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Interpolating between
classic and bumpless pipe dreams

Allen Knutson∗1 and Gabe Udell†1

1Department of Mathematics, Cornell University

Abstract. We introduce hybrid pipe dreams, in which some rows are specified to contain
classic pipe dream tiles (plus a couple new ones) and some to contain bumpless pipe
dream tiles (albeit upside down). For each of the 2n possibilities of row specification,
there is a sum over hybrid pipe dreams to compute each double Schubert polynomial.
We give a bijection to swap the specifications on two adjacent rows, demonstrating the
equivalence of the many formulæ.
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1 Hybrid pipe dreams compute Schubert polynomials

1.1 Hybrid pipe dreams and the formula

Define the classic pipe dream tiles to be

, , , , , but not ,

the (upside down) bumpless pipe dream tiles to be

, , , , , but not ,

and in each case call the shaded tile(s) weighty.
Given π ∈ Sn a permutation, and τ ∈ {C, B}n a word in Classic and Bumpless, define

a τ-hybrid pipe dream for π to be an n× n square made of tiles, such that

• if two tiles share an edge, they must agree as to whether it is blank or not. Hence
the pipes end only on the boundary of the square

• the ith row is called “a classic row” or “a bumpless row” depending on τi, and uses
only tiles from one set or the other

• each classic row has a number on the left edge, and is blank on the right edge, with
the opposite being true for bumpless rows; this number is the row label
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• the top edges are labeled with π−1(1), π−1(2), . . . , π−1(n) from left to right

• the bottom edges are blank

• the labeled boundary edges on the left and right are labeled 1 . . . n in order, coun-
terclockwise starting from the Northwest corner

• the numbers at the two ends of a pipe agree, and no two pipes cross twice.

Some examples are below. Our first main theorem is the following:

Theorem 1. For π ∈ Sn a permutation, and any word τ ∈ {C, B}n, the double Schubert
polynomial Sπ(x1, . . . , xn, y1, . . . , yn) can be computed as a sum over the τ-hybrid pipe dreams
δ for π:

Sπ = ∑
δ

∏{xi − yj : i, j ∈ [n] and the tile in physical column j and row labeled i is weighty}

In the case τ = Cn, this reproduces the pipe dream formula in [3, Prop. 6.2] (and [1] in the
yi ≡ 0 setting). In the case τ = Bn, this reproduces the bumpless pipe dream formula in [7]
(albeit upside down) and is equivalent to the alternating sign matrix formula from [9, 8]. The
pipes are labeled differently here (by π−1) than they are in [1, 3, 6, 7], but the placements of tiles
are exactly the same.

The number of terms in this sum is Sπ|xi≡1,yj≡0, independent of τ. Our other main
theorem (in Section 2), which implies this one, will be a bijective correspondence.

Here are the hybrid pipe dreams for π = 132 and various choices of τ.

τ = CCC :

1 3 2

3
2
1

1 3 2

3
2
1

τ = CCB :

1 3 2

3
2
1

1 3 2

3
2
1

τ = CBC :

1 3 2

3
2

1
1 3 2

3
2

1

τ = CBB :

1 3 2

3
2

1
1 3 2

3
2

1

τ = BCB :

1 3 2
3

2
1

1 3 2
3

2
1

τ = BBC :

1 3 2
3
2

1

1 3 2
3
2

1

1.2 The all-classic case τ = Cn

The boundary conditions mean that every edge on North and West is crossed by a pipe,
whereas every edge on South and East is blank.
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Proposition 1. A τ-hybrid pipe dream for τ = Cn has

• only j-tiles on the antidiagonal, and only blank tiles below the antidiagonal;

• only crosses and elbows above the antidiagonal.

In particular the and r-tile , despite being allowed, are never used.

Proof. Consider the rightmost column, from top to bottom. The Northeast tile has a
number on its North edge and blank on its East edge, and cannot be a -tile (as those
are forbidden in classic rows), so must be a -tile. The next tile below it is blank on
North and East, so must be , and the same argument holds all the way down the
rightmost column.

Now consider the first row, from right to left, starting just West of the Northeast tile.
The next tile has pipes crossing its North and East side, so must be a or an . The
same argument holds all the way to the left in the first row.

Remove the last column and first row and do induction on the remaining (n− 1)×
(n− 1) square.

This picture is slightly different mathematically from the classic pipe dreams in, say, [1]
which fill the fourth quadrant and have only crossing and elbow tiles. That formulation
is based on the forward-stability of Schubert polynomials, Sπ = Sπ⊕Im (where the ⊕ is
on the permutation matrices). However, even in [1] they omit “the ‘sea’ of wavy strands”
and obtain as pictures exactly the Cn-hybrid pipe dreams here.

1.3 The all-bumpless case τ = Bn

There is less to say here – our definition of Bn-hybrid pipe dreams exactly matches that
of [7], except for being upside down and for the shift in labeling (they have π(1) . . . π(n)
along the East side, where we have n . . . 1).

1.4 Repeating letters

We inverted the labeling principally to simplify the description of the labels on the
boundary (as 1 . . . n counterclockwise). There is another benefit (though not one we will
pursue here); in the case that π has descents in at most the positions k1, k1 + k2, . . . , k1 +
k2 + k3 + . . . + kd it is natural to write π−1 as a string with content 1k12k2 · · · dkd(d +
1)n−∑ ki . Put another way, π is the shortest representative inside a coset Sn/ ∏i Ski (where
kd+1 := n−∑d

i=1 ki), which is an equivalence class within which the positions are ambigu-
ous, and its inverse has ambiguous values. If one allows in this way multiple pipes to
have the same label, one must forbid those pipes from crossing even once.
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Placing the ambiguity on values is more natural in these scattering-diagram-inspired
contexts, in that physics is comfortable with indistinguishable particles but not with
ambiguous positions.

2 Equivalence of the 2n formulæ

In this section we give combinatorial proofs of the equivalence of the 2n formulæ. For
this purpose, we introduce decorated hybrid pipe dreams, as hybrid pipe dreams with
decorations of x or −y on the weighty tiles. Following the conventions in [5] (which
introduced this notion in the bumpless case), we write the set of decorated τ-hybrid
pipe dreams for π as

H̃PD(τ, π) := {(D, f ) | D ∈ HPD(τ, π), f : weighty(D)→ {x,−y}}

where HPD(τ, π) is the set of τ-hybrid pipe dreams for π, and weighty(D) is the set of
weighty tiles in D. Define the monomial of a decorated hybrid pipe dream to be

mon(D, f ) := ∏
(i,j)∈weighty(D)

f (i,j)=x

xi ∏
(i,j)∈weighty(D)

f (i,j)=−y

(−yj), so Sπ = ∑
(D, f )∈HPD(τ,π)

mon(D, f )

as follows from Theorem 1.
We prove the equivalence of these 2n formulæ by constructing a bijection

φ : H̃PD(τ1, π)→ H̃PD(τ2, π)

for any τ1, τ2 ∈ {C, B}n while making sure that mon(φ(D, f )) = φ(mon(D, f )) for all
(D, f ) ∈ H̃PD(τ1, π). We will do this in two steps (each then iterated many times). First,
we handle the case where τ, τ′ differ only in the last letter. That is, we describe how to
change the last row from classic to bumpless, and in fact, we do this in such a way that
φ(D, f ) differs from (D, f ) only in its final row. Second, we handle the case where τ′

is the same as τ but with some (consecutive) substring CB replaced by BC. That is, we
describe how to switch the order of two adjacent rows, one bumpless and one classic.
We do this in such a way that φ(D, f ) differs from (D, f ) only in the rows that were
swapped. The composite bijections φ are automatically coherent in the sense that any
triangle H̃PD(τ1, π)→ H̃PD(τ2, π)→ H̃PD(τ3, π) commutes.

2.1 Monk’s rule and the Gao–Huang bijection

Hybrid pipe dreams were created to help understand the connection between pipe
dreams and bumpless pipe dreams, but they are not the first tool for doing so. An-
other approach to this connection involves Monk’s rule.
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Theorem 2 (Monk’s rule for double Schubert polynomials). For π a permutation, α a
positive integer, ta,b the transposition of a and b, and m the Bruhat covering relation,

(xα − yπ(α))Sπ + ∑
s<α

πts,αmπ

Sπts,α = ∑
l>α

πtα,lmπ

Sπtα,l .

Monk’s rule for single Schubert polynomials can be proven bijectively using either
pipe dreams [1, 2, 5] or bumpless pipe dreams [5] by using, for either τ = Cn or
τ = Bn, maps xα  : HPD(τ, π) → ⋃

α<l
πtα,lmπ

HPD(τ, πtα,l) and ms,β : HPD(τ, πts,β) →⋃
l>β

πtβ,lmπ

HPD(τ, πtβ,l) when s < β, πts,β m π. In [4], Gao and Huang constructed a bi-

jection φGH between bumpless and classic pipe dreams preserving mon(D, f ) when all
decorations are x. Furthermore, they proved their bijection to be canonical in the sense
that it commutes with xα  and ms,β. When τ1 = Bn, τ2 = Cn and either all decora-
tions being x or all decorations being −y, we get specializations φx, φy of the hybrid
pipe dream bijection. We conjecture that φGH(D) = φx(D) = (φy(DT))T for any bump-
less pipe dream D, where DT denotes the transpose of a pipe dream or bumpless pipe
dream.

2.2 Changing the bottom row

A single picture shows the full gamut of possibilities for the bottom rows, in the C and
B cases:

5 ⇔ 5

Note that this correspondence preserves the positions of
the weighty tiles, and hence the associated monomials
(assuming we keep the same decoration).
We give an in-context example of the correspondence:

2 1 3 4
1

4
2
3

2 1 3 4
1

4
2

3

2.3 Swapping a classic row with an adjacent bumpless row

Define a C
B section to be a tiled 2× k rectangle that could appear in rows i and i + 1

(and k contiguous columns) of some τ-hybrid pipe dream, where τi = C and τi+1 = B.
Define B

C sections similarly. We say the pipe connecting i on the top of a hybrid pipe
dream to i on a side is labeled i or is the i pipe. Where a pipe enters/exits an C

B section
( B

C section) we will place a number indicating the label of the pipe. These numbers are
just to distinguish which pipes connect to each other outside the C

B section ( B
C section).

That is, if we take an C
B section ( B

C section) and apply a permutation to each number on
its boundary, we will not distinguish this from the original.
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Theorem 3. Assuming all the decorations are−ys, there exists uniquely a monomial-preserving
bijection φy : H̃PD(τ1CBτ2, π) → H̃PD(τ1BCτ2, π) changing only those two rows, using the
replacements below:

1

2
3
1

2

3 7→ 3

2
1
3

2

1
1

∅
2
1

2

∅ 7→ ∅

∅
1
2

2

1
1

2
∅
1

2

∅ 7→ ∅

2
1
∅

2

1
1

∅
2
1

∅

2 7→ 2

∅
1
2

∅

1

1

∅
1
1

∅

1 7→ ∅

∅
∅
∅

∅

∅
1

2
∅
1

∅

2 7→ 2

2
1
∅

∅

1
1

1
∅
1

∅

1 7→ ∅

1
1
∅

∅

∅
1

∅
∅
1

∅

∅ 7→ ∅

∅
1
∅

∅

1

1

∅
2
∅

1

2 7→ 2

∅
∅
2

1

1
1

∅
1
∅

1

1 7→ ∅

∅
∅
1

1

∅
1

2
∅
∅

1

2 7→ 2

2
2
2

1

1
1

1
∅
∅

1

1 7→ ∅

1
1
1

1

∅

1

∅
∅
∅

1

∅ 7→ ∅

∅
1
1

1

1
∅

1
2
1

∅

2 7→ 2

1
1
2

∅

∅
∅

∅
1
1

∅

∅ 7→ 0

∅
∅
∅

∅

0
∅

1
∅
1

∅

∅ 7→ 0

1
1
∅

∅

0

1

2
3
2

1

3 7→ 3

2
2
3

1

1
2

1
2
1

2

2 7→ ∅

1
1
2

2

∅
1

∅
2
2

1

∅ 7→ ∅

∅
∅
∅

1

1
1

2
∅
2

1

∅ 7→ ∅

2
2
∅

1

1

∅

∅
1
∅

∅

1 7→ 1

∅
∅
1

∅

∅
∅

1
∅
∅

∅

1 7→ 1

1
1
1

∅

∅
∅

∅
∅
∅

∅

∅ 7→ 1

∅
1
1

∅

1

The proof is a not-too-laborious case check, determining all the ways to glue a classic
tile atop a bumpless tile (or vice versa), then to specify the possible connectivities; finally
to match the 23 of each, preserving the net connectivity (up to potential pipes entering
and leaving on the same side!) and the number of weighty tiles. It takes some additional
analysis to confirm that the replacement tiles glue together. Uniqueness follows (slightly
non-trivially) from the rest of the lemmas and theorems of this section and the obser-
vation that each of the 23 pairs of tiles has a distinct connectivity (i.e. no two have the
same labels around the outside). The four boxed replacements are the ones that would
not preserve the monomial if the weighty tiles were labeled x rather than −y. We spend
the rest of the abstract dealing with them (and bringing the dash-boxed replacements
along for the ride).
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When a C
B section or B

C section is of (full) width n, call it full. The major property
that full C

B sections ( B
C sections) have, that non-full ones need not, is that a full C

B section
( B

C section) has blank labels on the right edge of its top row and the left edge of its
bottom row (left edge of its top row and right edge of its bottom row) and blank labels
on its other vertical edges, whereas an arbitrary C

B section ( B
C section) may have any

combination of blank and non-blank labels on its vertical edges.
Two C

B sections ( B
C sections) are said to be the same if they have the same tiles and the

same connectivity. As in Theorem 3, we put labels on C
B sections ( B

C sections) in order
to show their connectivity and not to indicate the labels the pipes may have had within
some larger hybrid pipe dream.

We attach decorations f to C
B sections ( B

C sections) in the same way that we did with
hybrid pipe dreams. To assign weights to C

B sections ( B
C sections) in the context of a

complete hybrid pipe dream we need to know the labels on the two rows. However, for
the purpose of verifying that our bijection preserves weights, we will say the classic row
is labeled c and the bumpless row is labeled b so that we attach the weight xc to weighty
tiles decorated with x in the classic row and xb to weighty tiles decorated with x in the
bump less row.

Although the bijection in Theorem 3 is not weight-preserving for arbitrary decorated
C
B section, most of the replacement rules in the bijection described in Theorem 3 will still
be a part of the more general bijection we present in Theorem 5. The leftover columns
will be the ones appearing in the seven boxed and dash-boxed rules in Theorem 3. To
define the row swapping bijection for arbitrary decorated C

B sections we will (1) organize
these leftover tiles into chunks which are described in Definition 1, (2) define the bijection
on these chunks in Theorem 4, and finally (3) show that everything outside those chunks
can be dealt with using the local replacement rules from Theorem 3.

Definition 1. We say that a C
B section is obstructive if it can be made with the following

non-deterministic finite state machine (on the left) by starting at one of the leftmost 5 nodes and
ending at one of the rightmost 5 modes. In the finite state machine j and k mean to repeat that
node j or k times respectively where j and k may be any non-negative integer including 0.

j k k j
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The state machine diagram defining obstructive B
C sections is the one on the right.

Theorem 4. There is a unique weight preserving bijection between decorated obstructive C
B sec-

tions and decorated obstructive B
C sections such that the labels along the top and bottom edges are

preserved.

Proof. Every obstructive C
B section ( B

C section) begins with a possibly empty sequence
of columns with weighty tiles in the bumpless (classic) row and non-weighty tiles in
the classic (bumpless) row. After this, there will be a single column with no weighty
tiles. Finally, the C

B section ( B
C section) ends with a possibly empty sequence of columns

with weighty tiles in the classic (bumpless) row and non-weighty tiles in the bumpless
(classic) row. An obstructive C

B section ( B
C section) is completely determined by the labels

on its top and bottom edges together with the position of its single non-weighty column.
Further, for each possible boundary of an obstructive C

B section ( B
C section) and each i

between 1 and the width of the C
B section ( B

C section), there exists an obstructive C
B section

( B
C section) with those boundary labels that has a non-weighty ith column.

Let D be an obstructive C
B section ( B

C section) with width k and let f be some dec-
oration on it. Then, mon(D, f ) = xa

c xk−1−a−m
b ∏m

j=1−yij for some 0 ≤ m ≤ k − 1,
some 0 ≤ a ≤ k − 1− m,and some sequence i1, i2, . . . , im ∈ {1, 2, . . . , k}. We claim that
mon restricts to a bijection from C

B sections ( B
C sections) with fixed labels along their top

and bottom edges to monomials of the form in the previous sentence. Once proven,
this claim implies that there is a unique weight preserving bijection between decorated
obstructive C

B sections and decorated obstructive B
C sections. Suppose we have some

i1, . . . , im ∈ [k] with 0 ≤ m ≤ k− 1, and some 0 ≤ a ≤ k− 1−m. Given labels along the
top and bottom edges we want to show there is a unique obstructive decorated C

B section
(D, f ) and a unique obstructive decorated B

C section (D′, f ′) with those labels and with
mon(D, f ) = mon(D′, f ′) = xa

c xk−1−a−m
b ∏m

j=1−yij . To achieve that monomial, there
needs to be a weighty tile in both D and D′ decorated with (−y) in the (ij)th column
for each j = 1, . . . , m. The a factors of xc in the monomial must come from the rightmost
(leftmost) a columns of D (D′) which are not already reserved for giving −yij weights.
The k − 1− a− m factors of xb must come from the leftmost (rightmost) k − 1− a− m
columns of D (D′) which are not already reserved for giving −yij weights. We have thus
determined the weights we’ll need to have coming from m + a + (k− 1− a−m) = k− 1
of the k columns of D (D′). Hence, the unique remaining column of D (D′) will be
the unique non-weighty column of D (D’). Setting a column as the non-weighty column
uniquely determines what D and D′ should each be based on the labels along the top
and bottom edges. In the process of determining where the non-weighty column of D
and D′ had to be to achieve the monomial xa

c xk−1−a−m
b ∏m

j=1−yij , we specified which
columns would contribute which weights. This tells us exactly how to decorate D and
D′ because each column of an obstructive C

B section ( B
C section) has at most one weighty
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tile. We have thus shown that mon gives a weight preserving bijection between ob-
structive decorated C

B sections ( B
C sections) with set labels on the top and bottom edges,

and monomial weights of the form xa
c xk−1−a−m

b ∏m
j=1−yij for appropriate a, m, ij. We

conclude that for any decorated C
B section (D, f ), there is a unique decorated B

C sec-
tion (D′, f ′) such that the the top and bottom edge labels of D match those of D′ and
mon(D, f ) = mon(D′, f ′).

Columns of a full C
B section ( B

C section) which aren’t contained in some obstructive C
B

section ( B
C section) turn out to be completely determined by the connectivity of the full

C
B section ( B

C section). To aid in the discussion of the connectivity of hybrid pipe dreams
we introduce the following definitions.

Definition 2. Define the ith edge content Ci(D) of either a C
B section or B

C section D to be (x, y)
where x is the label of the pipe passing from the tile in the (i + 1)st column of the classic row
of D to the ith column of the classic row of D (or ∅ if there is no such pipe) and y is the label
of the pipe passing from the ith column of the bumpless row of D to the (i + 1)st column of the
bumpless row of D (and ∅ if there is no such pipe).

Define the boundary ∂D of D to be the list of labels along the top, bottom, left, and right
boundary edges of D where D may be either a C

B section or a B
C section.

If D is a C
B section ( B

C section) such that for all C
B sections ( B

C sections) D′ such that ∂D′ = ∂D,
Ci(D′) = (x, y) we call i separating for D.

Lemma 1. If D is a C
B section ( B

C section) and Ci(D) = (x, y) with x 6= y then i is separating for
D and in fact Ci(D′) = (x, y) for any C

B section ( B
C section) D′ with ∂D = ∂D′. In particular, if

we introduce the following conditions:

(i) the label x appears on the top edge of D in a column right of the ith column (or on the right
edge of the classic row)

(ii) the label x appears on the bottom edge of D in a column left of the ith column (or on the
right edge of the classic row)

(iii) the label y appears on the top edge of D in the ith column or to the left of it (or on the left
edge of the bumpless row)

(iv) the label y appears on the bottom edge of D in a column right of the ith column (or on the
right edge of the bumpless row),

then

1. Ci(D) = (x, y) with x 6= y and x 6= ∅ 6= y iff conditions (i),(ii),(iii), and (iv) all hold.

2. Ci(D) = (x, ∅) with x 6= ∅ iff conditions (i) and (ii) hold and for all y, either condition
(iii) does not hold or condition (iv) does not hold.
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3. Ci(D) = (∅, y) with y 6= ∅ iff conditions (iii) and (iv) hold, and for all x, either condition
(i) does not hold or condition (ii) does not hold.

Lemma 2. If the label x 6= ∅ appears on the top edge of the ith column of D and the bottom edge
of the jth column of D for some j ≥ i or the right edge of the bumpless row of D when D has
width j, then i− 1, i, . . . , j are all separating for D. Additionally, if the label x 6= ∅ appears on
the bottom edge of the ith column and the left edge of the bumpless row of D then 1, 2, . . . , i are
all separating for D.

Definition 3. Let D be a C
B section ( B

C section) of width n. The interval [a, b] is irreducible in
D if no i ∈ [a, b− 1] is separating for D. An irreducible interval [a, b] in D is called maximal if
a− 1 and b are separating for D.

Lemma 3. Let F be a full C
B section ( B

C section) and let D be the C
B section ( B

C section) sitting in
columns a through b of F where b > a. If [a, b] is a maximal irreducible interval for F then D is
an obstructive C

B section ( B
C section).

Proof. Suppose that [a, b] is a maximal irreducible interval for F.
Say a pipe p enters D from the top edge of the ith column (with i ∈ [a, b] of course).

If p exits D from the bottom edge of a column right of i (or exits from the bottom of
i) then i − 1 and i are both separating for D by Lemma 2. In that case, irreducibility
implies that i − 1 = a− 1 and i = b which would then contradict the assumption that
b > a. We conclude that p must exit D either to the left of the ith column or through a
vertical edge of D. If p exits through the right edge of the bumpless row of D then b− 1
is separating for D by Lemma 2 so either D is not irreducible or b = a + 1. Either case
is a contradiction so we conclude that p exits through the left edge of the classic row of
D or somewhere left of the ith column. If p exits D in the jth column for some a ≤ j < i
then i− 1 will be separating for D by Lemma 1 parts 1 and 2. Irreducibility then implies
i − 1 = a− 1 which contradicts our assumption that a ≤ j < i. Since p can’t exit D in
the bottom of column i and it can’t exit D in a column j < i or a column j > i, the only
remaining possibility is that p exits D through the left edge of the classic row of D and
i = a. In summary, if there is a pipe entering D from a top edge, it must enter from the
top edge of column a and exit through the left edge of the classic row of D.

Suppose a pipe p exits D from the bottom edge of the ith column of D. By the
preceding paragraph, p cannot have entered D from a top edge, so p must have entered
D from the right edge of the classic row of D or the left edge of the bumpless row of D.
Suppose towards a contradiction that p entered through the left edge of the bumpless
row. Then, a will be separating for D by Lemma 2. Since b − 1 > a, that contradicts
irreducibility. Therefore, we conclude that p can only have entered D from the right
edge of the classic row. If i is less than b, then Lemma 1 shows b− 1 to be separating
for D. Thus, we conclude i = b by irreducibility. Our takeaway is that if a pipe p exits
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D from a bottom edge, it must be entering from the right edge of the classic row and
exiting from the bottom edge of column b.

In addition to what we know already, Lemma 1 tells us that for all i = a, . . . , b− 1,
Ci(D) = (∅, ∅) or Ci(D) = (x, x) for some x. With all the restrictions on the contents of
D we can now go through the list of 2× 1 C

B section columns and and find that if D is

a C
B section, the possible columns are: , , , , , , and . If D is a B

C

section, the possible tiles will be: , , , , , , and . This does not yet
tell us that D is an obstructive C

B section ( B
C section). The problem is that D could start

with a column which is not a start state of the finite state machine or end with a column
that is not an end state of the finite state machine. Call a column of a C

B section ( B
C

section) problematic if it is included in the finite state machine for obstructive C
B sections

( B
C sections). In the finite state machine for C

B sections ( B
C sections), the valid start states

are exactly the columns which can be preceded by some non-problematic tile and the
valid end states are exactly the columns that can be followed by some non-problematic
tile. The columns which are not valid start states cannot appear at the beginning of a
full C

B section ( B
C section). The columns which are not valid end states cannot appear at

the end of a full C
B section ( B

C section). Hence, if D starts with an invalid start state/ends
with an invalid end state, it will be preceded/followed by a sequence of problematic tiles
beginning/ending with a valid start/end column. This larger C

B section ( B
C section) will

be obstructive. If this containment is proper, then either a− 1 or b won’t be separating.
That would contradict maximality, so we conclude that D is an obstructive C

B section ( B
C

section).

Theorem 5. There is a weight preserving bijection between decorated full C
B sections and deco-

rated full B
C sections.

Proof. To map a C
B section D to a B

C section we first split it up into smaller pieces, split-
ting it up between columns i and i + 1 whenever i is separating for D. This leaves us
with maximal irreducible intervals which by Lemma 3 will either be single columns or
obstructive C

B sections. Obstructive C
B sections (including ones which are single columns)

are mapped to obstructive B
C sections in the manner described in Theorem 4 and all

other single columns are mapped to single columns in the manner described in The-
orem 3. The 23 replacement rules in Theorem 3 are characterized by the property that

Ci(φy(D)) =


(∅, ∅) Ci(D) = (x, x) for some x
(x, x) for some x Ci(D) = (∅, ∅)

Ci(D) else.

This property also holds on

the leftmost and rightmost boundary edges for the bijection between decorated obstruc-
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tive C
B sections ( B

C sections). Thus, when we apply our construction on each maximal
irreducible interval, the results will fit together. This construction sends maximal irre-
ducible intervals to maximal irreducible intervals so it is indeed a bijection.

As an example of Theorem 5, the following C
B section and B

C section are mapped to
one another when all decorations are x.

1
1

2

2

3 4

4 3

5

7

6

6

7

5

8

8 1

1
2

2

3 4

4 3

5

7

6

6

7

5
8

8
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