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Abstract. A poset is called upper homogeneous, or “upho,” if every principal order
filter is isomorphic to the original poset. We study enumerative and structural prop-
erties of (finite type N-graded) upho posets. The first important observation we make
about upho posets is that their rank generating functions and characteristic generating
functions are multiplicative inverses of one another. This means that each upho lattice
has associated to it a finite graded lattice, called its core, which determines its rank
generating function. We investigate which finite graded lattices arise as cores of upho
lattices, providing both positive and negative results. On the one hand, we show that
many well-studied finite lattices do arise as cores, and we present combinatorial and
algebraic constructions of the upho lattices into which they embed. On the other hand,
we show there are obstructions which prevent many finite lattices from being cores.

1 Introduction

Symmetry is a fundamental theme in mathematics. A close cousin of symmetry is self-
similarity, where a part resembles the whole. Here we study certain partially ordered
sets that are self-similar in a precise sense. Namely, a poset is called upper homogeneous,
or “upho,” if every principal order filter of the poset is isomorphic to the whole poset. In
other words, a poset P is upho if, looking up from each element p ∈ P , we see another
copy of P . Upho posets were introduced recently by Stanley [13, 14]. We believe they
are a natural and rich class of posets which deserve further attention.

Upho posets are infinite. In order to be able to apply the tools of enumerative and
algebraic combinatorics, we need to impose some finiteness condition on the posets we
consider. Thus, we restrict our attention to finite type N-graded posets. These are the
infinite posets P that possess a rank function ρ : P → N for which we can form the rank
generating function

F(P ; x) := ∑
p∈P

xρ(p).

Henceforth, upho posets are assumed finite type N-graded unless otherwise specified.
The first important observation we make about (finite type N-graded) upho posets

is that their rank generating functions are related in a nice way to the values of their
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Möbius functions. Specifically, if we define the characteristic generating function of an
upho poset P to be

χ∗(P ; x) := ∑
p∈P

µ(0̂, p)xρ(p)

then
F(P ; x) = χ∗(P ; x)−1 (1.1)

i.e., F(P ; x) and χ∗(P ; x) are multiplicative inverses as formal power series.
Gao et al. [7, §5] have shown that there are uncountably many different rank gen-

erating functions F(P ; x) of upho posets P (see also [6]). This prevents us from being
able to say much more about the enumerative and structural properties of upho posets
in general. However, the situation is different for upho lattices.

Let L be an upho lattice, and let L := [0̂, s1 ∨ · · · ∨ sr] denote the interval in L from
its minimum to the join of its atoms s1, . . . , sr. We refer to the finite graded lattice L as
the core of the upho lattice L. Rota’s cross-cut theorem implies that χ∗(L; x) = χ∗(L; x),
where χ∗(L; x) := ∑p∈L µ(0̂, p)xρ(p) is the (reciprocal) characteristic polynomial of L.
Hence,

F(L; x) = χ∗(L; x)−1 (1.2)

Thus, the rank generating function of an upho lattice is the inverse of a polynomial with
integer coefficients. We review (1.1) and (1.2) in Section 2.

Because of (1.2), the core of an upho lattice determines its rank generating function.1

We caution that the core does not completely determine the upho lattice, i.e., there can
be multiple upho lattices with the same core. Nevertheless, any complete understanding
of upho lattices would have to start with an answer to the following question.

Question 1. Which finite graded lattices arise as cores of upho lattices?

Question 1 can be thought of as a kind of tiling problem: our goal is to tile an infinite,
fractal lattice L using copies of some fixed finite lattice L, or show that no such tiling is
possible. In addressing Question 1 here, we provide both positive and negative results.

We start with combinatorial constructions of upho lattices. In Section 3, we construct
upho lattices as limits of sequences of finite lattices. We show that any member of
a uniform sequence of supersolvable geometric lattices is the core of an upho lattice.
Examples of uniform sequences of supersolvable geometric lattices include the Boolean
lattices Bn, their q-analogues Bn(q), and the partition lattices Πn. Hence, these are all
cores of upho lattices. Figure 1 depicts an upho lattice produced via this construction.

In addition to combinatorial constructions, we also explore algebraic constructions
of upho lattices. In Section 4 we explain how monoids provide one algebraic source of
upho lattices. A homogeneously finitely generated monoid M that is left cancellative is

1In fact, since the flag f -vector of any upho poset is determined by its rank generating function (see [14,
§3]), the core of an upho lattice determines its entire flag f -vector.
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1|2

1|23 12|3 13|2

1|234 14|23 12|34 123|4 124|3 13|24 134|2

1|2345 15|234 14|235 145|23 12|345 125|34 123|45 1234|5 1235|4 124|35 1245|3 13|245 135|24 134|25 1345|2

Figure 1: Partitions of sets of the form {1, 2, . . . , n} into 2 blocks, ordered by refine-
ment. This is an upho lattice with core Π3.

ε

a b c

ac aa bb ab ba cc cb

acb acc aaa aab aac bbb bba aba bac baa ccc abb ccb cba cbb

Figure 2: The dual braid monoid ⟨a, b, c | ab = bc = ca⟩ associated to the symmetric
group S3. This is an upho lattice with core the noncrossing partition lattice of S3.

an upho poset under left division. Hence, if M is a lattice under left division, it is an
upho lattice. An important example of such monoids are the Garside monoids coming
from Coxeter theory. Thus, the weak order and noncrossing partition lattice of any finite
Coxeter group are cores of upho lattices. Figure 2 depicts an upho lattice of this form.

On the negative side, in Section 5, we show that there are various obstructions which
prevent arbitrary finite graded lattices from being realized as cores of upho lattices.
There are constraints on the characteristic polynomial of the lattice coming from (1.2).
There are also some structural obstructions, requiring the lattice to be partly self-similar.
These obstructions allow us to show that the following plausible candidates cannot be
realized as cores: the face lattices of the n-dimensional cross polytope and hypercube
(for n ≥ 3); the lattice of flats of the uniform matroid U(k, n) (for 2 < k < n).

The upshot is that Question 1 is quite subtle: it can be difficult to recognize when a
given finite graded lattice is the core of an upho lattice. Many well-behaved finite lattices
are cores of upho lattices, but many too are not. In Section 6 we briefly discuss future
directions in the study of upho lattices that we intend to pursue.

This is just an extended abstract where we survey our recent results on upho lattices.
The full articles containing these results, with proofs, are [8, 9].
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2 Upho poset basics

We use standard notation and terminology for posets, as laid out for instance in [12, §3].
Since we routinely work with both finite and infinite posets, we use the convention that
finite posets are denoted by normal script letters (like P and L) and infinite posets are
denoted by calligraphic letters (like P and L).

Recall that a finite poset P is graded (of rank n) if we can write P =
⊔n

i=0 Pi as a disjoint
union so that every maximal chain is of the form x0 ⋖ x1 ⋖ · · ·⋖ xn with xi ∈ Pi. In this
case, we define the rank function ρ : P → N by ρ(x) := i if x ∈ Pi. For such a P, we define
its rank generating polynomial to be F(P; x) := ∑p∈P xρ(p). If P has a minimum 0̂, we define
its (reciprocal) characteristic polynomial to be χ∗(P; x) := ∑p∈P µ(0̂, p)xρ(p), where µ(·, ·) is
the Möbius function of P.

We say an infinite poset P is N-graded if we can write P =
⊔∞

i=0 Pi as a disjoint union
so that every maximal chain is of the form x0 ⋖ x1 ⋖ · · · with xi ∈ Pi. In this case, we
define the rank function ρ : P → N by ρ(x) := i if x ∈ Pi. We say that P is finite type
N-graded if #Pi < ∞ for all i. For such a P , we define its rank generating function to
be F(P ; x) := ∑p∈P xρ(p). If P has a minimum 0̂, we define its characteristic generating
function to be χ∗(P ; x) := ∑p∈P µ(0̂, p)xρ(p).

We say that a poset P is upper homogeneous, or “upho,” if for every p ∈ P , we have
that Vp ≃ P , where Vp := {q ∈ P : q ≥ p} is the principal order filter generated by p. To
avoid trivialities, let us assume the upho posets we consider have at least two elements;
then they must be infinite. Examples of upho posets include:

• the natural numbers N = {0, 1, . . .}, the nonnegative rational numbers Q≥0, and
the nonnegative real numbers R≥0, all with their usual total orders;

• the poset of finite subsets of X ordered by inclusion, where X is any infinite set.

In order to be able to apply the tools of enumerative and algebraic combinatorics to
study upho posets, we need to impose some finiteness conditions. Hence, from now on,
all upho posets are assumed finite type N-graded. Of the above examples, only N is
finite type N-graded. Here are more examples of (finite type N-graded) upho posets:

Example 1. Fix r ≥ 1 and let P be the “infinite rooted r-ary tree” poset. The case r = 2 of this
poset is depicted on the left in Figure 3. Note that this P is the “freest” upho poset with r atoms.
It has F(P ; x) = 1

1−rx and χ∗(P ; x) = 1 − rx.
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Figure 3: Various upho posets with two atoms.

Example 2. Fix r ≥ 1 and let P =
⊔∞

i=0 Pi be the N-graded poset with #P0 = 1 and #Pi = r
for all i ≥ 1, and with all cover relations between Pi and Pi+1 for all i ≥ 0. The case r = 2 is
depicted in the middle in Figure 3. Note that this P is the “least free” upho poset with r atoms.
It has F(P ; x) = 1+(r−1)x

1−x and χ∗(P ; x) = 1−x
1+(r−1)x .

Example 3. Fix r ≥ 1 and let P = Nr, i.e., the (Cartesian) product of r copies of N. The case
r = 2 is depicted on the right in Figure 3. It has F(P ; x) = 1

(1−x)r and χ∗(P ; x) = (1 − x)r.

From the preceding examples, the reader might guess a relationship between the rank
and characteristic generating functions of an upho poset. And indeed, the following
result is proved by a straightforward application of Möbius inversion (see [12, §3.7]).

Theorem 1. For an upho poset P , we have F(P ; x) = χ∗(P ; x)−1.

Lattices have well-behaved Möbius functions, so we can say even more about upho
lattices. Let L be an upho lattice, and let L := [0̂, s1 ∨ · · · ∨ sr] denote the interval in L
from its minimum to the join of its atoms s1, . . . , sr. We call L the core of L. Rota’s cross-
cut theorem (see [12, Corollary 3.9.5]) and Theorem 1 together imply the following.

Corollary 1. For an upho lattice L with core L, we have F(L; x) = χ∗(L; x)−1.

Of the above examples of (finite type N-graded) upho posets, only Nn is a lattice. The
core of Nn is Bn, the rank n Boolean lattice, i.e., the lattice of subsets of [n] := {1, 2, . . . , n}
ordered by inclusion. And indeed, we have χ∗(Bn; x) = (1 − x)n = F(Nn; x)−1. In what
follows, we focus on Question 1, the question of which finite graded lattices are cores of
upho lattices. For example, we just saw that the Boolean lattice Bn is a core for all n ≥ 1.

3 Upho lattices from sequences of finite lattices

In this section we construct upho lattices as limits sequences of finite lattices that are
appropriately embedded in one another. In order to make “appropriately embedded
in one another” precise, we need two technical notions from the literature: the notion
of a supersolvable geometric lattice, as introduced by Stanley in [11]; and the notion of a
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uniform sequence of geometric lattices, as introduced by Dowling in [5]. These two notions
represent two different ways that a lattice can have a recursive structure.

Let L be a finite lattice. We say L is atomic if every element is the join of atoms. We
say L is (upper) semimodular if it is graded and satisfies ρ(x) + ρ(y) ≥ ρ(x ∨ y) + ρ(x ∧ y)
for all x, y ∈ L. We say L is geometric if it is both atomic and semimodular. Geometric
lattices are intensely studied because they are exactly the lattices of flats of matroids.

First we review supersolvability. So let L be a geometric lattice. We say x ∈ L is
modular if ρ(x) + ρ(y) = ρ(x ∨ y) + ρ(x ∧ y) for all y ∈ L. For instance, every element
of a modular lattice is modular. The lattice L is called supersolvable if it has a maximal
chain x0 ⋖ x1 ⋖ · · ·⋖ xn of modular elements. Stanley proved the following remarkable
factorization theorem for characteristic polynomials of supersolvable geometric lattices.

Theorem 2 (Stanley [11]). Let L be a supersolvable geometric lattice with maximal chain of
modular elements x0 ⋖ x1 ⋖ · · ·⋖ xn. Then χ∗(L; x) = (1− a1x)(1− a2x) · · · (1− anx) where
ai := #{atoms s ∈ L : s ≤ xi, s ̸≤ xi−1} for i = 1, . . . , n.

Next we review uniform sequences. A sequence L0, L1, . . . of geometric lattices is
called uniform if each Ln is graded of rank n, and [a, 1̂Ln ] ≃ Ln−1 for every atom a ∈ Ln.

Now fix a uniform sequence of geometric lattices L0, L1, . . .. We define their Whitney
numbers of the second and first kind, denoted V(i, j) and v(i, j), respectively, to be the
coefficients F(Li; x) = ∑i

j=0 V(i, j)xi−j and χ∗(Li, x) = ∑i
j=0 v(i, j)xi−j. By convention, we

set V(i, j) := 0 and v(i, j) := 0 for j > i. Dowling showed that uniform sequences of
geometric lattices have the following nice behavior for their Whitney numbers.

Theorem 3 (Dowling [5]). The matrices [V(i, j)]0≤i,j≤∞ and [v(i, j)]0≤i,j≤∞ are inverses.

In the case when the geometric lattices in our uniform sequence are supersolvable,
we can combine Theorems 2 and 3 to yield a stronger result.

Corollary 2. Suppose that the geometric lattices Ln in our uniform sequence are all supersolvable.
Then their Whitney numbers are

V(i, j) = hi−j(a1, . . . , aj+1) and v(i, j) = (−1)i−jei−j(a1, . . . , ai),

where hk and ek are the kth complete homogeneous and elementary symmetric polynomials, and
an := #{atoms s ∈ Ln} − #{atoms s ∈ Ln−1} for all n ≥ 1.

The key to proving Corollary 2 is to show that each Ln+1 has a modular coatom t for
which [0̂Ln+1 , t] ≃ Ln. In this way, we get rank-preserving embeddings ιn : Ln → Ln+1.
By abuse of terminology, we define a uniform sequence of supersolvable geometric lattices
to be a uniform sequence of geometric lattices L0, L1, . . . for which we have fixed such
embeddings ιn : Ln → Ln+1, and for which these ιn are compatible with the isomorphisms
[a, 1̂Ln ] ≃ Ln−1 in the uniformity condition. See [9, §3] for the precise definition.
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So now let L0, L1, . . . be a uniform sequence of supersolvable geometric lattices, and
then define L∞ :=

⋃∞
n=0 Ln, the direct limit of the Ln with respect to the ιn : Ln → Ln+1.

This L∞ will almost be an upho lattice, except that it will not be finite type N-graded:
it will have infinitely many atoms. We need to “trim” L∞ to produce an upho lattice.
Hence, for each k ≥ 1, define L(k)

∞ := {p ∈ L∞ : ν(p)− ρ(p) < k}, where for p ∈ L∞ we
let ν(p) := min{n : p ∈ Ln}. Then we can prove the following.

Theorem 4. For each k ≥ 1, L(k)
∞ is an upho lattice with core Lk.

Theorem 4 would not be interesting if there were no interesting examples of uniform
sequences of supersolvable geometric lattices. Fortunately, there are many interesting
examples, which we now review.

Example 4. Taking Ln = Bn, the rank n Boolean lattice, gives a uniform sequence of super-
solvable geometric lattices. For this sequence, L∞ is the lattice of all finite subsets of {1, 2, . . .}
ordered by inclusion, and L(k)

∞ = {finite S ⊆ {1, 2, . . .} : S ⊆ [#S + k − 1]}. Note that, L(k) is
not isomorphic to Nk (for k ≥ 2). This is the simplest example a finite graded lattice being the
core of two different upho lattices. Of course, we have F(L(k)

∞ ; x)−1 = χ∗(Bk; x) = (1 − x)k.

Example 5. Fix a prime power q. Recall that the subspace lattice Bn(q) is the lattice of sub-
spaces of Fn

q ordered by inclusion. Taking Ln = Bn(q) gives a uniform sequence of supersolvable
geometric lattices. For this sequence, L∞ is the lattice of all finite-dimensional subspaces of F∞

q ,

and L(k)
∞ = {finite-dimensional U ⊆ F∞

q : U ⊆ Span{e1, . . . , edim(U)+k−1}}, with e1, e2, . . . an

ordered basis of F∞
q . We have F(L(k)

∞ ; x)−1 = χ∗(Bk(q); x) = (1 − x)(1 − qx) · · · (1 − qk−1x).

Example 6. Recall that the partition lattice Πn is the lattice of set partitions of [n] ordered by
refinement. Taking Ln = Πn+1 gives a uniform sequence of supersolvable geometric lattices. For
this sequence, L∞ is the lattice of all set partitions of {1, 2, . . .} for which all but finitely many
blocks are singletons (ordered by refinement). And L(k)

∞ can be identified with the set partitions
of a set of the form [n] into k blocks, still ordered by refinement in the sense that π1 ≤ π2

if each block of π1 is a subset of a block of π2. Figure 1 depicts L(2)
∞ for this example. We

have F(L(k)
∞ ; x)−1 = χ∗(Πk+1; x) = (1 − x)(1 − 2x) · · · (1 − kx).

Example 7. Fix a finite group G, say with m elements. In [5], Dowling defined a lattice Qn(G),
now called a Dowling lattice, consisting of certain “G-decorated” (partial) set partitions of [n].
When G is the trivial group, Qn(G) = Πn+1. And when G = Z/2Z, Qn(G) is the lattice of
flats of the Type Bn Coxeter hyperplane arrangement. Dowling proved that Qn(G) is a uniform
sequence of supersolvable geometric lattices, with χ∗(Qn(G); x) = ∏n

i=1(1 − (1 + m(i − 1))x).
See [9, §3] for the description of the L∞ and L(k)

∞ for this example.
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4 Upho lattices from monoids

In this section, we explain how monoids give rise to upho lattices. The examples in
this section are quite different from those in Section 3. For example, the characteristic
polynomials in this section will not necessarily factor over the integers.

Recall that a monoid M = (M, ·) is a set M with an associative binary product ·
that has an identity element. The free monoid on a set S is the monoid of words over
the alphabet S with the product being concatenation and identity the empty word. A
presentation of a monoid M is a way of writing M = ⟨S | R⟩ as a quotient of the free
monoid over some generating set S by the relations R. A monoid M is finitely generated
if it has a presentation M = ⟨S | R⟩ with S finite. Let us say that M is homogeneously
finitely generated if it has a presentation M = ⟨S | R⟩ with S finite and R homogeneous.
That is, we require that all relations in R are of the form w1 = w2 with ℓ(w1) = ℓ(w2),
where for a word w use ℓ(w) to denote its length.

Let M be a monoid. For a, b ∈ M, we say that a is a left divisor of b, and b is a right
multiple of a, if ax = b for some x ∈ M. We use ≤L for the preorder of left divisibility
on M, which is actually a partial order if M is homogeneously finitely generated. The
monoid M is called left cancellative if whenever ab = ac then b = c, for all a, b, c ∈ M.

Lemma 1 (c.f. [7, Lemma 5.1] and [6]). Let M be a homogeneously finitely generated monoid.
If M is left cancellative, then L := (M,≤L) is an upho poset. If moreover every pair of elements
in M has a least common right multiple, then L is an upho lattice.

The significance of the Möbius function to enumeration in monoids, especially can-
cellative monoids, was already observed many years ago in the work of Cartier and Foata
on free partially commutative monoids [3]. In practice, the left cancellative property of
a monoid is not hard to check, but the lattice property is more difficult to establish.
Nevertheless, some examples can be produced by hand:

Example 8. Fix n, r ≥ 2 and define M := ⟨x1, . . . , xr | xixn−1
1 = xn

1 for all i = 2, . . . , r⟩.
Then M satisfies the conditions of Lemma 1, so that L := (M,≤L) is an upho lattice. Its core
is L := 0̂ ⊕ r · [n − 1]⊕ 1̂, i.e., the result of appending a minimum and maximum to the disjoint
union of r (n − 1)-element chains. We have F(L; x)−1 = χ∗(L; x) = 1 − rx + (r − 1)xn.

Note in particular that taking n = 2 in Example 8 shows how every rank two finite
graded lattice (with at least two atoms) can be realized as the core of an upho lattice. We
will see in Section 5 that not all rank three lattices can be realized as cores.

To obtain more sophisticated examples of upho lattices from Lemma 1, we need some
deeper theory. An important class of monoids satisfying the conditions of Lemma 1 are
the (homogeneous) Garside monoids. We refer to [4] for a complete account of the theory
of Garside monoids. Without giving the full definition, we note that a Garside monoid
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is not only left cancellative and a lattice under left divisibility, it is also right cancellative
and a lattice under right divisibility.

The most significant examples of Garside monoids come from finite Coxeter groups.
We give only a cursory account of the relevant Coxeter theory here; see [2, 1] for much
more detail. Recall that W is a finite Coxeter group if W is a finite group with generating
set S = {s1, . . . , sr} ⊆ W for which W = ⟨S | s2

i = 1 for all i, (sisj)
mi,j = 1 for i < j⟩

for certain integers mi,j ≥ 2. We also say (W, S) is a finite Coxeter system in this case,
and we say S are the simple reflections of W. For example, the symmetric group Sn of
permutations of [n] is a finite Coxeter group with simple reflections {s1, . . . , sn−1} the
adjacent transpositions si = (i, i + 1); here we have mi,j = 2 if j − i ≥ 2 and mi,i+1 = 3.

Now fix a finite Coxeter system (W, S = {s1, . . . , sr}). The length ℓ(w) of w ∈ W is the
minimum length of a way of writing w = si1 · · · sik as a word in the si. The weak order of W
is the partial order on W whose cover relations are w ⋖ ws whenever ℓ(ws) = ℓ(w) + 1,
for w ∈ W and s ∈ S. It is well-known that the weak order is a finite graded lattice, with
rank function ℓ. One Garside monoid associated to (W, S) is related to weak order:

Example 9. Let S = {s1, . . . , sr} be a collection of letters corresponding to the simple reflections
S = {s1, . . . , sr}. For si, sj ∈ S we write (si, sj)

[m] := sisjsisj · · · , a word with m letters. The
classical braid monoid associated to (W, S) is M := ⟨S | (si, sj)

[mi,j] = (sj, si)
[mi,j] for i < j⟩.

It is known that M is a Garside monoid (see [4, Chapter IX, §1]), which implies that M satisfies
the conditions of Lemma 1, so L := (M,≤L) is an upho lattice. Its core is the weak order of W.

Continue to fix the finite Coxeter system (W, S). There is another Garside monoid
associated to (W, S) that is also very interesting. Let T := {w−1sw : w ∈ W, s ∈ S} ⊆ W,
which is called the set of reflections of W. The absolute length ℓT(w) of w ∈ W is the
minimum length of a way of writing w = t1 · · · tk with all ti ∈ T. The absolute order of W
is the partial order on W whose cover relations are w⋖wt whenever ℓT(wt) = ℓT(w) + 1,
for w ∈ W and t ∈ T. Absolute order is a graded poset, with rank function ℓT, but it is not
a lattice since it has multiple maximal elements. However, if c ∈ W is a Coxeter element
(a product c = s1 · · · sr of the simple reflections in some order), then the interval [1, c]
in absolute order is a lattice, whose isomorphism type does not depend on the choice
of c. It is called the noncrossing partition lattice of W. When W = Sn, the noncrossing
partition lattice is the restriction of Πn to those partitions that are noncrossing when the
numbers 1, 2, . . . , n are arranged clockwise around a circle, and hence the name. The
second Garside monoid attached to (W, S) is related to the noncrossing partition lattice:

Example 10. Let T be a collection of letters corresponding to the reflections T. For s, t ∈ T,
we use the notation ts for the letter corresponding to the conjugate ts := s−1ts. The dual braid
monoid associated to (W, S) is M := ⟨T | ts = sts for all s ̸= t ∈ T⟩. It is known that M
is a Garside monoid (see [4, Chapter IX, §2]), which implies that M satisfies the conditions of
Lemma 1, so L := (M,≤L) is an upho lattice. Its core is the noncrossing partition lattice of W.
For example, Figure 2 depicts this upho lattice in the case when W = S3.
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We note that the noncrossing partition lattice of S3 happens to be isomorphic to Π3,
so Figures 1 and 2 are examples of non-isomorphic upho lattices with the same core.

5 Obstructions for cores of upho lattices

In this section we explore various methods for showing that a finite graded lattice cannot
be realized as the core of an upho lattice. We first observe that there are constraints on
the characteristic polynomial of a core coming from Corollary 1.

Lemma 2. Let L be a finite graded lattice which is the core of an upho lattice. Then the formal
power series χ∗(L; x)−1 has all positive coefficients.

Already Lemma 2 can rule out some plausible candidate lattices from actually being
realized as cores, as we now explain.

Let P be a convex polytope. The face lattice L(P) of P is the poset of faces of P
ordered by inclusion. It is always a finite graded lattice. For example, if P is an (n − 1)-
dimensional simplex, then L(P) = Bn, which we know is a core. It is reasonable to ask
which other face lattices of convex polytopes are cores.

Example 11. Let P be the octahedron. Then χ∗(L(P); x) = 1 − 6x + 12x2 − 8x3 + x4, and we
can compute that [x13]χ∗(L(P); x)−1 = −123704, where [xn]F(x) means the coefficient of xn

in the power series F(x). So by Lemma 2, L(P) is not the core of any upho lattice.

Let G be a connected, simple graph on vertex set [n]. The bond lattice L(G) of G is
the restriction of Πn to the those set partitions π for which the induced subgraph of G
on each block of π remains connected. It is always finite graded lattice; in fact, it is the
lattice of flats of the graphic matroid of G. We have that χ∗(L(G); x) = xn · χ(G; x−1)
where χ(G; x) is the chromatic polynomial of G. For example, if G = Kn is the complete
graph, then L(G) = Πn, which we know is a core. It is reasonable to ask which other
bond lattices of graphs are cores.

Example 12. Consider G = C4, the 4-cycle graph. Then χ∗(L(C4); x) = 1 − 4x + 6x2 − 3x3

and we can compute that [x7]χ∗(L(C4); x)−1 = −80. So by Lemma 2, L(C4) is not the core of
any upho lattice.

Beyond characteristic polynomial obstructions, there are also structural obstructions
for cores. The following proposition follows trivially from the definition of the core of
an upho lattice, but is still worth recording since it rules out many lattices as cores.

Proposition 1. Let L be a finite graded lattice which is the core of an upho lattice. Then its
maximum 1̂ is the join of its atoms.
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The previous propositions says something about the join of the elements covering 0̂.
Looking at the join of the elements covering an arbitrary element x is a good idea, and
leads to further, non-trivial obstructions for cores. The following lemma says that a core
must already be “partly self-similar” in order to fit into an upho lattice.

Lemma 3. Let L be a finite graded lattice which is the core of an upho lattice. Let x ∈ L \ {0̂, 1̂}
and let y1, . . . , yk ∈ L be the elements covering x. Then there is a rank-preserving embedding of
the interval [x, y1 ∨ · · · ∨ yk] into L.

Lemma 3 lets us rule out many further plausible candidate cores, as we now explain.

Example 13. Let n ≥ 1 and let P be the n-dimensional cross polytope, i.e., the convex hull
of all permutations of the vectors (±1, 0, . . . , 0) ∈ Rn. Consider its face lattice L := L(P).
Concretely, the elements of L can be represented as length n words in the alphabet {0,+,−},
where w ≤ w′ if w′ is obtained from w by changing some 0’s to ±’s, together with a maximum
element 1̂. Letting x be any atom of L, it can be seen that no embedding of the kind required by
Lemma 3 exists when n ≥ 3, so that L is not the core of any upho lattice.

The 3-dimensional cross polytope is the octahedron, so Example 13 generalizes Ex-
ample 11. We also remark that it can similarly be shown that the face lattice of the
n-dimensional hypercube (the dual of the cross polytope) is not a core for n ≥ 3.

Example 14. Let 2 ≤ k ≤ n and let L be the lattice of flats of the uniform matroid U(k, n).
Concretely, L is obtained from the Boolean lattice Bn by removing all elements at rank k or
higher, and then adding a maximum element 1̂. Letting x be any atom of L, it can be seen that no
embedding of the kind required by Lemma 3 exists when 2 < k < n, so that L is not the core of
any upho lattice.

The lattice of flats of the uniform matroid U(n − 1, n) is the same as the bond lat-
tice L(Cn) of the n-cycle graph Cn, so Example 14 generalizes Example 12.

6 Future directions

In this section we briefly discuss future directions in the study of upho lattices.
A question naturally suggested by our work here is the following:

Question 2. For a finite graded lattice L, let κ(L) denote the number of different upho lattices
with core L. How does κ(L) behave?

In work in progress joint with Joel Lewis [10], we are pursuing Question 2. On the
one hand, we can show that κ(L) is finite for any lattice L which has no nontrivial
automorphisms, suggesting that it may be finite for all L. On the other hand, we can
show that κ(L) is unbounded even when we restrict to lattices L of rank two.
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Finally, if classifying all upho lattices is too difficult, we might instead hope to classify
some subvarieties of upho lattices. Two of the most important subvarieties of lattices are
the distributive lattices and the modular lattices. In planned future work, we will explore
distributive and modular upho lattices. The only upho distributive lattices are Nn, but
upho modular lattices are much more interesting (c.f. [7, Conjecture 1.1]).
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