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Abstract. We formulate a series of conjectures on the stable tensor product of ir-
reducible representations of symmetric groups, which are closely related to the re-
duced Kronecker coefficients. These conjectures are certain generalizations of Ok-
ounkov’s conjecture on the log-concavity of the Littlewood–Richardson coefficients
and the Schur log-concavity theorem of Lam–Postnikov–Pylyavskyy. We prove our
conjectures in some special cases and discuss some implications of these conjectures.

Keywords: log-concavity, tensor products, representations of symmetric groups, re-
duced Kronecker coefficients, Schur polynomials

1 Introduction

The main purpose of this article is to announce and provide supporting evidence for
some conjectures on the stable tensor product of irreducible representations of symmet-
ric groups, which are closely related to the reduced Kronecker coefficients.

Recall that a sequence of real numbers a0, a1, . . . is called log-concave if

a2
i ≥ ai−1ai+1 for all i ≥ 1.

Log-concave sequences are very common in algebra, geometry, and combinatorics. In
addition, many log-concave phenomena appear in representation theory.

In an influential article [19], based on heuristics and analogies of physical princi-
ples, Okounkov made a remarkable conjecture (see Conjecture 2.1) that the Littlewood–
Richardson coefficients cν

λµ are log-concave in (λ, µ, ν). Although Okounkov’s conjecture
is false in general [3], many consequences and interesting special cases are true. In
particular, Okounkov’s conjecture implies that tensor products of finite-dimensional ir-
reducible polynomial representations of the general linear group are log-concave, which
is proved in [13] and called Schur log-concavity.

Motivated by the Schur–Weyl duality, we would like to consider the corresponding
conjectures for the symmetric groups, that is, by replacing the Littlewood–Richardson
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coefficients in Okounkov’s conjecture with the Kronecker coefficients. It turns out the
naive analogs for Kronecker coefficients are false, but it seems that certain log-concavity
properties (see conjectures 5.1, 5.2, 5.5, 5.7 and theorems 5.3, 5.4, 5.6) reappears for
the stable tensor product of irreducible representations of symmetric groups, whose
structure constants are the reduced Kronecker coefficients.

The remaining part of this article is organized as follows. In Section 2, we recall
Okounkov’s conjecture on the log-concavity of the Littlewood–Richardson coefficients
and some interesting implications and known special cases. In Section 3, we recall the
Kronecker coefficients and discuss the convexity property of the Kronecker coefficients.
In Section 4, we recall the reduced Kronecker coefficients. In Section 5, we state our
conjectures and evidence on the reduced Kronecker coefficients and some implications.

2 Okounkov conjecture on the Littlewood–Richardson co-
efficients

Recall that the Littlewood–Richardson coefficients cν
λµ are the structure constants of the ten-

sor product of irreducible polynomial representations of general linear group GLn(C):

V(λ)⊗ V(µ) =
⊕

ν

cν
λµV(ν),

where λ, µ, and ν are partitions with lengths less than or equal to n. Okounkov made
the following remarkable conjecture.

Conjecture 2.1. (Disproved; Okounkov conjecture, see [19, Conjecture 1])
The function

(λ, µ, ν) → log cν
λµ

is concave. That is, suppose (λi, µi, νi) , i = 1, 2, 3, are partitions such that

(λ2, µ2, ν2) =
1
2
(λ1, µ1, ν1) +

1
2
(λ3, µ3, ν3) ,

then we have
(cν2

λ2µ2
)2 ≥ cν1

λ1µ1
cν3

λ3µ3
.

Okounkov’s conjecture 2.1 is a very strong statement, which holds in the “classical
limit” (see [19, Section 3]), but it is refuted in general in [3]. To describe the counterex-
amples, we use the multiplicity/exponential notation for a partition (λm1

1 , λm2
2 , λm3

3 · · · ,
where m1 is the number of λ1 ’s, m2 is the number of λ2 ’s, etc.
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Theorem 2.2 ([3, Theorem 1.2]). Let n ⩾ 1 be an integer and let λ(n), µ(n) be two partitions
defined by

λ(n) =
(

4n, 32n, 2n
)

and µ(n) = (3n, 2n, 1n) .

Then

cλ(n)
µ(n),µ(n) =

(
n + 2

2

)
and c2λ(n)

2µ(n),2µ(n) =

(
n + 5

5

)
.

Consequently, when n ⩾ 21, Conjecture 2.1 fails for λ1 = 2λ(n), µ1 = ν1 = 2µ(n), λ2 = λ(n),
µ2 = ν2 = µ(n), λ3 = µ3 = ν3 = 0.

However, several interesting implications and special cases of Conjecture 2.1 are true.
First, as Okounkov observed in [19, Section 2.6], concavity of log cν

λµ implies that

supp cν
λµ =

{
(λ, µ, ν), cν

λµ ̸= 0
}

is convex. In particular, since it contains the origin (0, 0, 0), it is saturated. This shows
that Conjecture 2.1 implies the saturation property of Littlewood–Richardson coefficients1:

ckν
kλ,kµ ̸= 0 for some k ≥ 1 ⇒ cν

λµ ̸= 0, (2.1)

which was established before Okounkov’s conjecture by A. Knutson and T. Tao in [12]
using the honeycomb model of GLn(C) tensor products.

Note that Knutson and Tao’s proof of the Saturation Conjecture implies that the
decision problem “whether cλ

µν > 0” is in P; as a comparison, the famous Littlewood–
Richardson rule, which gives a positive combinatorial interpretation for the Littlewood–
Richardson coefficients cν

λµ, shows that “computing cν
λµ” is in #P (counting problems

associated with the decision problems in the set NP); in fact, it is #P-complete, see [18].
Another interesting implication of Okounkov’s conjecture is also already observed by

Okounkov in [19, Section 2.5]. Conjecture 2.1 would have implied that for all ν,

cν
λ+µ

2
λ+µ

2
≥ cν

λµ, (2.2)

provided λ+µ
2 is an integral weight (a.k.a., a partition). It is equivalent to the inclusion

of representations

V(λ)⊗ V(µ) ⊂ V
(

λ + µ

2

)⊗2

, (2.3)

which can be interpreted as saying that the representation valued function

V : λ 7→ V(λ) (2.4)

1In fact, since c0
0,0 = 1, Conjecture 2.1 implies that ckλ,kµ,kν ≤

(
cλ,µ,ν

)k .
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is concave with respect to the natural ordering and tensor multiplication of represen-
tations. Since Schur polynomials are the characters of the corresponding irreducible
polynomial representations of GLn(C), this remarkable implication is called Schur log-
concavity and has been established by T. Lam, A. Postnikov, and P. Pylyavskyy.

Theorem 2.3 ([13, Theorem 12], weak version). For two partitions λ and µ, suppose λ+µ has
only even parts and let sλ, sµ, and s λ+µ

2
be the corresponding Schur polynomials, then s2

λ+µ
2

− sλsµ

is a non-negative linear combination of Schur polynomials.

Last but not least, a special but interesting case of Conjecture 2.1 is recently obtained
in [7]. The Kostka number Kλµ—the coefficient of monomials xµ in the Schur polynomial
sλ, also known as the weight multiplicity dim V(λ)µ of the Schur module V(λ)—is a
special case of the Littlewood–Richardson coefficients: we have

Kλµ = cν
κλ,

where ν and κ are the partitions given by νi = ∑n
j=i µj and κi = ∑n

j=i+1 µj. One of
the main results in [7] states that the Kostka number Kλµ is log-concave along the root
directions: let ei be the i-th standard unit vector in Nm, for µ ∈ Zm and distinct i, j ∈ [m],
set

µ(i, j) = µ + ei − ej,

then the sequence of weight multiplicities of V(λ) we encounter is always log-concave if
we walk in the weight diagram along any root direction ei − ej.

Theorem 2.4 ([7, Theorem 2]). For any partition λ and any µ ∈ Nm, we have

K2
λµ ⩾ Kλµ(i,j)Kλµ(j,i) for any i, j ∈ [m].

3 Kronecker Coefficients and Their Convexity Property

Recall that the Kronecker coefficients gν
λµ are the structure constants of the tensor product

(Kronecker product) of irreducible representations of the symmetric group Sd:

Vλ ⊗ Vµ =
⊕

ν

gν
λµVν,

where λ, µ and ν are partitions of d. They were introduced by Murnaghan in 1938 and
they play an important role algebraic combinatorics and geometric complexity theory.

By the representation theory of finite groups, these coefficients can be computed as

gν
λµ =

1
n! ∑

σ∈Sd

χλ(σ)χµ(σ)χν(σ),
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where χλ(σ) is the character value of the irreducible representation corresponding to
partition λ on a permutation σ ∈ Sd. Since irreducible representations of the symmet-
ric group Sd have integral character values, the Kronecker coefficient gν

λµ is invariant
under permutations of the three partitions. This should be compared with Littlewood–
Richardson coefficients cν

λµ, where it is only invariant under transposition of λ and µ.
The Kronecker coefficients are very different beasts from their cousins Littlewood–

Richardson coefficients. For example, computing Kronecker coefficients is #P-hard and
contained in GapP [2]. A recent work [8] shows that the decision problem “whether
gλ

µν > 0” is NP-hard. They lack “nice” formulas and what we can hope is to understand
their asymptotic behavior in various regimes and inequalities they could satisfy. Finding
a combinatorial interpretation for them has been described by Richard Stanley as “one of
the main problems in the combinatorial representation theory of the symmetric group”.

Let us now only focus on one particular aspect—the convexity property of the Kro-
necker coefficient. The verbatim translation of the saturation property (2.1) that holds for
the Littlewood–Richardson coefficients is known to be false for the Kronecker coefficients
[1]. The simplest counterexample might be g(1,1)

(1,1)(1,1) = 0 but g(2,2)
(2,2)(2,2) = 1. Indeed,

g(N,N)
(N,N),(N,N)

=

{
0 for odd N,
1 for even N.

Additionally, the verbatim translation of the property (2.2) or equivalently the prop-
erty (2.3) that holds for the Littlewood–Richardson coefficients is also false for the Kro-
necker coefficients. One can locate a counterexample

V⊗2
3,3,1,1 − V4,4 ⊗ V2,2,2,2 = V8 + 3V6,2 + V7,1 + V2,2,2,2 + V2,2,2,1,1 + V2,2,1,1,1,1

− V1,1,1,1,1,1,1,1 + 5V4,2,2 + 3V5,1,1,1 + 5V5,2,1 + 6V4,2,1,1 + 5V3,2,2,1 + 3V4,1,1,1,1

+ 5V3,2,1,1,1 + 2V3,1,1,1,1,1 + V6,1,1 + 2V5,3 + V4,4 + 5V4,3,1 + 2V3,3,2 + 4V3,3,1,1

(3.1)

in the ring of virtual representations of S8. The triple of partitions (6,4), (2,2,2,2,2) and
(4,3,1,1,1) is a counterexample for S10 and there are many more counterexamples for S12.

Nevertheless, we conjecture that the verbatim translation of the property (2.2) or
equivalently the property (2.3) that holds for the Littlewood–Richardson coefficients is
also true for another closely related structure constant—the reduced Kronecker coefficients.

4 Reduced Kronecker Coefficients

For λ a partition and d ≥ |λ|+ λ1, the “padded” partition λ[d] is defined as (d − |λ|, λ),
which is a partition of size d with a “very long top row”.

It was noticed by Murnaghan in [17] that the sequence
{

gν[d]
λ[d],µ[d]

}
d>>0

stabilizes and
the stable value of the sequence was called the reduced (or stable) Kronecker coefficient ḡν

λµ
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associated with the triple (λ, µ, ν). Given λ and µ, only finitely many ḡν
λµ are nonzero.

Moreover, ḡν
λµ = 0 unless the Murnaghan–Littlewood inequality holds:

|ν| ≤ |µ|+ |λ|, |µ| ≤ |λ|+ |ν|, |λ| ≤ |µ|+ |ν|.

In contrast to Kronecker coefficients, reduced Kronecker coefficients are defined for
any triple of partitions (not necessarily of the same size) and in general, there is no rela-
tionship between λ, µ, and ν. However, surprisingly, when |ν| = |λ|+ |µ|, the reduced
Kronecker coefficient ḡν

λµ recovers the Littlewood–Richardson coefficient cν
λµ!

Theorem 4.1 (Murnaghan–Littlewood theorem, see [15]). If |ν| = |λ| + |µ|, then the re-
duced Kronecker coefficient ḡν

λµ is equal to the Littlewood–Richardson coefficients cν
λµ: ḡν

λµ = cν
λµ.

Additionally, every Kronecker coefficient is equal to an explicit reduced Kronecker
coefficient of not much larger partitions (see [9, Theorem 1]).

We would like to ask which convexity/concavity property could be satisfied by the
reduced Kronecker coefficients. Whether the verbatim translation of the saturation prop-
erty (2.1) that holds for the Littlewood–Richardson coefficients is also true for the re-
duced Kronecker coefficients is a long-standing open problem. It was independently
conjectured in 2004 by Kirillov (who called them the extended Littlewood–Richardson coef-
ficients) and Klyachko.

Conjecture 4.2 (Disproved; Kirillov–Klyachko generalized saturation conjecture, see [10,
Conjecture 2.33] and [11, Conjecture 6.2.4]). The reduced Kronecker coefficients satisfy the
saturation property:

ḡkν
kλ,kµ ̸= 0 for some k ≥ 1 ⇒ ḡν

λµ ̸= 0. (4.1)

However, this conjecture is recently refuted in general in [20]:

Theorem 4.3 ([20, Theorem 2]). For all k ≥ 3, the triple of partitions
(

1k2−1, 1k2−1, kk−1
)

is a counterexample to Conjecture 4.2. Moreover, for every partition γ s.t. γ2 ≥ 3, there are
infinitely many pairs (a, b) ∈ N2 for which the triple of partitions

(
ab, ab, γ

)
is a counterexample

to Conjecture 4.2.

5 Log-concavity Conjectures of Stable Tensor Product of
Irreducible Representations of Symmetric Groups

One main contribution of this article is the following conjecture.

Conjecture 5.1. The reduced Kronecker coefficients satisfy the following inequality: given λ and
µ, then for all ν, we have

ḡν
λ+µ

2
λ+µ

2
≥ ḡν

λµ, (5.1)

provided λ+µ
2 is still a partition.
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We tested the above statement for all partitions λ and µ with at most 11 boxes.
We want an equivalent version of the above conjecture akin to (2.3), which can be

formulated by using the stable representation category of the symmetric group in [23].
Consider the natural embedding Sd ↪→ Sd+1 by permuting the first d natural num-

bers. Let S∞ :=
⋃

d⩾0 Sd be the limit, which is the group of permutations of N that fix all
but finitely many numbers. The group S∞ has a natural action on V = C∞ by permuting
the basis vectors {ei}i∈N. Sam and Snowden considered the category Rep(S∞) of alge-
braic representations of S∞, where a representation of S∞ is called algebraic if it appears as
a subquotient of a direct sum of some tensor product of V. They proved the following:

• Rep(S∞) is an abelian C-linear symmetric monoidal category but is not semisimple;

• Simple objects Vλ[∞] in Rep(S∞) are one-to-one correspondent to the partition λ of
arbitrary size;

• Every object in Rep(S∞) has finite length;

• The structure constants of the Grothendieck ring K(Rep(S∞)) are the reduced Kro-
necker coefficients:

ḡν
λ,µ =

[
Vλ[∞] ⊗ Vµ[∞] : Vν[∞]

]
.

Therefore, the category Rep(S∞) seems to be a natural categorical home of reduced
Kronecker coefficients. Let us say that two objects X and Y in Rep(S∞) satisfy X ≥ Y in
the Grothendieck ring K(Rep(S∞)) if [X]− [Y] in K(Rep(S∞)) can be expanded in Vλ[∞]’s
with nonnegative coefficients. Then, our conjecture 5.1 is equivalent to the following

Conjecture 5.2 (Restatement of Conjecture 5.1). The representation valued function

V : P → Rep (S∞)

λ 7−→ Vλ[∞]
(5.2)

is concave with respect to the natural ordering and tensor products of representations. That is,

V⊗2
λ+µ

2 [∞]
≥ Vλ[∞] ⊗ Vµ[∞] in the Grothendieck ring K(Rep(S∞)), (5.3)

provided λ+µ
2 is still a partition.

In this form, the log-concavity of (2.3) can be seen as a degeneration and a special
case of (5.3) by virtue of the Murnaghan–Littlewood theorem (Theorem 4.1); see also
[23, Section 8.7]. Additionally, the conjecture predicts that if we pass to infinity, the
mysterious minus sign in (3.1) disappears2, and we obtain log-concavity in the limit,
which fits well with the conjectures and results in [16, 6].

Using Theorem 2.3, we have the following log-concavity property of the dimensions
of representations in (5.3). It greatly generalizes [5, Theorem 1.1 (1)].

2Note that there is no “sign” representation in Rep(S∞).
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Theorem 5.3. We have (
dim Vλ+µ

2 [d]

)2
≥ dim Vλ[d] × dim Vµ[d] (5.4)

for d ≥ max{|λ|+ λ1, |µ|+ µ1}. In another form, we have(
f

λ+µ
2 [d]

)2
≥ f λ[d] × f µ[d], (5.5)

where f λ denotes the number of standard Young tableaux of shape λ.

Proof. First, note that λ[d]+µ[d]
2 = λ+µ

2 [d] under the condition d ≥ max{|λ|+ λ1, |µ|+ µ1}.
Let sλ denote the Schur function of shape λ. By Theorem 2.3, we have

s2
λ+µ

2 [d]
− sλ[d] × sµ[d] ≥s 0, (5.6)

which means the left-hand side is a nonnegative linear combination of Schur functions.
Let Λ = ⊕n≥0Λn

Q be the algebra of symmetric functions. Then, we have the exponential
specialization ex1, which is an algebra homomorphism ex1 : Λ → Q, and

ex1 (sλ) =
f λ

|λ|! ,

see, for example, [24]. Applying the exponential specialization ex1 to (5.6)), we obtain
(5.5), which is well-known equivalent to the inequality (5.4). The proof is completed.

Using the existing combinatorial interpretation of Kronecker coefficients with two
two-row partitions, we can prove the following

Theorem 5.4. Conjecture 5.1, or equivalently, Conjecture 5.2, holds when partitions λ and µ

are both one part. Actually, we have the following stronger inequalities: for all partition ν,

ḡν
(j)(k) ≥ ḡν

(i)(l), (5.7)

whenever i < j ≤ k < l with j + k = i + l.

Proof. First, we have ḡν
(j),(k) = gν[n]

(j)[n],(k)[n] and ḡν
(i),(l) = gν[n]

(i)[n],(l)[n] for n sufficiently large.
It is well known that gν

λµ = 0 when λ and µ are both two-row partitions but ν has more
than 4 parts. Therefore, we assume ν[n] = (ν1, ν2, ν3)[n]. By [22, Theorem 1], we have

ḡν[n]
(j)[n],(k)[n] =Γ (ν2 + ν3, ν1 − ν2, ν1 + ν3 + 1, ν2 − ν3) (j, k + 1)

− Γ (ν2 + ν3, ν1 − ν2, n − ν1 − ν2 + 2, ν2 − ν3) (j, k + 1),

ḡν[n]
(i)[n],(l)[n] =Γ (ν2 + ν3, ν1 − ν2, ν1 + ν3 + 1, ν2 − ν3) (i, l + 1)

− Γ (ν2 + ν3, ν1 − ν2, n − ν1 − ν2 + 2, ν2 − ν3) (i, l + 1),

(5.8)
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where Γ(a, b, c, d)(x, y) :=
∣∣{(u, v) ∈ R ∩ N2 : (x, y)⇝ (u, v)

}∣∣ . Here, R is the rectangle
with vertices (a, c), (a+ b, c), (a, c+ d), and (a+ b, c+ d), and (x, y)⇝ (u, v) means (u, v)
can be reached from (x, y) by moving any number of steps south west or north west. Let
n be large enough (that is, we pull up the rectangle R to live very high) such that both
minus terms in (5.8) are 0. Then, it is clear from the definition that

Γ (ν2 + ν3, ν1 − ν2, ν1 + ν3 + 1, ν2 − ν3) (j, k + 1)
≥ Γ (ν2 + ν3, ν1 − ν2, ν1 + ν3 + 1, ν2 − ν3) (i, l + 1),

since (i, l + 1) is in the northwest of (j, k + 1). Therefore, we have

ḡν
(j)(k) = gν[n]

(j)[n],(k)[n] ≥ gν[n]
(i)[n],(l)[n] = ḡν

(i)(l).

Let us now discuss a conjecture related to Conjecture 5.2. For two partitions λ and
µ, let λ ∪ µ = (ν1, ν2, ν3, . . .) be the partition obtained by rearranging all parts of λ and
µ in the weakly decreasing order. Let sort1(λ, µ) := (ν1, ν3, ν5, . . .) and sort2(λ, µ) :=
(ν2, ν4, ν6, . . .). Then, we have the following conjecture, which generalizes the conjecture
of Fomin, Fulton, Li, and Poon in [4, Conjecture 2.7].

Conjecture 5.5. For two partitions λ and µ, we have

Vsort1(λ,µ)[∞] ⊗ Vsort2(λ,µ)[∞] ≥ Vλ[∞] ⊗ Vµ[∞] in the Grothendieck ring K(Rep(S∞)).

As observed in [13], Conjecture 5.5 is related to Conjecture 5.2 by conjugating the
shapes. However, since we have to add a “very long top row”, Conjecture 5.5 can not be
directly deduced from (even a stronger version of) Conjecture 5.2, unlike the case in [13].
Indeed, we can not even prove the following inequality for dimensions of representations

f sort1(λ,µ)[d] × f sort2(λ,µ)[d] ≥ f λ[d] × f µ[d] for d ≥ max{|λ|+ λ1, |µ|+ µ1} (5.9)

by directly using results in [13]. Nevertheless, using the existing combinatorial interpre-
tation of Kronecker coefficients with two hook-shape partitions, we have the following

Theorem 5.6. Conjecture 5.5 holds when partitions λ and µ are both one column. Actually, we
have the following stronger inequalities

ḡν
(1j)(1k)

≥ ḡν
(1i)(1l)

, for all partition ν, (5.10)

whenever i < j ≤ k < l with j + k = i + l.
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Proof. First, we have ḡν
(1j)(1k)

= gν[n]
(1j)[n],(1k)[n]

and ḡν
(1i)(1l)

= gν[n]
(1i)[n],(1l)[n] for n sufficiently

large. By [22, Theorem 3], the only possible values for these Kronecker coefficients are
0, 1 or 2. We use the following notation

((P)) =

{
1, if proposition P is true,
0, otherwise.

We have the following 4 cases:
1. If ν[n] is one-row (i.e. ν = ∅), then gν[n]

(1j)[n],(1k)[n]
= δj,k, gν[n]

(1i)[n],(1l)[n] = δi,l.

2. If ν[n] is not contained in a double hook, then gν[n]
(1j)[n],(1k)[n]

= gν[n]
(1i)[n],(1l)[n] = 0.

3. Let ν[n] =
(
1d12d2n3n4

)
be a double hook. Let x = 2d2 + d1. Then,

gν[n]
(1j)[n],(1k)[n]

=

((
n3 − 1 ≤ j + k − x

2
≤ n4

))
((|k − j| ≤ d1))

+

((
n3 ≤ j + k − x + 1

2
≤ n4

))
((|k − j| ≤ d1 + 1))

gν[n]
(1i)[n],(1l)[n] =

((
n3 − 1 ≤ i + l − x

2
≤ n4

))
((|l − i| ≤ d1))

+

((
n3 ≤ i + l − x + 1

2
≤ n4

))
((|l − i| ≤ d1 + 1)) .

Note that if n4 = 0, then we shall rewrite ν[n] =
(
1d12d2−12n3

)
.

4. Let ν[n] =
(
1dw

)
be a hook shape. Let n be sufficiently large. Then,

gν[n]
(1j)[n],(1k)[n]

= ((j ≤ d + k))((d ≤ j + k))((k ≤ j + d)),

gν[n]
(1i)[n],(1l)[n] = ((i ≤ d + l))((d ≤ i + l))((l ≤ i + d)).

It is not hard to see that (5.10) holds in any case, which easily implies Conjecture 5.5
when partitions λ and µ are both one column. The proof is completed.

We note that inequality (5.7) and inequality (5.10) show a beautiful symmetry that is
not transparent if we do not remove the “very long top rows”.

Conjecture 5.5 is useful. For example, it implies that the intersection cohomology of
the symmetric reciprocal plane Xn (see in [21, Theorem 1.2]) is equivariant log-concave
at degree i as a graded representation of the symmetric group Sn for n large enough.

Finally, let us state another conjecture. For a partition λ and 1 ≤ i ≤ n, let λ[i,n] :=
(λi, λi+n, λi+2n, . . .). In particular, sorti(λ, µ) = (λ ∪ µ)[i,2], for i = 1, 2. As observed in
the proof of in [13, Theorem 15], by applying Conjecture 5.5 repeatedly, one can obtain
the following conjecture, which generalizes a special case of a conjecture of Lascoux,
Leclerc, and Thibon [14, Conjecture 6.4].
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Conjecture 5.7. Let λ(1), . . . , λ(n) be n partitions, and let λ =
⋃

λ(i) be the partition obtained
by the decreasing rearrangement of the parts in all λ(i). Then, we have

n⊗
i=1

Vλ[i,n][∞] ≥
n⊗

i=1

Vλ(i)[∞] in the Grothendieck ring K(Rep(S∞)).

We note that Conjectures 5.2, 5.5, and 5.7 can also be formalized as Schur positivity
conjectures using the Schur functions and the Kronecker (internal) product between them,
provided that the related partitions all have “long enough top rows”. These conjectures
could also be formalized using the Deligne category or partition algebra, which might
shed some light on these conjectures. However, due to the lack of general knowledge of
the (reduced) Kronecker coefficients, proving these conjectures, in general, seems to be
beyond the reach of existing technology.

Acknowledgements

The author would like to thank Brendon Rhoades, Peng Shan, and Arthur L. B. Yang
for helpful discussions and is especially grateful to Matthew H.Y. Xie for the help with
the computer computations of tensor product multiplicities. The author also thanks the
anonymous referees for the comments and suggestions.

References

[1] E. Briand, R. Orellana, and M. Rosas. “Reduced Kronecker coefficients and counter-
examples to Mulmuley’s strong saturation conjecture SH”. Comput. Complexity 18.4 (2009).
With an appendix by Ketan Mulmuley, pp. 577–600. doi.

[2] P. Bürgisser and C. Ikenmeyer. “The complexity of computing Kronecker coefficients”. 20th
Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC
2008). Vol. AJ. Discrete Math. Theor. Comput. Sci. Proc. 2008, pp. 357–368.

[3] C. Chindris, H. Derksen, and J. Weyman. “Counterexamples to Okounkov’s log-concavity
conjecture”. Compos. Math. 143.6 (2007), pp. 1545–1557. doi.

[4] S. Fomin, W. Fulton, C.-K. Li, and Y.-T. Poon. “Eigenvalues, singular values, and
Littlewood-Richardson coefficients”. Amer. J. Math. 127.1 (2005), pp. 101–127. Link.

[5] A. L. L. Gao, M. H. Y. Xie, and A. L. B. Yang. “Schur positivity and log-concavity related
to longest increasing subsequences”. Discrete Math. 342.9 (2019), pp. 2570–2578. doi.

[6] T. Gui. “On the equivariant log-concavity for the cohomology of the flag varieties”. 2022.
arXiv:2205.05408.

[7] J. Huh, J. P. Matherne, K. Mészáros, and A. St. Dizier. “Logarithmic concavity of Schur and
related polynomials”. Trans. Am. Math. Soc. 375.6 (2022), pp. 4411–4427. doi.

https://dx.doi.org/10.1007/s00037-009-0279-z
https://dx.doi.org/10.1112/S0010437X07003090
http://muse.jhu.edu/journals/american_journal_of_mathematics/v127/127.1fomin.pdf
https://dx.doi.org/10.1016/j.disc.2019.05.027
https://arxiv.org/abs/2205.05408
https://dx.doi.org/10.1090/tran/8606


12 Tao Gui

[8] C. Ikenmeyer, K. D. Mulmuley, and M. Walter. “On vanishing of Kronecker coefficients”.
Comput. Complexity 26.4 (2017), pp. 949–992. doi.

[9] C. Ikenmeyer and G. Panova. “All Kronecker coefficients are reduced Kronecker coeffi-
cients”. Forum Math. Pi 12 (2024), Paper No. e22, 17 pp. doi.

[10] A. N. Kirillov. “An invitation to the generalized saturation conjecture”. Publ. Res. Inst.
Math. Sci. 40.4 (2004), pp. 1147–1239. Link.

[11] A. Klyachko. “Quantum marginal problem and representations of the symmetric group”.
2004. arXiv:quant-ph/0409113.

[12] A. Knutson and T. Tao. “The honeycomb model of GLn(C) tensor products. I. Proof of the
saturation conjecture”. J. Amer. Math. Soc. 12.4 (1999), pp. 1055–1090. doi.

[13] T. Lam, A. Postnikov, and P. Pylyavskyy. “Schur positivity and Schur log-concavity”. Amer.
J. Math. 129.6 (2007), pp. 1611–1622. doi.

[14] A. Lascoux, B. Leclerc, and J.-Y. Thibon. “Ribbon tableaux, Hall-Littlewood functions,
quantum affine algebras, and unipotent varieties”. J. Math. Phys. 38.2 (1997), pp. 1041–
1068. doi.

[15] D. E. Littlewood. “Products and plethysms of characters with orthogonal, symplectic and
symmetric groups”. Canadian J. Math. 10 (1958), pp. 17–32. doi.

[16] J. P. Matherne, D. Miyata, N. Proudfoot, and E. Ramos. “Equivariant log concavity and
representation stability”. Int. Math. Res. Not. IMRN 5 (2023), pp. 3885–3906. doi.

[17] F. D. Murnaghan. “The Analysis of the Kronecker Product of Irreducible Representations
of the Symmetric Group”. Amer. J. Math. 60.3 (1938), pp. 761–784. doi.

[18] H. Narayanan. “On the complexity of computing Kostka numbers and Littlewood-
Richardson coefficients”. J. Algebraic Combin. 24.3 (2006), pp. 347–354. doi.

[19] A. Okounkov. “Why would multiplicities be log-concave?” The orbit method in geometry
and physics (Marseille, 2000). Vol. 213. Progr. Math. Birkhäuser Boston, Boston, MA, 2003,
pp. 329–347.

[20] I. Pak and G. Panova. “Breaking down the reduced Kronecker coefficients”. C. R. Math.
Acad. Sci. Paris 358.4 (2020), pp. 463–468. doi.

[21] N. Proudfoot, M. Wakefield, and B. Young. “Intersection cohomology of the symmetric
reciprocal plane”. J. Algebraic Combin. 43.1 (2016), pp. 129–138. doi.

[22] M. H. Rosas. “The Kronecker product of Schur functions indexed by two-row shapes or
hook shapes”. J. Algebraic Combin. 14.2 (2001), pp. 153–173. doi.

[23] S. V. Sam and A. Snowden. “Stability patterns in representation theory”. Forum Math.
Sigma 3 (2015), Paper No. e11, 108 pp. doi.

[24] R. P. Stanley. Enumerative combinatorics. Vol. 2. Vol. 62. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1999, pp. xii+581. doi.

https://dx.doi.org/10.1007/s00037-017-0158-y
https://dx.doi.org/10.1017/fmp.2024.23
http://projecteuclid.org/euclid.prims/1145475445
https://arxiv.org/abs/quant-ph/0409113
https://dx.doi.org/10.1090/S0894-0347-99-00299-4
https://dx.doi.org/10.1353/ajm.2007.0045
https://dx.doi.org/10.1063/1.531807
https://dx.doi.org/10.4153/CJM-1958-002-7
https://dx.doi.org/10.1093/imrn/rnab352
https://dx.doi.org/10.2307/2371610
https://dx.doi.org/10.1007/s10801-006-0008-5
https://dx.doi.org/10.5802/crmath.60
https://dx.doi.org/10.1007/s10801-015-0628-8
https://dx.doi.org/10.1023/A:1011942029902
https://dx.doi.org/10.1017/fms.2015.10
https://dx.doi.org/10.1017/CBO9780511609589

	Introduction
	Okounkov conjecture on the Littlewood–Richardson coefficients
	Kronecker Coefficients and Their Convexity Property
	Reduced Kronecker Coefficients
	Log-concavity Conjectures of Stable Tensor Product of Irreducible Representations of Symmetric Groups

