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Abstract. We introduce the new sage_acsv package for the SageMath computer alge-
bra system, allowing users to rigorously compute asymptotics for a large variety of
multivariate sequences with rational generating functions. Using Sage’s support for
exact computations over the algebraic number field, this package provides the first
rigorous implementation of algorithms from the theory of analytic combinatorics in
several variables.

Résumé. Nous introduisons le nouveau package sage_acsv pour le systéme de calcul
formel SageMath, permettant aux utilisateurs de calculer rigoureusement les asymp-
totiques pour une grande variété de séquences multivariées avec des fonctions généra-
trices rationnelles. Utilisant le support de Sage pour les calculs exacts sur le champ
de nombres algébriques, ce package fournit la premiere implémentation rigoureuse
d’algorithmes de la théorie de la combinatoire analytique a plusieurs variables.
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1 Introduction

The field of Analytic Combinatorics in Several Variables (ACSV) [7, 11] adapts methods from
complex analysis in several variables, algebraic and differential geometry, topology, and
computer algebra to create effective methods to study the asymptotic properties of a
multivariate sequence (f;);cn¢ Using analytic properties of its generating function,

Fiz)= ) fiz'= ), fo.i2 2
ieN? (i1,0-ig) ENY
when this series represents a complex analytic function near the origin. The sage_acsv
package takes a multivariate rational function F(z) specified as an explicit symbolic
fraction and a direction vector r € Z%, and returns an asymptotic expansion for the
r-diagonal sequence! of the power series coefficients (fur),>0 of F, whose indices are
natural number multiples of r. Our package works under conditions that are verifiable
and hold generically, except that F must be combinatorial, meaning that all but a finite
number of its power series coefficients are non-negative.

Remark 1. It is unknown whether combinatorality is a computationally decidable prop-
erty, even in the univariate case. However, this property holds often in combinatorial
contexts (for instance, the multivariate generating function of any combinatorial class is
combinatorial because its series coefficients count something).

The sage_acsv package can be installed in any recent SageMath installation (prefer-
ably version 9.4 or later) by running the command sage -pip install sage-acsv from
any Sage instance with access to the internet, or by downloading its source code at
https://github.com/ACSVMath/sage_acsv and placing the module in the appropriate
Python search path.

Example 2. The (1,1)-diagonal of the combinatorial rational function
1 a+b
Flx,y) = —— = ( )x“ b
Y 1—-x—-y a,bzzlo a 4

forms the sequence f,, = (2:) of central binomial coefficients. After installing the
package, running the code

sage: from sage_acsv import diagonal_asy

sage: var(’x, y’)

(x, y)

sage: diagonal_asy(1/(1 - x - y), as_symbolic=True)
4~n/(sqrt(pi)*sqrt(n))

IThe theory of ACSV shows how asymptotics typically vary uniformly with small perturbations of r,
so it is also possible to derive asymptotics varying near fixed directions, and even limit theorems, using
similar techniques.
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verifies that the required assumptions of ACSV hold and proves that

() = (1o () 4

The asymptotic behavior of a multivariate rational diagonal sequence under our as-
sumptions (to be detailed below) is specified by a sum of terms of the form Cp"(7tn)*
where C and p are algebraic numbers and « is a rational number. By default, the
diagonal_asy command returns expansions of this form as a list of tuples containing
elements of Sage’s Algebraic Field, which stores exact representations of the quanti-
ties. The optional flag as_symbolic invoked in Example 2 tells diagonal_asy to return a
symbolic sum involving n which makes it easier to view (and approximate) asymptotics
but makes it difficult to access the exact algebraic numbers involved.

Example 3. The asymptotic behavior of the sequence
o\ (n+k\?
@0

1
1w+ x) 1 +y) (A +z)(yztyz +y+z+1) ]

which is the main diagonal of

F(w,x,y,z)

was used by Apéry [1] in his celebrated proof of the irrationality of {(3). Running

sage: from sage_acsv import diagonal_asy

sage: var (Pw, x, y, z, t?’)

(w, x, y, z, t)

sage: G = 1

sage: H = 1 - w*x(1 + x)*x(1 + y)*x(1 + 2)*(1 + y + z + y*z + x*y*z)
sage: diagonal_asy(G/H, as_symbolic=True)
1.2252758689416477x33.970562748477147"n/(pi~1.5%n"1.5)

gives the dominant asymptotic behavior of f, in terms of algebraic numbers represented
by decimal approximations. Running

sage: asm_vals = diagonal_asy(G/H)

sage: add([a.radical_expression() "n*b*c*d.radical_expression ()
for (a, b, ¢, d) in asm_vals])

(12*sqrt (2) + 17) “n*sqrt (17/2*xsqrt(2) + 12)/(4*xpi~1.5*%n"1.5)

represents these algebraic quantities in radicals using Sage’s capability for computing
symbolic radical expressions, proving

. (12ﬁ+17)”< /12+17/ﬁ+0(1>>.

(7tn)3 4 n
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We note that such radical expressions are not certified and, of course, it is not always
possible (or, even if possible, useful) to write the algebraic numbers appearing in asymp-
totics for general multivariate diagonals in radicals. <

The, by now well-established, theory of univariate analytic combinatorics [4] shows
that to determine asymptotics of the power series coefficients of a generating function
f(z), one should find the dominant singularities of f (those closest to the origin), deter-
mine the type of singularity (pole of finite order, logarithmic or algebraic branch point,
essential singularity, etc.), and then use known transfer theorems to determine the contri-
bution of each singularity to the asymptotics for the corresponding sequence. Dominant
singularities are generalized from one to several variables by the following definition.

Definition 4 (minimal point). Let F(z) = ¥, ¢ fiz' be a convergent power series with
domain of convergence D. A singularity w € RY of F(z) is said to be minimal if w lies in
the boundary 0D. Equivalently, w is minimal if there does not exist another singularity
w' € R? of F(z) with |w!| < |w;| forall 1 <i <d.

Although the theory of ACSV applies to meromorphic functions, we focus here on
the case when F(z) = G(z)/H(z) is a rational function so that we can use tools from
polynomial system solving (rational functions can also capture the behavior of algebraic
functions through embeddings in higher dimensions [6]). We always assume that G and
H are coprime polynomials, which implies that the set of singularities of F is defined by
the singular variety ¥V = {z € C* : H(z) = 0}.

Unlike the univariate case, in at least two variables there are always an infinite num-
ber of minimal points when F admits singularities. This reflects, in part, the fact that
minimal points are important to the asymptotics of (f;) and there are an infinite number
of ways for the index i to approach infinity by varying the direction vector r. Thankfully,
it is possible in generic circumstances to determine a finite set of singularities, depending
on r, that dictate asymptotics of the r-diagonal of F.

Definition 5 (critical point). A point w € C% := (C \ {0})? with nonzero coordinates is a
(simple smooth) critical point of F for the direction r = (r1,...,7,) if the gradient (VH)(w)
is nonzero and

H(w) =0,

1.1
rkleZ1 (w) — rlzkHZk (w) =0 for2 < k < d, ( )

where H;, denotes the partial derivative of H with respect to the variable z.

The theory of ACSV shows how minimal critical points, when they exist, typically
determine asymptotics (see Theorem 9 below). The command

diagonal_asy(F, r, linear_form, return_points, as_symbolic)
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computes asymptotics of the r-diagonal f,, of F(z) = G(z)/H(z) as n — oo, under the
following assumptions:

1. H(0) # 0, so that G(z)/H(z) has a convergent power series expansion near the
origin,

2. H and all of its partial derivatives do not simultaneously vanish, so that all poles
of F are simple and V forms a manifold,

3. the smooth critical point system (1.1) has a finite number of solutions, at least one
of which is minimal, and

4. the explicit matrix H = H(w) defined by (2.1) below is nonsingular at all minimal
critical points w.

The algorithm verifies these assumptions computationally, so the user need not worry
about them. As mentioned above, we further require that

5. the power series expansion of F is combinatorial, meaning that it admits at most a
tinite number of negative coefficients,

however it is unknown whether combinatorality is decidable, even for univariate rational
tunctions, so the user must know this through other means in order for the output to be
proven correct (for instance, if the input is a multivariate generating function for a count-
ing sequence then this is satisfied). Table 1 summarizes the possible input parameters of
the function diagonal_asy.

Multivariate generating functions enumerating combinatorial classes are, by their
definition, combinatorial. The form of F can also be used to prove combinatorality, for
instance if F(z) = G(z)/(1 — I(z)) where G and I are polynomials with non-negative
coefficients and I vanishes at the origin.

Remark 6. If H and its partial derivatives simultaneously vanish because H is not square-
free then minimal critical points can still be determined by replacing H with its square-
free part (the product of its irreducible factors); asymptotics can also be determined
using a minor generalization of the formula given below to higher order poles. If V
admits points where it is not locally a manifold, but (1.1) still has a finite set of solutions
and admits a smooth minimal critical point w such that all other solutions of (1.1) with
the same coordinate-wise modulus are also smooth, then this approach can still deter-
mine asymptotics. In general, if nonsmooth minimal points affect asymptotic behavior,
then more advanced results are required [7, Part III].
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Table 1: Parameters for the diagonal_asy command.

Parameter Type Description
F(z) Combinatorial rational Ratio of coprime polynomials
function in Z(zy, ..., z4) G(z) and H(z).

r (optional) List of d positive Direction to compute

integers asymptotics. If none is provided,
user = 1.
linear_form Linear polynomial in | Integer linear form to be used in
(optional) Zzy,...,24) the algorithm. If none provided,
generate one at random.

return_points True or False Flag to also return coordinates of

(optional) minimal critical points

determining asymptotics.
Default is False.

as_symbolic True or False Flag to return asymptotics as a
(optional) symbolic sum involving n.
Default is False.

Example 7. The sequence alignment problem in molecular biology compares evolution-
ary relationships between species by measuring differences in their DNA sequences.
Pemantle and Wilson [10] study one such problem whose behavior is encoded by the
main diagonal of the combinatorial multivariate rational generating function

x2y? — xy +1
1= (x+y+xy —xy* — Py + x°9° + X0y2)

We immediately prove dominant asymptotic behavior for the main diagonal by running

sage: from sage_acsv import diagonal_asy

sage: var(’x, y?’)

(x, y)

sage: G = x72%y~2 - x*y + 1

sage: H = 1 - (x + y + x*y - x*y~2 - X"2%y + x"2%xy~3 + x"3%xy~2)
G/H

sage: asm_vals = diagonal_asy(F, as_symbolic=True)
0.94305140239833977%4.5189113692622587"n/(sqrt (pi)*sqrt(n))

sage: F

where now the leading constant is an algebraic number of degree 10 and the exponential
growth constant is an algebraic number of degree 5. <

A test notebook working through these examples, and further ones, is available with
the source code of the package at https://github.com/ACSVMath/sage_acsv.
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Past Work

The theoretical underpinnings of our software began with the work of Pemantle and
Wilson [9] on smooth ACSV. This early paper used easy to understand explicit contour
deformations of complex integrals to derive asymptotics, however it relies on stronger
assumptions than we need. The specific asymptotic result we use was originally proven
in Baryshnikov and Pemantle [2] using the notion of hyperbolic cones to enable more
advanced deformations, which was then studied from an algorithmic viewpoint by Mel-
czer and Salvy [8]. The latter two authors created a preliminary Maple implementation
of the algorithm which was not rigorous, as it did not use certified numerics. A previ-
ous implementation by Raichev [12], currently included as a core module in SageMath,
can also compute? the asymptotic contributions of minimal critical points (including in
some nonsmooth situations). However, this package requires the user to independently
find and certify the minimal critical points (the hardest step of the analysis), so it also
does not rigorously determine asymptotics. In contrast, our package uses Sage’s exact
computations for algebraic numbers to rigorously decide the (in)equalities necessary to
prove computed asymptotics under our assumptions.

2 Algorithmic Details

In this section we quickly recap the theoretical background of ACSV, and then describe
how our package works in more detail.

2.1 Recap of ACSV

We start by representing the r-diagonal sequence by a Cauchy integral,

1 dz
r= g | F(2) 57/
fn (27Iz)d/(: (2) 1

where C is any product of circles sufficiently close to the origin, with dz = dz; - - -dzy
and z"t1 = (z'f”“,...,zzrdﬂ). Under our assumptions, it is possible to deform C
away from the origin and replace the Cauchy integral by a residue integral localized to
smooth minimal critical points (except at points that yield an exponentially negligible
error). The definition of critical points is crafted so that the resulting residue integral can
be analyzed using the classical saddle-point method. Our asymptotic formulas depend

on a certain matrix, which we now define.

2Unfortunately, as of the publication of this article, changes to the underlying SageMath codebase have
broken some functionality of Raichev’s package.



8 Benjamin Hackl, Andrew Luo, Stephen Melczer, Jesse Selover, and Elaine Wong

Definition 8 (phase Hessian matrix). If w is a smooth critical point, then the phase Hessian
matrix H = H(w) at w is the (d — 1) x (d — 1) matrix defined by

ViVi+ Uj — Villig— Viljg+ ViVillya, i#],

H;j = 2.1)
Vi+ V24 Ui — 2Villjg + ViUgg, 1=,
where
L G
& wded (w) ! 14 '

The key ACSV theorem in our context is the following.

Theorem 9 (Melczer [7, Theorem 5.1]). Suppose that the system of polynomial equations (1.1)

admits a finite number of solutions, exactly one of which, w € @i, is minimal. Suppose further
that H,,(w) # 0, and that the phase Hessian matrix H at w has nonzero determinant. Then, as
n— oo,

fo = 02 (i~ (3)

If the zero set of H contains a finite number of points with the same coordinate-wise modulus
as w, all of which satisfy the same conditions as w, then an asymptotic expansion of fp, is
obtained by summing the right hand side of this expansion at each point.

Remark 10. If G(w) = 0, then the leading asymptotic term in Theorem 9 will vanish. In
many cases dominant asymptotics can usually still be determined by computing higher-
order terms using (increasingly complicated) explicit formulas, however (in nongeneric
situations, or when G and H were not reduced to be coprime) it is possible for f,
to grow exponentially slower than w™"", and a local analysis near w can only prove
fur = O(w™"n=k) for any positive integer k.

In order to determine which critical points are minimal we use the following result.

Lemma 11 (Melczer and Salvy [8]). If F is combinatorial and y & C? is a minimal critical
point then so is (|y1],. .., |[y4|). Furthermore, w € R? is a minimal critical point if and
only if the system

H(Z) = H(tzl,...,tzd) = 0,

2.2
z21Hy, (z) = A = -+ =z3H,,(z) —1r4A =0, (22)

has a solution (z,A,t) € R¥2 with z = w and t = 1 and no solution with z = w and
0<t <l



Rigorous ACSV in SageMath 9

Theorem 9 and Lemma 11 display our overall strategy: encode the (generically fi-
nite [7, Section 5.3.4]) set of solutions to the polynomial system (2.2) in a convenient
manner, determine which solutions with t = 1 have zy, ..., z; positive and real, and then
use the solutions with t € (0,1) to eliminate those that are not minimal. Under our
assumptions there will be at most one positive real minimal critical point: it remains to
find the other critical points with the same coordinate-wise modulus and then add the
asymptotic contributions of each given by Theorem 9.

2.2 Kronecker Representations

The key to an efficient algorithm is the representation used to encode the solutions of the
extended critical point system (2.2). Following Melczer and Salvy [8], we use a Kronecker
representation, which is also known as a rational univariate representation (see Melczer and
Salvy [8] for background on the Kronecker representation and its history in computer
algebra). A Kronecker representation of a zero-dimensional algebraic set

S={zeC%: fi(z) =..= fy(z) =0}
consists of

* anew variable u given by a separating integer linear form u = x - z in the original
variables z for some k € Z4,

* a square-free integer polynomial P € Z[u], and
e integer polynomials Qy, ..., Qs € Z[u],

such that the points z defined by z; = Q;(u)/P’(u) as u runs through the roots of P give
the elements of S. The Kronecker representation of a zero-dimensional variety encodes
its points using the univariate polynomial P, and is constructed so that the degrees and
maximum coefficient sizes of P and the Q; can be efficiently bounded [13, 14].

Although specialized, Grobner-free, algorithms to compute a Kronecker representa-
tion [5] exist, to the best of our knowledge they have not been implemented in Sage.
We thus use a lexicographical Grobner basis computation to determine our Kronecker
representations. The ability to compute Kronecker representations in Sage may be of
independent interest to some users.
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Example 12. Determining the asymptotics of the Apéry-3 Sequence requires solving an
extended critical point system

xyz—xz+x—A =0,
xyz—yz+y—A =0,
xyz—xz—yz+z—A =0,
xyz—xz—yz+x+y+z—1=0,

xyzt® — xzt? —yzt? + xt +yt +zt — 1 = 0.

Using the linear form u = x + ¢, running

sage: from sage_acsv import kronecker
sage: var(’x, y, z, t, lambda_’)
(x, y, z, t, lambda_)

sage: kronecker ([x*y*z - x*z + x - lambda_, x*y*z - y*z + y - lambda_,
50008 X*y*zZ - X*z - y*z + z - lambda_,

00008 X*y*zZ - x*z - y*z + x +y + z - 1,

00008 X*ky*z*t~3 - x*kz*xt”"2 - y*zxt~2 + x*t + y*t + z*xt -1],

00008 [x, y, z, t, lambda_]l, x + t)
(u_"8 - 18*xu_"7 + 146*u_"6 - 692*xu_"5 + 2067*u_"4 - 3922xu_"3 + 4553*u_"2
- 2925%xu_ + 790,
[10xu_~7 - 153*xu_"6 + 1046%u_"5 - 4081*u_"4 + 9589%u_"3 - 13270%xu_"2 +

9844xu_ - 2985,

10*xu_~7 - 154xu_"6 + 1061*u_~"5 - 4180*xu_"4 + 9954*u_"~3 - 14044*u_"2 +
10714*%xu_ - 3380,

-u_"7 + 11%xu_"6 - 56xu_"5 + 157*u_"4 - 182*xu_"3 - 140*u_"2 + 527*xu_ -
335,

8xu_"7 - 139*%u_"6 + 1030*u_"5 - 4187*u_"4 + 10021*u_"3 - 14048*u_"2 +
10631*xu_ - 3335,

-12%u_"7 + 181*%u_"6 - 1231*u_"5 + 4801*%u_"4 - 11275%u_"3 + 15548*%u_"2 -
11452xu_ + 3440])

gives the Kronecker representation

P(u) =u® — 18u + 146u° — 692u° + 2067u* — 3922u> + 4553u> — 2925u + 790,
Qx(u) =10u” — 153u® + 1046u° — 4081u* + 9589u> — 132701 + 9844w — 2985,
Qy(u) =10u” — 154u° + 10611 — 4180u* + 9954u° — 14044u* + 10714u — 3380,
Q.(u) = — u” +11u® — 56u° + 157u* — 182u® — 140u® + 527u — 335,
Qi (u) =8u” —139u® + 1030u° — 4187u* + 10021u> — 14048u> + 10631u — 3335,
Qa(u) = — 1207 4 181u® — 1231u° + 4801u* — 11275u° + 15548u> — 11452u + 3440. <

After computing a Kronecker representation of the critical point system, we use
Sage’s solver over the Real Algebraic Field to determine the real roots of P(u), iden-
tify which correspond to critical points with positive real coordinates, filter out those
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that are not minimal by examining solutions with f coordinate in (0,1), and then iden-
tify which critical points have the same coordinate-wise modulus. All identities and
inequalities are verified exactly by working over the Algebraic Field in Sage (numeric
approximations to sufficient accuracy are used to decide inequalities, unless symbolic
computations are absolutely necessary to prove equality). Further details can be found
in the documentation for our package.

2.3 Future Work

There are many ways to generalize this work, including: computing the higher-order
terms in the expansion given by Theorem 9, working with nonsmooth critical points,
Grobner-free methods of computing Kronecker representations, and generalizing to lar-
ger classes of meromorphic functions where computations are still effective. From a
complexity point of view, the most expensive operation to find asymptotics is typically
identifying critical points with the same coordinate-wise modulus. Our package cur-
rently uses a naive method relying on Sage’s built-in support for algebraic numbers,
however work is ongoing to adapt a more efficient method described in Melczer and
Salvy [8] in the specialized ACSV setting. Furthermore, we use Sage’s interface to Sin-
gular for necessary Grobner basis computations. Work adapting newer packages, such
as msolve [3], is also ongoing.
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