n. The toric variety XΣn associated to Σn is called
the permutohedral variety. An intriguing fact about XΣn is that the Hilbert series of its
cohomology H∗(XΣn) is the Eulerian polynomial.

The cohomology H∗(XΣn) carries a representation of Sn induced by the Sn-action
on Σn. Using work of Procesi [12], Stanley [14] computed its Frobenius series, which
shows this representation is a permutation representation. Stembridge [15] introduced a
combinatorial object called a code and showed that the representation of Sn on the space
generated by codes has the same Frobenius series as H∗(XΣn). He then asked if there is
a geometric explanation of the permutation representation on H∗(XΣn) (see [15, p.317],
[16, p.296, Problem 11.2]).

In this extended abstract1, we answer Stembridge’s question by identifying H∗(XΣn)
with the Chow ring of the Boolean matroid and then finding a permutation basis for the
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induced action of Sn on the Chow ring. We show that a basis of Feichtner–Yuzvinsky for
general matroids serves the purpose when we apply it to Boolean matroids. We do this
by constructing an Sn-equivariant bijection between this basis and Stembridge codes.

There is a parallel story involving the stellohedron Π̃n. The story begins with the bi-
nomial Eulerian polynomial, which Postnikov, Reiner, Williams [11] show is equal to the
Hilbert series of the cohomology of the toric variety associated to Π̃n. Shareshian and
Wachs [13] show that the representation of Sn on this cohomology is a permutation rep-
resentation. We provide a geometric explanation for this, which involves the augmented
Chow ring of matroids introduced by Braden, Huh, Matherne, Proudfoot, Wang [3], [2].
We introduce extended codes in order to obtain results analogous to those for the permu-
tohedron mentioned above. Along the way, we also obtain some general results for the
augmented Chow rings and the augmented Bergman fans of matroids.

2 Eulerian story: Permutohedra

2.1 The Sn-module structure on H∗(XΣn)

Given a d-dimensional simple polytope P with normal fan Σ(P) and dual polytope P∗,
the h-polynomial hP∗(t) of P∗ agrees with the Hilbert series of the cohomology H∗(XΣ(P))
of the toric variety XΣ(P) (see [14] eq. (26)). It is well-known that the h-polynomial hΠ∗n(t)
for the dual permutohedron Π∗n is the Eulerian polynomial An(t), hence one has

An(t) = hΠ∗n(t) =
n−1

∑
j=0

dim H2j(XΣn)t
j.

The cohomology H∗(XΣn) carries an Sn-representation induced by the Sn-action on
Σn. Using the work of Procesi [12], Stanley [14] computed the Frobenius series of this
representation:

∑
n≥0

n−1

∑
j=0

ch
(

H2j(XΣn)
)

tjzn =
(1− t)H(z)

H(tz)− tH(z)
, (2.1)

where ch is the Frobenius characteristic, H(z) = ∑n≥0 hn(x)zn and hn is the complete
homogeneous symmetric function of degree n. From (2.1), one can see that H∗(XΣn)
carries a permutation representation of Sn.

A Stembridge code is a sequence α over {0, 1, 2, . . .} with marks such that if m(α) is the
maximum number appearing in α then for each k ∈ [m(α)]

• k occurs at least twice in α;

• a mark is assigned to the ith occurrence of k for a unique i ≥ 2.
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For all k ∈ [m(α)], let f (k) be the number of occurrences of k in α to the left of the marked
k. (So f (k) = i− 1.) We let (α, f ) denote the Stembridge code. The index of (α, f ) is

ind(α, f ) := ∑
k∈[m(α)]

f (k).

Let Cn =
⋃n−1

j=0 Cn,j where Cn,j is the set of Stembridge codes of length n with index j.

Example 2.1. A Stembridge code (α, f ) = 113202̂3̂1̂2 consists of α = 11320231 with
f (1) = 2, f (2) = 1, f (3) = 1 and ind(α, f ) = 4. There are 6 codes in C3:

(α, f ) 000 011̂ 101̂ 11̂0 11̂1 111̂
ind(α, f ) 0 1 1 1 1 2

For σ ∈ Sn, define σ · (α1α2, . . . αn, f ) = (ασ(1)ασ(2) . . . ασ(n), f ). The action induces a
graded representation Vn =

⊕n−1
j=0 Vn,j of Sn, where Vn,j = CCn,j. Its graded Frobenius

series was computed by Stembridge and it agrees with (2.1). That is

Qn(x, t) :=
n−1

∑
j=0

ch(Vn,j)tj =
n−1

∑
j=0

ch
(

H2j(XΣn)
)

tj. (2.2)

Therefore Vn ∼=Sn H∗(XΣn). Stembridge [15, p.317] then asked for a geometric expla-
nation of H∗(XΣn) being a permutation representation, or more explicitly in [16, p.296,
Problem 11.2], whether there is a basis of H∗(XΣn) permuted by Sn that induces the rep-
resentation we are looking at. Although there is no obvious direct connection between
Stembridge codes and H∗(XΣn), it is natural that we expect such basis to have similar
combinatorial structure as Stembridge codes. We will present such a basis in Section 2.3.

2.2 Building sets and Chow rings of atomic lattices

Here we recall the background about building sets, nested set complexes, and Chow
rings of the atomic lattice from [6]. For any poset P and X ∈ P, we write P≤X = {Y ∈
P : Y ≤ X}.

Let L be an atomic lattice. A subset G ⊆ L − {0̂} is a building set of L if for any
X ∈ L− {0̂} with subset max(G≤X) = {G1, . . . , Gk}, there is a poset isomorphism

ϕX :
k

∏
i=1

[0̂, Gi] −→ [0̂, X]

with ϕX(0̂, . . . , 0̂, Gi, 0̂, . . . , 0̂) = Gi for i = 1, . . . , k.
Given a building set G of L, we say a subset N ⊆ G is nested (or G-nested) if for any

pairwise incomparable elements G1, . . . , Gt ∈ N (t ≥ 2), their join G1 ∨ . . .∨Gt /∈ G. No-
tice that the collection of all G-nested sets forms an abstract simplicial complex N (L,G)
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which is called the nested set complex. If G contains the maximal element 1̂ then N (L,G)
is a cone with apex {1̂}, in this case the base of the cone is called the reduced nested set
complex Ñ (L,G).

The nested set complex N (L,G) can be viewed as a generalization of the order
complex ∆(L − {0̂}). Indeed, L − {0̂} is the maximal building set, N (L,L − {0̂}) is
∆(L− {0̂}) and Ñ (L,L− {0̂}) is ∆(L− {0̂, 1̂}).

Definition 2.2 ([6]). Let L be an atomic lattice, A(L) be the set of atoms and G be a
building set of L. Then the Chow ring of L with respect to G is the Q-algebra

D(L,G) := Q[xG]G∈G/(I + J)

where I =
〈
∏t

i=1 Gi : {G1, . . . , Gt} /∈ N (L,G)
〉

and J =
〈
∑G≥H xG : H ∈ A(L)

〉
.

In particular, the Chow ring of a matroid M as defined in [1], [3], [2] is the special case
that L is the lattice of flats of M and G is the maximal building set, i.e. D(L(M),L(M)−
{∅}). Note that Q[xG]G∈G/I is the Stanley-Reisner ring of N (L,G). For basic notions of
matroid theory and Stanley-Reisner rings we refer the readers to [10] and [9] respectively.

Feichtner and Yuzvinsky [6] also found a Gröbner basis for the ideal I + J which
gives the following basis for D(L,G).

Proposition 2.3 ([6]). The following monomials form a basis for D(L,G){
∏

G∈N
xaG

G : N is nested, aG < d(G′, G)

}
where G′ is the join of N ∩ L<G and d(G′, G) is the minimal number d such that H1, . . . , Hd ∈
A(L) satisfies G′ ∨H1 ∨ . . .∨Hd = G. In particular, if L is a geometric lattice, then d(G′, G) =
rk(G)− rk(G′).

2.3 Stembridge codes and FY-basis for Chow ring of Bn

In this section, we shall answer Stembridge’s question. We identify H∗(XΣn) with the
Chow ring of the Boolean matroid, and use the facts in Section 2.2 to find a basis per-
muted by the Sn-action.

The following lemma from [16, p.251(1.5)] allows us to identify H∗(XΣn) with q quo-
tient of Stanley-Reisner ring of the boundary ∂Π∗n of the dual permutohedron.

Lemma 2.4 ([4],[16]). Let P be a simple n-lattice polytope in an Euclidean n-space V with
normal fan Σ(P) or equivalently the face fan of P∗. Let K[∂P∗] be the Stanley-Reisner ring of
∂P∗ over a field K of characteristic 0. Let θi = ∑v∈V(P∗)〈v, ei〉xv for i = 1, . . . , n, where {ei} is
the standard basis in Zn ⊂ V, and V(P∗) is the set of vertices of P∗. If a finite group G acts on
Σ(P) simplicially and freely, then

H∗(XΣ(P), K) ∼= K[∂P∗]/〈θ1, . . . , θn〉 as K[G]-modules.
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Let M be a loopless matroid on ground set [n] with a lattice of flats L(M). For each
S ⊆ [n], write eS = ∑i∈S ei. The Bergman fan ΣM of M is a fan in Rn/〈e[n]〉 consists of
cones σF indexed by all flags F = {F1 ( . . . ( Fk} in L(M)− {∅, [n]}, where

σF = R≥0{eF1 , . . . , eFk}.

The Bergman complex is the simplicial complex obtained by intersecting ΣM with the unit
sphere centered at 0. Obviously, the Bergman complex is a geometric realization of the
order complex ∆(L(M)− {∅, [n]}).

The Chow ring of M has the following two presentations

A(M) :=
Q[xF]F∈L(M)−{∅}/ 〈xFxG : F, G are incomparable in L(M)〉

〈∑F:i∈F xF : 1 ≤ i ≤ n〉 (2.3)

=
Q[xF]F∈L(M)−{∅,[n]}/ 〈xFxG : F, G are incomparable in L(M)〉〈

∑F:i∈F xF −∑F:j∈F xF : i 6= j
〉 . (2.4)

The presentation (2.3) is a special case of Definition 2.2, and (2.4) is obtained from (2.3)
by eliminating xE. The presentation (2.4) is used in [1],[3],[2]. Note that the numerator
in (2.4) is the Stanley-Reisner ring of ΣM, or equivalently the Bergman complex of M.

Now let M be the Boolean matroid Bn; the flats of Bn are all subsets of [n] and L(Bn)
is the Boolean lattice. It is well-known that the order complex ∆(L(Bn) − {∅, [n]}) is
∂Π∗n. After some easy calculations, applying Lemma 2.4 to (2.4) shows that

A(Bn) =
Q[∂Π∗n]

〈θ1, . . . , θn−1〉
∼=Sn H∗(XΣn , Q).

By applying Proposition 2.3 to (2.3), the Feichtner–Yuzvinsky basis of A(Bn) is given by

FY(Bn) :=
{

xa1
F1

xa2
F2

. . . xak
Fk

: ∅=F0(F1(F2(...(Fk⊆[n],
1≤ai≤|Fi|−|Fi−1|−1

}
.

Note that |Fi| − |Fi−1| ≥ 2 for all i. We see that Sn permutes FY(Bn) and makes A(Bn)
an Sn-module. It turns out FY(Bn) has similar structure as the codes Cn.

Theorem 2.5. There is a bijection φ : FY(Bn) → Cn that respects the Sn-actions and takes the
degree of the monomials to the index of the corresponding codes.

The bijection is defined as follows. Given u = xa1
F1

. . . xak
Fk
∈ FY(Bn), let φ(u) = (α, f ),

where αi =

{
j if i ∈ Fj − Fj−1

0 if i ∈ [n]− Fk
for i ∈ [n] and f (j) = aj for j ∈ [k].
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Example 2.6. The basis for A2(B4) and the corresponding codes in C4,2:

x12x1234 x13x1234 x14x1234 x23x1234 x24x1234 x34x1234 x2
123 x2

124 x2
134 x2

234 x2
1234

11̂22̂ 121̂2̂ 122̂1̂ 211̂2̂ 212̂1̂ 22̂11̂ 111̂0 1101̂ 1011̂ 0111̂ 111̂1

It is easy to see that the bijection respects the S4-action on both sets.

Theorem 2.5 shows that Aj(Bn)⊗C and Vn,j are isomorphic permutation representa-
tion for all 0 ≤ j ≤ n− 1. To our knowledge, this is the first found basis that bears an
explicit resemblance to codes.

3 Binomial Eulerian story: stellohedra

We will now switch track to a parallel story. The binomial Eulerian polynomial Ãn(t) :=
1 + t ∑n

k=1 (
n
k)Ak(t) shares many similar combinatorial and geometric properties with

the Eulerian polynomial (see Shareshian and Wachs [13]). Geometrically, it is shown
by Postinkov, Reiner, Williams [11] that Ãn(t) is the h-polynomial of the dual of the
stellohedron Π̃n. Let ∆n = conv(0, ei : i ∈ [n]) where ei is the standard basis vector in
Rn. The stellohedron Π̃n is the simple polytope obtained from ∆n by truncating all faces
not containing 0 in the inclusion order. Let Σ̃n be its normal fan. The Hilbert series of
H∗(XΣ̃n

) satisfies
Ãn(t) = hΠ̃∗n

(t) = ∑
j≥0

dim H2j(XΣ̃n
)tj.

Shareshian and Wachs [13] introduced the symmetric function analogue of Ãn(t),

Q̃n(x, t) := hn(x) + t
n

∑
k=1

hn−k(x)Qk(x, t) (3.1)

and showed that if we consider the simplicial action of Sn on Π̃∗n, the induced represen-
tation of Sn on H∗(XΣ̃n

) has the following graded Frobenius series.

Theorem 3.1 ([13]). For all n ≥ 1, we have ∑n
j=0 ch

(
H2j(XΣ̃n

)
)

tj = Q̃n(x, t).

From (3.1), since Qk(x, t) is h-positive, so is Q̃n(x, t). Thus H∗(XΣ̃n
) also carries a

permutation representation of Sn.
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3.1 Extended codes

We introduce an analog of Stembridge codes called the extended codes.
An extended code (α, f ) is a marked sequence like a Stembridge code. The sequence α

is over {0, 1, . . .} ∪ {∞} with ∞’s working as 0’s in codes; m(α) and f are defined as in
Stembridge codes. Define the index of the extended code (α, f ) as

ind(α, f ) =

{
−1 if α = ∞ . . . ∞;

∑k∈m(α) f (k) otherwise.

Let C̃n,j be the set of extended codes of length n with index j and C̃n =
⋃n−1

j=−1 C̃n,j.

Example 3.2. The following are all the extended codes of length 3:
C̃3,−1 = {∞∞∞}, C̃3,0 = {0∞∞, ∞0∞, ∞∞0, ∞00, 0∞0, 00∞, 000},
C̃3,1 = {11̂∞, 1∞1̂, ∞11̂, 011̂, 101̂, 11̂0, 11̂1}, C̃3,2 = {111̂}.

For σ ∈ Sn, define σ · (α1α2, . . . αn, f ) = (ασ(1)ασ(2) . . . ασ(n), f ). This induces an
graded Sn-representation on Ṽn =

⊕n
j=0 Ṽn,j−1 where Ṽn,j−1 = CC̃n,j−1. We compute

its Frobenius series and obtain a result parallel to Stembridge codes.

Theorem 3.3. For n ≥ 1, we have ∑n
j=0 ch(Ṽn,j)tj = Q̃n(x, t).

Combining with Theorem 3.1, we see Ṽn ∼=Sn H∗(XΣ̃n
) as permutation modules. One

can also ask if there is a permutation basis for H∗(XΣ̃n
) which has similar combinatorial

structure as extended codes. We will show such a basis exists in what follows.

3.2 Augmented Chow ring of Bn and H∗(XΣ̃n
)

Braden, Huh, Matherne, Proudfoot, and Wang [3] recently introduced the augmented
Bergman fan and the augmented Chow ring of a matroid. They showed that the augmented
Bergman fan of Bn is the normal fan Σ̃n of the stellohedron Π̃n. Therefore the corre-
sponding spherical complex is the boundary complex ∂Π̃∗n. Below we use Lemma 2.4 to
identify H∗(XΣ̃n

) with the augmented Chow ring of Bn.
Let M be a loopless matroid on [n] with lattice of flats L(M) and the collection of

independent subsets I(M). The augmented Chow ring of M is defined as

Ã(M) :=
Q
[
{xF}F∈L(M)\[n] ∪ {y1, y2, . . . , yn}

]
/(I1 + I2)

〈yi −∑F:i/∈F xF〉i=1,2,...,n
(3.2)

where I1 = 〈xFxG : F, G are incomparable in L(M)〉, I2 = 〈yixF : i /∈ F〉. There is a sim-
plicial fan associated with Ã(M) called the augmented Bergman fan of M.
Let I ∈ I(M) and F = (F1 ( . . . ( Fk) be a flag in L(M). We say I is compatible with
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F , denoted by I ≤ F , if I ⊆ F1. Note that for the empty flag ∅, we have I ≤ ∅ for any
I ∈ I(M). The augmented Bergman fan Σ̃M of M is a simplicial fan in Rn consisting of
cones σI≤F indexed by compatible pairs I ≤ F , where F is a flag in L(M)− {[n]} and

σI≤F = R≥0

(
{ei}i∈I ∪ {−e[n]\F}F∈F

)
.

The corresponding simplicial complex is called the augmented Bergman complex.

Example 3.4. The augmented Bergman fan Σ̃B2 of the Boolean matroid B2 in R2 and the
corresponding augmented Bergman complex:

σ{1}≤∅

σ{2}≤∅

σ∅≤{{1}}

σ∅≤{{2}}

σ∅≤{∅}

σ{1,2}≤∅

σ∅≤∅

σ{1}≤{{1}}

σ{2}≤{{2}}

σ∅≤{∅,{2}}

σ∅≤{∅,{1}}

{2} ≤ ∅

{1} ≤ ∅

∅ ≤ {{1}}

∅ ≤ {{2}}

∅ ≤ {∅}

∅ ≤ {∅, {2}}

∅ ≤ {∅, {1}}

{1, 2} ≤ ∅
{2} ≤ {{2}}

{1} ≤ {{1}}

One can show Σ̃B2 is the normal fan of Π̃2. Thus the augmented Bergman complex is
∂Π̃∗2 .

Note that the numerator in (3.2) is the Stanley-Reisner ring of Σ̃M, since for each
i ∈ [n], F ∈ L(M)− {[n]} the rays σ{i}≤∅ corresponds to yi, and σ∅≤{F} corresponds to
xF.

Now consider the case of Bn, the augmented Bergman fan Σ̃Bn is Σ̃n. Some easy
calculations show that all conditions in Lemma 2.4 hold. Therefore we have

Ã(Bn) =
Q[∂Π̃∗n]
〈θ1, . . . , θn〉

∼=Sn H∗(XΣ̃n
, Q).

However, there was no analogue of Feichtner–Yuzvinsky’s result known for the aug-
mented Chow ring. In order to overcome this, we turn our focus on another way of
constructing the stellohedron Π̃n — as the graph associahedron of n-star graph K1,n.

3.3 Stellohedron as the graph associahedron of K1,n

Let G = (V, E) be a simple graph. The graphical building set B(G) is the set of nonempty
subsets I of V such that the induced subgraph of G on I is connected. In fact, B(G) is a
building set of the Boolean lattice over V.

The n-star graph K1,n has vertex set V = [n] ∪ {∗} and edge set E = {{i, ∗} : i ∈ [n]}.
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Example 3.5. B(K1,2) consists of the following elements:

1

∗

2 1

∗

2 1

∗

2 1

∗

2 1

∗

2 1

∗

2

For graphical building sets B(G), the nested sets N ⊂ B(G) can be characterized by:

(1) for all I, J ∈ N, either I ⊂ J, I ⊃ J or I ∩ J = ∅.

(2) for all I, J ∈ N if I ∩ J = ∅, then I ∪ J /∈ B(G) (not “connected”).

From [11, Theorem 6.5], Ñ (L(Bn+1),B(K1,n)) is combinatorially equivalent to ∂Π̃∗n.

Example 3.6. The reduced nested set complex with respect to B(K1,2) is ∂Π̃∗2 :

1

∗

2

1

∗

2 1

∗

2

1

∗

2

1

∗

2

1

∗

2

1

∗
2

1

∗

2

1

∗

2

1

∗

2

Comparing Example 3.6 and Example 3.4 leads us to a combinatorial proof of the
following result2.

Proposition 3.7. The augmented Bergman fan (complex) of Bn is combinatorially equivalent to
the dual stellohedron Π̃∗n. Consequently, there is a poset isomorphism between their face lattices.

The isomorphism is as follows. Each nested set represents a face of ∂Π̃∗n, and it
corresponds to a compatible pair I ≤ F which represents a cone in Σ̃Bn .

Example 3.8. For n = 6, the following is a nested set with respect to B(K1,6) and the
corresponding compatible pair.

{1, 3} ≤ {{1, 3, 6}, {1, 3, 5, 6}, {1, 3, 4, 5, 6}}∗
2 6

4

1

53

2This is a weaker result than [3, Proposition 2.6] which states that the augmented Bergman fan of Bn is
the normal fan of the stellohedron.
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We show in Section 3.4 that the isomorphism in Proposition 3.7 holds even when the
lattice is not a Boolean lattice.

3.4 Face Structure of augmented Bergman fan of M

Let M, L(M), I(M) be defined as in Section 3.2. The collection I(M) forms an abstract
simplicial complex called the independence complex; here we identify I(M) with the face
lattice of the independence complex. We construct a new poset L̃(M) from L(M) and
I(M) in the following ways:

• As a set, L̃(M) = L(M) ] I(M). Denote by F∗ the flat F in L̃(M).

• For I ∈ I(M), define I l clM(I)∗ where clM(I) is the closure of I in M. The relations
inside L(M) and I(M) stay the same.

Example 3.9. Consider the uniform matroid U3,2, then the new poset is
123∗

1∗ 2∗ 3∗

∅∗

12 13 23

1 2 3

∅

L̃(U3,2) =

.

Lemma 3.10. Take G = {{1}, . . . , {n}} ∪ {F∗}F∈L(M) as the building set in L̃(M). Then the
nested sets are of the form {{i}}i∈I ∪ {F∗}F∈F for some compatible pair I ≤ F where I ∈ I(M)
and F is a flag of arbitrary flats.

With this lemma, we could recover Σ̃M as the reduced nested set complex with respect
to the building set G.

Theorem 3.11. Ñ (L̃(M),G) is combinatorially equivalent to the augmented Bergman fan (com-
plex) of M. Consequently, there is a poset isomorphism between their face lattices:

{{i}}i∈I ∪ {F∗}F∈F ←→ σI≤F

for compatible pair I ≤ F where I ∈ I(M) and flag F ⊂ L(M)− {[n]}.
Furthermore, if we consider the Chow ring D(L̃(M),G), then

D(L̃(M),G) =
Q
[
{xF}F∈F (M) ∪ {yi}i∈[n]

]
/(I1 + I2)

〈yi + ∑F:i∈F xF〉i∈[n] + 〈∑F:∅⊂F xF〉

=
Q
[
{xF}F∈F (M)\[n] ∪ {yi}i∈[n]

]
/(I1 + I2)

〈yi −∑F:i/∈F xF〉i∈[n]
= Ã(M)
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Therefore, the augmented Chow ring of M can be viewed as the Chow ring of L̃(M)
with respect to G. We can apply Proposition 2.3 to obtain a basis for Ã(M).

Corollary 3.12. The augmented Chow ring Ã(M) of M has the following basis

F̃Y(M) :=
{

xa1
F1

xa2
F2

. . . xak
Fk

: ∅=F0(F1(F2(...(Fk
1≤a1≤rk(F1), ai≤rk(Fi)−rk(Fi−1)−1 for i≥2

}
Remark 3.13. After this work is done, we know from [8, Section 5.1] the fact that Ã(M)
can be expressed as D(L̃(M),G) has also been discovered independently by Chris Eur,
who further noticed that L̃(M) is the lattice of flats of the free coextension (M∗ + e)∗ of
M. This fact and the results in this section were later included in Eur, Huh, and Larson’s
paper [5, Lemma 5.14, Section 7.2].

3.5 Back to Boolean matroids

From Corollary 3.12, the basis F̃Y(Bn) consists of monomials xa1
F1

. . . xak
Fk

indexed by a
chain in the Boolean lattice with exponent ai satisfying

• |Fi| − |Fi−1| ≥ 2 for all i ≥ 2.

• 1 ≤ a1 ≤ |F1| and ai ≤ |Fi| − |Fi−1| − 1 for all i ≥ 2.

Example 3.14. F̃Y(B3) = {1 x1, x2, x3, x12, x13, x23, x123 x1x123, x2x123, x3x123, x2
12, x2

13, x2
23, x2

123 x3
123}.

Similar to FY(Bn), Sn also acts on F̃Y(Bn) naturally and makes Ã(Bn) a permutation
module. The following result is analogous to Theorem 2.5.

Theorem 3.15. There is a bijection φ̃ : F̃Y(Bn)→ C̃n that respects the Sn-actions and takes the
degree of the monomials to the index−1 of the corresponding extended codes.

The bijection is defined as follows. Given u = xa1
F1

. . . xak
Fk
∈ F̃Y(Bn), let φ̃(u) = (α, f ),

where if a1 = 1, then αi =

{
j− 1 if i ∈ Fj − Fj−1

∞ if i ∈ [n]− Fk
for i ∈ [n], and f (j) = aj+1 for j ∈ [k];

else if a1 ≥ 2, then αi =

{
j if i ∈ Fj − Fj−1

∞ if i ∈ [n]− Fk
for i ∈ [n], and f (1) = a1− 1, f (j) = aj for

2 ≤ j ≤ k.

Example 3.16. Let u1 = x14x1247x2
1245679, u2 = x2

14x1247x2
1245679 ∈ F̃Y(B9), then φ̃(u1) =

01∞0221̂∞2̂ and φ̃(u2) = 12∞1̂332̂∞3̂.

Theorem 3.15 shows that Ãj(Bn)⊗ C and Ṽn,j−1 are isomorphic permutation repre-
sentations of Sn. This answers our question posed in the end of Section 3.1. This also
gives a new proof of Shareshian and Wachs’ result (Theorem 3.1).
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