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Abstract. We present a tool, integrated into SageMath 10.0, which supports the combi-
natorialist in the discovery of an explicit bijection between two finite sets given various
constraints, or by demonstrating that no such bijection can exist. As an application we
present a conjecture which may have been hard to discover otherwise.

1 Introduction

Let A = (Ai)i∈I and B = (Bi)i∈I be two sequences of finite sets of the same size. One
commonly employed approach for finding an explicit bijection between the two sets is
to refine the problem by introducing new parameters or by stipulating that the bijection
has other additional properties. For example, one may want to require that it inter-
twines natural actions or operations on A and B respectively or, provided A = B, that
it is an involution. Also, one may want to find a parameter on A which has the same
distribution as a natural parameter on B but satisfies additional constraints.

Thus, the first task is to discover such properties, and then determine experimentally
whether the requirements can be met at all. To the best of the authors’ knowledge, this
is usually done by ad-hoc methods. For example, one might list the first few objects in
A and B with pencil and paper or perhaps using a computer program and then inspect
them manually.

While it is straightforward to check whether there are natural subsets of Ai and Bi
that are still in bijection, other constraints may be very hard to verify or falsify. Moreover,
databases like the OEIS [4] and FindStat [3] now enable us, in principle, to generate a
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huge number of conjectural refinements, but it is infeasible to look into them by hand.
The program we describe here seeks to simplify and automate this task.

The ‘bijectionist’s toolkit’ is included in SageMath [5] beginning with version 10.0.1

2 Motivation

Before we present the features of the program in detail, let us describe the problem that
originally motivated the development of the tool. Let A = B = Sn and let rot : Sn → Sn
the ‘rotation’-action on A, that is, conjugation with the long cycle (1, . . . , n). Explicitly:

rot(π)(i) =

{
π(i + 1)− 1 if π(i + 1) ̸= 1,
n otherwise,

where we set π(n + 1) = π(1). Additionally, let τ : B → N be the length of a longest
increasing subsequence in a permutation, that is, the largest number k such that π(i1) <
· · · < π(ik) for some sequence 1 ≤ i1 < · · · < ik ≤ n.

Then, driven by a problem from invariant theory, we want to find a statistic on per-
mutations, that is, a function s : A → N, which has the same distribution as τ but is
additionally invariant under rot:

∑
π∈Sn

qs(π) = ∑
π∈Sn

qτ(π), and

s(rot(π)) = s(π) for all π ∈ Sn.

Given these constraints the program is then able to produce a complete list of minimal
subdistributions, that is, non-empty inclusion-wise minimal subsets Ã of A together with
subsets Z̃ ⊂ N of the same cardinality, such that necessarily

∑
π∈Ã

qs(π) = ∑
z∈Z̃

qz.

To illustrate, the program finds that the set of four permutations

[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2] and [4, 1, 2, 3]

must be mapped by s to the four values 1, 2, 3 and 4, in some order. A part of this
is easy to explain: these are exactly the four permutations which are invariant under
rotation, so all other orbits of rot have cardinality at least 2. However, there is only a
single permutation with length of longest increasing subsequence equal to 1 and a single

1The full documentation is available at https://doc.sagemath.org/html/en/reference/combinat/
sage/combinat/bijectionist.html

https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/bijectionist.html
https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/bijectionist.html
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permutation with the length of a longest increasing subsequence equal to 4. Thus, these
two values can only be images of permutations which are invariant under rotation.

Somewhat to our disappointment, even with the help of our tool we were unable to
find an explicit description of the statistic s. Still, possibly encouraged by the fact that
the program demonstrated that the statistic exists for n ≤ 9, the existence eventually
could be proven [1].

Note that the existence of such a statistic is equivalent to the existence of a bijection
S : Sn → Sn such that (τ ◦ S)(rot π) = (τ ◦ S)(π).

3 Features

Let us now describe the main features of the tool in full generality. All types of con-
straints can be combined.

Basic setup

Let A and B be finite sets of equal size, and let τ : B → Z for an arbitrary set Z. Then

sage: bij = Bijectionist(A, B, tau)

initializes bij to represent all functions s : A → Z such that there is a bijection S : A → B,
such that the following diagram commutes:

A

S
��

s

��

B τ
// Z

As a special case we allow τ to be the identity map on B. In this case bij represents
all bijections S : A → B, and we must have Z = B and S = s.

Constraints

Statistics

We may supply a pair (or several pairs) of statistics α : A → W and β : B → W on A and
B respectively into an arbitrary set W:

sage: bij.set_statistics((alpha, beta))
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Doing so, we stipulate that the following diagram commutes:

A

S
��

α

  

B
β
//W

In words, we require that S is an intertwining bijection between the statistics α and β.

Intertwining relations

We may supply a pair (or several pairs) of k-ary maps π : Ak → A and ρ : Zk → Z, thus
requiring that they are intertwined by s:

sage: bij.set_intertwining_relations((k, pi, rho))

Put differently, the following diagram must then commute:

Ak

sk
��

π // A

s
��

Zk
ρ
// Z

One may want to think of π as a map which composes objects in A, and ρ as the
effect this should have on the statistic we are looking for.

Quadratic relations

We may supply a pair (or several pairs) of maps ϕ : A → Z and ψ : Z → A,

sage: bij.set_quadratic_relations((phi, psi))

thus requiring that the following diagram commutes:

A
ϕ
��

s // Z
ψ
��

Z As
oo

In particular, if ϕ and ψ are the identity maps (and therefore Z = A = B and S = s),
this requires that S is an involution on A.
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Constant blocks

For a set partition P of A, setting

sage: bij.set_constant_blocks(P)

we stipulate that s : A → Z is constant on the blocks of P. Note that this makes sense
only if τ is not injective. To illustrate, this accommodates the condition of the motivating
example that the statistic should be invariant under rot, by letting P be the corresponding
orbit decomposition.

Homomesy constraints

For a set partition Q of A, setting

sage: bij.set_homomesic(Q)

we assert that the average of s on each block of Q should be constant. Of course, this
requires that Z is a field.

Solutions

The three most important ways to explore the solution space are as follows.

Fibers of the statistics

The instruction

sage: bij.statistics_fibers()

simply returns the preimages of α : A → W and β : B → W. Note that it does not assert
that a statistic s exists.

All solutions

Issuing

sage: list(bij.solutions_iterator())

the program lists all functions s : A → Z which satisfy all the given constraints, or raises
an error if no such map exists. Frequently, however, the number of such functions will be
very large. Thus, and in particular if one is only interested in checking whether the con-
straints can be satisfied at all, it is more useful to use next(bij.solutions_iterator()),
which only outputs a single solution, if it exists. In any case, this is computationally ex-
pensive.
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Minimal subdistributions

sage: list(bij.minimal_subdistributions_iterator())

lists all minimal subdistribution implied by the given constraints, or raises an error if no
solution exists. More precisely, it returns all non-empty inclusion-wise minimal subsets
Ã of A of together with submultisets Z̃ ⊂ Z of the same cardinality, such that we have
s(Ã) = Z̃ as multisets for all possible solutions. In particular, if τ is the identity map on
B, then we obtain a pair of subsets of minimal cardinality of A and B respectively which
are in bijection for all maps s satisfying the given constraints. This is computationally
expensive.

4 A sample application

A treasure trove for the experimental combinatorialist is the database FindStat. It should
not come as a surprise that combining the toolkit with FindStat yields some potentially
interesting conjectures.

Recently, Elder, Lafrenière, McNicholas, Striker and Welch [2] used the database to
find homomesies on permutations, that is, statistics s : Sn → Z and bijections m : Sn →
Sn such that there exists a constant c ∈ Q with

1
|O| ∑

π∈O
s(π) = c

for all orbits O of m. Using a brute force search, they discovered more than a hundred
combinations of maps and conjecturally homomesic statistics. Remarkably, they were
then able to prove that all of these conjectures are actually true.

Using our toolkit, we can take this a step further and look for statistics τ which are
equidistributed to a homomesic statistic, given a map m:

sage: n = 5
sage: A = B = Permutations(n)
sage: Q = DiscreteDynamicalSystem(A, m).cycles()
sage: bij = Bijectionist(A, B, tau)
sage: bij.set_homomesic(Q)
sage: next(bij.solutions_iterator())

If this yields a solution, we can be quite confident that s exists. For example, if m is the
rotation action rot considered before, iterating through the statistics in FindStat yields
www.findstat.org/St001377, ‘The major index minus the number of inversions of a
permutation’ as a candidate.

As a next step, we can use FindStat again to refine our conjecture, by iterating over
all pairs of equidistributed statistics α and β, such that

www.findstat.org/St001377
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sage: bij.set_statistics((alpha, beta))
sage: next(bij.solutions_iterator())

still gives a solution. In the case at hand, there are very many such pairs. One particu-
larly natural refinement is to use the major index for both α and β. We now look at the
minimal subdistributions in the refined setting, for n = 4:

sage: list(bij.minimal_subdistributions_iterator())
[([[4, 3, 2, 1]], [0]),
([[4, 1, 2, 3]], [0]),
([[3, 4, 1, 2]], [0]),
([[2, 3, 4, 1]], [0]),
([[2, 1, 4, 3]], [0]),
([[1, 2, 3, 4]], [0]),
([[2, 1, 3, 4], [3, 1, 2, 4]], [-2, -1]),

...

We can, in fact, query FindStat again with this data:

sage: findstat(list(bij.minimal_subdistributions_iterator()))
0: St001377oMp00064oMp00073 (quality [100, 100])
...

Although this is a plausible result, it turns out that this statistic is not homomesic with
respect to rotation. However, we can make the following conjecture, which we tested up
to and including n = 6.

Conjecture 1. Let maj : Sn → N be the major index and let inv : Sn → N be the number of
inversions of a permutation. Furthermore, let rot : Sn → Sn be the conjugation of a permutation
with the long cycle (1, . . . , n).

There is a statistic s : Sn → Z which is homomesic with respect to rot, and such that the
pairs of statistics (s, maj) and (maj− inv, maj) are equidistributed, that is,

∑
pi∈Sn

qs(π)tmaj(π) = ∑
pi∈Sn

qmaj(π)−inv(π)tmaj(π).

5 Implementation details

In this section, we outline the basic ideas behind the implementation. We model the
problem as a 0-1 integer linear program that represents the statistic s. Given a (possibly
trivial) set partition P of A and given Z, we define binary variables xp,z for each p ∈ P
and z ∈ Z. The assignment xp,z = 1 then indicates that ∀a ∈ p : s(a) = z, thereby
encoding that s is constant on the blocks of P.
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To ensure that s and τ have the same distribution, and that the bijection S : A → B
realising this equidistribution respects the statistics α : A → W and β : B → W we add
the following constraints:

∑
p∈P

mw(p)xp,z = nw(z), ∀w ∈ W ∀z ∈ Z

∑
z∈Z

xp,z = 1, ∀p ∈ P

where mw(p) = |{a ∈ p : α(a) = w}| and nw(z) = |{b ∈ B : β(b) = w and τ(b) = z}|.
A solution to this integer program immediately yields a solution for s : A → Z.

To generate all possible solutions for s, we iteratively prohibit the current solution by
adding the linear constraint ∑p∈P xp,s(p) < |P|, where s(p) denotes the common image
of all a ∈ p.

The minimal subdistributions can be algorithmically determined by means of a dy-
namic optimization problem that interacts with the model above. In every iteration, we
guess a smallest subset of blocks p that potentially defines a minimal subdistribution. By
an auxiliary integer program we find a minimal selection of blocks with compatible dis-
tributions according to all the solutions of the base problem we have encountered so far.
We then attempt to confirm the conjecture that the incumbent subdistribution holds for
any solution by testing the feasibility of the base problem after prohibiting the specific
guess at hand. In case of infeasibility, we terminate with the given guess; otherwise we
add the information of the new solution to create a new guess for a minimal selection of
blocks. Analogously, we can determine an improved partition P′ of A that is implicitly
forced by other restrictions of the statistic.
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