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Abstract. We introduce hourglass plabic graphs and prove that certain of these graphs
index a rotation-invariant SL4-web basis, a structure that has been sought since Kuper-
berg’s introduction of the SL3-web basis in 1996. These graphs exhibit connections
to the combinatorics of standard Young tableaux, crystals, alternating sign matrices,
six-vertex configurations, and plane partitions.

Keywords: web, promotion, plabic graph, alternating sign matrix, six-vertex model

1 Introduction

The irreducible representations of the symmetric group Sn are the Specht modules Sλ

indexed by integer partitions λ. For the case of 3-row rectangles, Kuperberg [17] fa-
mously introduced a diagrammatic “web” basis of the Specht module S3×b (and more
generally for other spaces of invariant tensors). Kuperberg’s web basis has many impor-
tant applications to quantum link invariants, cluster algebras, and algebraic geometry.
From a combinatorial perspective, key properties of the web basis are that the long cycle
c = (12 . . . n) and the long element w0 = n(n − 1) . . . 1 both act in this basis as scalar
multiples of permutation matrices. Indeed, (up to scalars) c acts diagrammatically as
a rotation [21] and w0 as a reflection [19], yielding an easily accessible pictorial under-
standing of these actions. These facts are particularly powerful in dynamical algebraic
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combinatorics, where for example Petersen–Pylyavskyy–Rhoades [21] used them to ob-
tain a much more direct proof of the 3-row case of Rhoades’ [24] cyclic sieving result for
rectangular Young tableaux under the action of tableau promotion.

The 2-row analogue of Kuperberg’s web basis can be combinatorially identified with
noncrossing matchings and is algebraically closely related to the Temperley–Lieb algebra
(see [16]). Kuperberg also exhibits analogues in Lie types B2 and G2. Kuperberg [17]
writes that “the main open problem [. . . ] is how to generalize [these web bases] to
higher rank.” Despite progress on identifying generators and relations [4, 8, 14, 18], as
well as constructions of non-rotating bases [5, 6, 9, 29], no rotation-invariant web basis
for rectangular shapes of more than 3 rows has yet been obtained. However, see [20] for
a putative web basis in a non-rectangular setting and [7] for the 2-column case.

Our main result is a rotation-invariant web basis for the 4-row rectangular Specht
module S4×b (and also for more general spaces of tensor invariants). Our diagrams
are a generalization of Postnikov’s plabic graphs (originally introduced for the study
of totally positive parts of flag varieties), where our main combinatorial innovation is
the introduction of hourglass edges that locally break planarity in a mild way. Our new
hourglass webs have surprising connections to alternating sign matrices, the 6-vertex
model of statistical physics, and plane partitions. A novel ingredient of our proof is the
use of Kashiwara’s crystal bases to identify and establish appropriate local growth rules
for webs.

This paper is an extended abstract only; the full version will be available on the arXiv.

2 Background

2.1 Tableaux, promotion, and evacuation

A standard Young tableau of rectangular shape a × b is a bijective filling of an a × b
grid of boxes with a rows and b columns using the values 1, 2, . . . , ab such that each
row is increasing left-to-right and each column is increasing top-to-bottom. Our running
example will be

E =

1 2 5 6

3 4 7 10

8 9 11 14

12 13 15 16

, (2.1)

which is a 4 × 4 standard Young tableau. We write SYT(a × b) for the set of all standard
Young tableaux of shape a × b. In this paper, our focus is the case a = 4.

Promotion (Schützenberger [25]) is a bijection P : SYT(a × b) → SYT(a × b) defined
as follows. Given T ∈ SYT(a × b), first delete the entry 1 from the box b. Fill the (now)
empty box b by sliding into b the smaller of the two values appearing immediately to the
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right of b and immediately below b. This slide yields a new empty box b′. Repeat this
sliding process until the empty box appears in the bottom right corner of the tableau.
Finally, fill the bottom right corner with ab + 1 and then subtract 1 from all entries. The
result is the promotion P(T) ∈ SYT(a × b). It is known [10] that for SYT(a × b), we
have P ab = id. Classical webs (cf. Section 2.3) provide a pictorial proof of this fact for
a ≤ 3; our main result yields such a proof for a = 4. For the tableau E, this process is as
follows:

E =

1 2 5 6

3 4 7 10

8 9 11 14

12 13 15 16

2 5 6

3 4 7 10

8 9 11 14

12 13 15 16

2 5 6

3 4 7 10

8 9 11 14

12 13 15 16

2 4 5 6

3 7 10

8 9 11 14

12 13 15 16

2 4 5 6

3 7 10

8 9 11 14

12 13 15 16

2 4 5 6

3 7 10

8 9 11 14

12 13 15 16

2 4 5 6

3 7 10 14

8 9 11

12 13 15 16

2 4 5 6

3 7 10 14

8 9 11 16

12 13 15

2 4 5 6

3 7 10 14

8 9 11 16

12 13 15 17

1 3 4 5

2 6 9 13

7 8 10 15

11 12 14 16

P(E) =

For T ∈ SYT(a × b), the evacuation is the tableau E(T) ∈ SYT(a × b) obtained by
rotating T by 180◦ and then replacing each entry i by ab + 1 − i. Note that evacuation
is an involution. Together P and E generate a dihedral group action on SYT(a × b), as
P−1 ◦ E = E ◦ P .

2.2 Plabic graphs

Definition 2.1 (Postnikov [22]). A plabic graph is a planar undirected graph, embedded
in a disk, whose boundary vertices have degree 1 and are labelled b1, b2, . . . in clockwise
order and whose vertices are each colored black or white.

Plabic graphs were introduced by Postnikov [22] in his study of the totally positive
Grassmannian, and have since proven [23] to be fundamental objects in the theories of
cluster algebras [26] and KP solitons [15] and in the physics of scattering amplitudes [1].

For each boundary vertex bi of a plabic graph G, one may obtain another boundary
vertex bπ(i) by beginning a walk on the unique edge incident to bi and turning left at each
white vertex and right at each black vertex, until the boundary is reached. The function
π is in fact a permutation, denoted trip(G). If this set of walks from the boundary
vertices avoids certain bad double crossings, then G is called reduced. Two reduced plabic
graphs share the same trip permutation if and only if they are connected by a sequence
of certain graphical transformations called moves (see [22]).
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2.3 Classical webs

Consider an a × n matrix of distinct variables. Multiplication by the special linear group
SLa induces an SLa-module structure on the space of polynomials in these variables. An
important task in representation theory is to describe the submodule of invariant poly-
nomials. This submodule is the homogeneous coordinate ring of the Grassmannian of
a-planes in Cn; moreover, various multihomogeneous components yield concrete con-
structions of the Schur modules (the irreducible polynomial representations of SLn) and
of the Specht modules (the irreducible representations of the symmetric group Sn). In this
abstract, we restrict attention to Specht modules, although our results are more general.

Our Specht modules Sa×b are associated to rectangular shapes a × b. To compute
with Specht modules, it is useful to have explicit vector space bases of Sa×b. Various
useful choices of basis are known, but we are especially interested in web bases [17]. Web
bases have a variety of useful features. For combinatorial purposes, the most important
such features are that web bases are diagrammatic (meaning that the basis elements are
indexed by planar diagrams) and that the actions of the long cycle c and the long element
w0 are by (scalar multiples of) permutation matrices that are pictorially apparent (up to
straightforward signs, c acts by rotation of diagrams [21] and w0 by reflection [19]).
For example, in [21], these facts for web bases were used to give substantially more
direct proofs of cyclic sieving phenomena for the action of promotion on 2- and 3-row
rectangular tableaux (following the original Kazhdan–Lusztig theory proof of Rhoades
[24] for the general rectangular case). Our main result may allow an analogous proof in
the 4-row case.

Unfortunately, rotation-invariant web bases are only known in a small number of
cases. For the Specht modules S2×b, the web diagrams are the noncrossing matchings
of 2b points on the boundary of a disk [16]. For S3×b, Kuperberg [17] introduced SL3-
webs, which are the bipartite plane graphs embedded in a disk such that all boundary
vertices have degree 1, all internal vertices have degree 3, all internal faces have at least
6 sides, and all boundary vertices share a color. It has long been desired to obtain web
bases for other shapes, especially 4-row rectangles. For example, [4, 8, 14, 18] describe
families of diagrams that are too large to be bases, together with the relations among the
corresponding invariant polynomials, whereas [5, 6, 29] provide algorithms to construct
non-rotating bases. A rotating basis for certain nonrectangular shapes was recently given
in [20] and a web basis for 2-column rectangles in [7]. Our main result is an explicit
description of a rotation-invariant web basis for S4×b, the first extension to higher-row
rectangular shapes since Kuperberg’s 1996 paper [17].
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3 Main results

In this section, we present our main results and new constructs. Sections 3.1 and 3.2 con-
tain new definitions and theorems needed for our main theorems in Sections 3.3 and 3.4.
Theorem 3.6 gives our main bijection between standard tableaux and equivalence classes
of hourglass plabic graphs, and the corresponding web basis is given in Theorem 3.7.

3.1 Hourglass plabic graphs

Definition 3.1. An hourglass plabic graph is a bipartite plabic graph with black bound-
ary vertices, with hourglass edges BB allowed between internal vertices, whose internal
vertices are all 4-valent.

Hourglass plabic graphs admit moves of two kinds: square moves and benzene moves
(see Figure 1). Hourglass plabic graphs G and G′ are equivalent if one may be obtained
from the other by a sequence of square and benzene moves. We write [G] for the equiva-
lence class of G. Equivalence of classical plabic graphs and webs under square moves has
appeared before, while benzene equivalence is a new and crucial feature of hourglass
plabic graphs.

- - - -
I /

⑧ ⑧ ⑧

⑧

· ·
- - &

~
⑧ · · · ·

⑧

↑ I ⑧

-

⑧
⑧

- · -

-

I /
⑧ - - -

⑧ ⑧ ⑧ ⑧

- - & X - X - * X~ ~
⑧

↑ I ⑧ ⑧ ⑧ ⑧

- - - -

Figure 1: All moves that can be performed on an hourglass plabic graph, up to rotation
and reversal of vertex colors. The leftmost move is a benzene move and the others are
square moves.

Definition 3.2. An hourglass plabic graph G is fully reduced if no G′ ∈ [G] contains any
of the following substructures:

1. An interior vertex incident to fewer than three other vertices,
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2. A 2-cycle (treating an hourglass edge as a single edge), or

3. A 4-cycle containing an hourglass edge.

A key feature of hourglass plabic graphs is that they have three trip permutations
trip1(G), trip2(G), and trip3(G). These are defined analogously to the trip permutation
of a plabic graph, but we take the i-th left at white vertices and i-th right at black vertices
when computing tripi(G) (see Figure 2).

Theorem 3.3. Two fully reduced hourglass plabic graphs G and G′ are equivalent if and only if
tripi(G) = tripi(G

′) for i = 1, 2, 3.

3.2 Promotion permutations

Motivated by trip permutations of hourglass plabic graphs, we want to associate tuples
of permutations to rectangular standard Young tableaux. For T ∈ SYT(a × b), 1 ≤ i ≤
a − 1 and 1 ≤ j ≤ ab, denote with pi,j the unique entry of P j−1(T) that moves from row
i + 1 to row i in the sliding process when applying promotion to P j−1(T).

Definition-Theorem 3.4. For 1 ≤ i ≤ a − 1, the map promi(T) : j 7→ (pi,j + j − 1)
(mod ab) is a fixed-point-free permutation on the set {1, . . . , ab}. We call promi(T) the i-th
promotion permutation of T.

The anti-exceedance set of a permutation π is Aexc(π) := {i | π−1(i) > i}. We denote
with rot(π) = c−1 ◦ π ◦ c the rotation of π and we denote with refl(π) = w0πw0 its
reverse-complement. The promotion permutations of T satisfy the following properties.

Theorem 3.5. Let T ∈ SYT(a × b), then for 1 ≤ i ≤ a − 1

1. rot(promi(T)) = promi(P(T)),

2. refl(promi(T)) = promi(E(T)),

3. promi(T) = proma−i(T)
−1, and

4. Aexc(promi(T)) = {e | e is in the first i rows of T}.

The promotion permutations in one-line notation of our running example (2.1) are

prom1(E) = 4 3 14 10 9 7 8 16 13 11 12 6 5 15 2 1,
prom2(E) = 14 9 16 15 11 8 13 6 2 12 5 10 7 1 4 3, and
prom3(E) = 16 15 2 1 13 12 6 7 5 4 10 11 9 3 14 8.

(3.1)

(The anti-exceedances of each permutation are underscored.) Note that prom1(E) and
prom3(E) are inverses of each other and that prom2(E) is an involution.
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3.3 The main bijection

Given an hourglass plabic graph G, let rot(G) denote the hourglass plabic graph ob-
tained from G by cyclically rotating the graph with respect to the boundary labels, and
let refl(G) denote the hourglass plabic graph obtained by reflecting the graph (but not
the boundary labels) with respect to a diameter of the disk intersecting the boundary
between b4b and b1.

Theorem 3.6. For an equivalence class [G] of fully reduced hourglass plabic graphs with 4b
boundary vertices, there is a unique 4× b standard Young tableau T ([G]) whose first i rows con-
tain the entries Aexc(tripi(G)) for i = 1, 2, 3. Furthermore, the map T is a bijection satisfying:

1. tripi(G) = promi(T ([G])) for i = 1, 2, 3,

2. T ([rot(G)]) = P(T ([G])), and

3. T ([refl(G)]) = E(T ([G])).

See Figure 2 for an example.
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Figure 2: An hourglass plabic graph G representing G(E) for our running example
tableau E (left) and its rotation rot(G) (right), corresponding to P(E). The paths com-
puting trip1(G)(9) = 13, trip2(G)(9) = 2, and trip3(G)(9) = 5 are drawn in purple,
orange, and blue respectively, matching the values of promi(E)(9) computed in (3.1).

The inverse G of the map T in Theorem 3.6 involves growth rules, which operate on
the lattice word of a standard Young tableau T. In the lattice word L = ℓ1ℓ2 . . . of T, ℓk is
the row index of the box labeled k in T. The lattice condition requires that, for any prefix
of L and for all i ≤ j, the number of i’s is not less than the number of j’s. For example,
the lattice word associated to (2.1) is L = 1122112332344344.
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For T ∈ SYT(2 × b), we may construct a non-crossing circular matching as follows.
First place 2b vertices in a line, each with a dangling edge labeled ℓi from the lattice
word L of T. Now iteratively “cap off” adjacent pairs of dangling strands labeled 1 on
the left, 2 on the right. This is analogous to matching parentheses. After all dangling
strands have been capped off, wrap the resulting figure around a circle.

For T ∈ SYT(3× b), Khovanov–Kuperberg [13] extended this construction to produce
Kuperberg’s trivalent non-elliptic webs. The algorithm starts with 3b black vertices and
dangling strands again labeled by the lattice word of T. Strands are combined iteratively
using a collection of 14 growth rules (see [21, Figure 4] under 1 ↔ 1, 0 ↔ 2, 1̄ ↔ 3). For
instance, adjacent strands labeled 1, 2 dangling from black vertices may be combined in a
new trivalent white vertex with a new dangling strand labeled 3. Khovanov–Kuperberg
showed that the algorithm is independent of all choices and is bijective.

We extend these constructions to T ∈ SYT(4 × b). More precisely, we give a bijection
G : SYT(4 × b) → {[G] | G a fully reduced hourglass plabic graph} inverse to the bijec-
tion T from Theorem 3.6. The algorithm involves approximately 100 growth rules; see
Figure 3 for some examples. An intriguing feature of the 4-row growth rules is the pres-
ence of “witnesses,” which are dangling strands which are not themselves combined.
Moreover, the result is not independent of choices, though the result is well-defined as
an equivalence class of fully reduced hourglass plabic graphs. Our key technique for
generalizing the Khovanov–Kuperberg growth rules is to observe that each rule corre-
sponds to a pair of corresponding vertices in isomorphic Kashiwara crystal graphs.

1 3

2

4

4

1 3
2

13

2 2

1 1

1 1

24
34

• A A • A A • •

BB

I 1

I 1 Bo

Figure 3: Some examples of 4-row growth rules.

3.4 The SL4-web basis

Kuperberg [17] introduced SL3-webs as a combinatorial model for the category of
SL3(C)-modules. In particular, bipartite trivalent webs with 3b black boundary vertices
correspond to invariant polynomials. These are elements of

Inv((C3)⊗b) = HomSL3(C)((C
3)⊗b, C) ⊂ C[xi1, xi2, xi3 : 1 ≤ i ≤ b],

where C3 is the defining representation. For example, 3 black boundary vertices con-
nected to a single white vertex corresponds to the 3 × 3 determinant polynomial in
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9 variables xij for 1 ≤ i, j ≤ 3. Kuperberg showed that the invariants associated to
SL3-webs form a basis for Inv((C3)⊗b). A group based at LACIM [2] showed more
directly that Kuperberg–Khovanov’s growth rules applied to T ∈ SYT(3 × b) produce
webs whose invariants have grevlex-leading terms that correspond naturally to T itself.
See [2, Thm. 5.2] for details.

Using Fraser–Lam–Le’s monomial expansion [8, Lemma 5.4], we extend the result of
[2] to hourglass plabic graphs.

Each equivalence class [G] of fully reduced reduced hourglass plabic graphs contains
a top hourglass plabic graph Gtop, whose corresponding symmetrized six-vertex configura-
tion (see Section 4) has all triangles oriented counterclockwise. For example the graphs
in Figure 2 are top fully reduced hourglass plabic graphs. The top element Gtop is unique
up to square moves, and thus the web invariant polynomial JGtopK is well-defined.

Theorem 3.7. The web invariant polynomials JGtopK of top fully reduced hourglass plabic graphs
with 4b boundary vertices are a rotation-invariant basis for the invariant space Inv((C4)⊗b).

4 The six-vertex model and combinatorial connections

Fully reduced hourglass plabic graphs may be transformed to directed graphs in which
all boundary vertices are degree 1 and oriented inward and all interior vertices are de-

gree 4 and are sources, sinks, or any rotation of it (transmitting vertices). The bijection
proceeds by orienting all non-hourglass edges from black to white vertex, removing the
vertex coloring, and collapsing each hourglass edge and incident vertices to a single
vertex, producing a transmitting vertex configuration. This is invertible, as each source
corresponds to a black vertex, each sink corresponds to a white vertex, and each trans-
mitting vertex uniquely expands to an hourglass edge with one black and one white
vertex. Condition 3 of Definition 3.2 corresponds to each three-cycle being oriented (in
the entire equivalence class). See Figure 4. A similar construction appears in [9].

These graphs can be seen as configurations of a symmetrized version of the six-vertex
model with domain wall boundary conditions. Configurations of this model on a square grid
involve boundary edges oriented inward along the left and right boundary and out-
ward along the top and bottom, while interior edge configurations include transmitting

vertices as well as it and it. Such a configuration may be transformed to our con-
vention by reversing the direction of all vertical edges, permuting transmitting vertices
and producing a source or sink at each non-transmitting vertex.

On a square grid, these graphs are well-known to correspond to alternating sign
matrices (ASM), matrices whose entries are in {0,±1}, whose rows and columns sum
to 1, and whose nonzero entries alternate in sign along each row and column. In our
convention, sinks correspond to 1, sources to −1, and transmitting vertices to 0. In fact,
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Figure 4: The six-vertex configuration of our running example (2.1) (right), together
with six-vertex versions of the first two moves in Figure 1 (left).

this connection yields an intriguing enumeration; the 4 × n standard Young tableau in
which the numbers appear sequentially, left-to-right then top-to-bottom has ∏n−1

j=0
(3j+1)!
(n+j)!

elements in its equivalence class, corresponding to all n × n alternating sign matrices.
The moves of Figure 1 transform to studied moves on six-vertex configurations and

alternating sign matrices: the benzene move corresponds to the star-triangle relation as-
sociated to the Yang-Baxter equation, while the square move may be seen as a fiber toggle
in the alternating sign matrix tetrahedral poset [28] or as travelling along an edge of the
ASM polytope [27]. Composing these toggles at even squares followed by odd squares
produces the well-studied gyration action of [30] on fully-packed loops, objects in bijec-
tion with alternating sign matrices. Fully-packed loops on generalized domains (such
as ours) were considered by Cantini–Sportiello in their proof of the Razumov–Stroganov
conjecture [3] and relate to chained alternating sign matrices [11].

The benzene move (in the plabic formulation of Figure 1) can be seen as a transfor-
mation on a dimer cover (perfect matching) of the hexagonal lattice, where the hourglass
edges correspond to the included edges of the dimer cover. The transformation inverts a
cycle of alternate hourglass and non-hourglass edges. This is well-known to correspond
to adding and removing boxes from an associated plane partition.
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