
Séminaire Lotharingien de Combinatoire 93B (2025) Proceedings of the 37th Conference on Formal Power
Article #10, 12 pp. Series and Algebraic Combinatorics (Sapporo)

From linear programming to colliding particles

Alexander E. Black*1, Niklas Lütjeharms2, and Raman Sanyal†2

1 Institute for Mathematical Research, ETH Zürich, Switzerland
2 Institut für Mathematik, Goethe-Universität Frankfurt, Frankfurt am Main, Germany

Abstract. Although simplices may appear trivial in the context of linear optimiza-
tion, the simplex algorithm, guided by a pivot rule, can exhibit remarkably intricate
dynamics on them when solving linear programs. In this paper we study the behavior
of max-slope pivot rules on (products of) simplices and describe the associated pivot
rule polytopes. For simplices, the pivot rule polytopes are combinatorially isomorphic
to associahedra. To prove this correspondence, we interpret max-slope pivot rules in
terms of the combinatorics of colliding particles on a line. For prisms over simplices,
we recover Stasheff’s multiplihedra. For products of two simplices we get new realiza-
tions of constrainahedra, that capture the combinatorics of certain particle systems in
the plane.

Keywords: linear programming, geometry of pivot rules, particle collisions, associa-
hedra, multiplihedra, constrainahedra

1 Introduction

A linear program (LP) is an optimization problem of the form

maximize c1x1 + · · ·+ cnxn
subject to ai1x1 + · · ·+ ainxn ≤ bi for i = 1, . . . , N .

Geometrically, the set P ⊂ Rn of feasible solutions is a polyhedron and a generic objec-
tive function c = (c1, . . . , cn) induces an orientation on the vertex-edge graph G(P) of
P. The orientation is acyclic with a unique sink at the optimal vertex vopt. The simplex
algorithm starts at a given vertex v of P and proceeds along directed edges to vopt. The
choice of which edges to pursue is governed by a pivot rule.

A polytope P ⊂ Rn is a simplex if its vertices are affinely independent. Simplices are
trivial from an optimization viewpoint as any two vertices of P are adjacent. However,
sophisticated algorithms such as the simplex algorithm can exhibit complex and interest-
ing dynamics on trivial instances. In this paper, we describe a beautiful and unexpected
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connection between the behavior of certain pivot rules on (products of) simplices and
the combinatorics of colliding particles.

A pivot rule is memory-less if the decisions it makes on a linear program (P, c) are
captured by an arborescence (or rooted tree) on G(P); see, for example, beginning of
Section 3. With De Loera, in [2] we studied families of memory-less pivot rules that
are parametrized by weight vectors w. We showed that for any linear program (P, c)
there is a polytope Π(P, c), the pivot rule polytope, whose vertices correspond to the ar-
borescences of (P, c) induced by the family of pivot rules. The facial structure of Π(P, c)
reflects the relation between the different rules on (P, c). For the max-slope pivot rule,
a generalization of the shadow vertex algorithm of Gass and Saaty [9] that we intro-
duced in [2], we were surprised to observe that the numbers of max-slope arborescences
for simplices are given by the Catalan numbers. Much of the combinatorics surrounding
the Catalan numbers is famously embodied by the associahedron Asson−2, a certain par-
tially ordered set that is ubiquitous in geometric and algebraic combinatorics. There are
many different realizations of Asson−2 as the face lattice of a simple (n − 2)-dimensional
polytope (see [6]) and the present paper adds a new construction to the list.

Theorem 1.1. Let P be an (n − 1)-dimensional simplex and c a generic objective function. Then
the max-slope pivot rule polytope Π(P, c) is combinatorially isomorphic to the (n − 2)-dimen-
sional associahedron Asson−2.

Associahedra describe the combinatorics of colliding particles. Consider n distinct
and ordered particles on the real line. Particles move, collide, and merge until there
is a single particle left. The various collisions can be time-independently recorded by
a bracketing. For example (12)(345) states that at some point particles 1 and 2 collided
and, before or after, 3, 4, and 5 simultaneously collided. Eventually, the two remaining
particles collided. The associahedron Asson−2 is the set of bracketings of 123 . . . n par-
tially ordered by refinement. In order to prove Theorem 1.1, we describe a geometric
correspondence between max-slope arborescences and bracketings. For that, the objec-
tive function c gives rise to velocities for the n particles and the weights w give each
particle a location at time t = 0. For t > 0, the particles start to move from their loca-
tions at constant velocity. If two particles collide, the slower particle is absorbed by the
faster one, which continues at its original velocity. For t ≫ 0, only particle n is left. We
record the particle A(i) that absorbs the particle i. Towards a proof of Theorem 1.1, we
show that these maps A, called collision patterns, are in bijection with bracketings and are
precisely the max-slope arborescences of an (n − 1)-simplex with objective function c.

Bottman and Poliakova [5] studied a more general setup for particle collisions. For
m, n ≥ 1, they consider m · n particles sitting at the intersections of m horizontal and n
vertical lines in the plane. The particles are allowed to move horizontally or vertically
but they must retain their colinearities. The collisions can be recorded by rectangular
brackets or, equivalently, by a partially ordered set on the (spaces between) the horizontal
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and vertical lines. The resulting poset of rectangular bracketings is called the constraina-
hedron C(m, n). For m = 1, this is the associahedron. For m = 2, C(2, n) is isomorphic
to the multiplihedron, a poset first described by Stasheff [16] and realized as a polytope
by Forcey [8]. It is shown in [5], that C(m, n) is the face poset of a generalized permu-
tahedron [12]. Chapoton and Pilaud [7] introduced a remarkable operation on products
of generalized permutahedra, called shuffle products, and gave a different realization of
C(m, n) as the shuffle product of Loday associahedra. We give new realizations of con-
strainahedra that, in particular, are not generalized permutahedra.

Theorem 1.2. Let Pm−1,n−1 be the product of an (m − 1)-simplex and an (n − 1)-simplex and
let c be a generic objective function. Then the max-slope pivot rule polytope Π(Pm−1,n−1, c) is
combinatorially isomorphic to the (m, n)-constrainahedron C(m, n).

The combinatorial construction of constrainahedra was motivated by questions in
homotopical algebra [11] as well as Gromov compactifications of configuration spaces.
More precisely, Bottman [4] constructed 2-associahedra as posets capturing the behavior
of ordered particles on parallel lines in the plane without colinearities. Bottman asked in
Section 1.3 of [4] whether 2-associahedra are face posets of convex polytopes and notes
in particular that a connection to fiber polytopes would be especially interesting and
could lead to an interpretation in terms of Fukaya categories. In [2] it is highlighted
that max-slope pivot rule polytopes are generalizations of monotone path polytopes,
which are fiber polytopes. We hope that our results provide a new point of view on the
realizability of 2-associahedra.

Our techniques generalize to higher products of simplices.

Theorem 1.3. Let (A, ·) be a non-associative monoid and let f1, . . . , fk : A → A be morphisms.
The vertices of the max-slope pivot polytope of the Cartesian product of an (n − 1)-dimensional
simplex and a k-dimensional cube are in bijection with the possible ways of evaluating

( fσ(1) ◦ fσ(2) ◦ · · · ◦ fσ(k))(a1 · a2 · · · an) ,

where a1, . . . , an ∈ A and σ ∈ Sk is a permutation.

These are the vertices of the (m, n)-multiplihedra of [7]. Pilaud and Poullot [10] show
that max-slope pivot rule polytopes of higher products of simplices are isomorphic to
shuffle products of associahedra.
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2 Max-slope pivot rule polytopes

We recall max-slope pivot rules and pivot rule polytopes in Section 2 and refer to [2, 3]
for proofs. Let P ⊂ Rn be a convex polytope with vertices V(P) and edges E(P). We call
c ∈ Rn edge-generic if ⟨c, u⟩ ̸= ⟨c, v⟩ for all uv ∈ E. The vector c defines an objective
function x 7→ ⟨c, x⟩ and (P, c) is a linear program (LP).

Let vopt ∈ V(P) be the unique maximizer of c over P. A c-arborescence is a map
A : V(P) \ vopt → V(P) such that A(v) is a c-improving neighbor of v ̸= vopt. If c is clear
from the context, we simply call A an arborescence. Arborescences encode the behavior
of memory-less pivot rules on the linear program (P, c): From a starting vertex v ∈ V(P),
the simplex algorithm constructs a monotonically increasing path v = v0v1 . . . vm = vopt
in the graph of P that satisfies vi = A(vi−1) for all i = 1, . . . , m.

The max-slope pivot rule introduced in [2] generalizes the well-known shadow-vertex
simplex algorithm. For generic w ∈ Rn we define the max-slope arborescence Aw of
(P, c) by

Aw(v) := argmax
{
⟨w, u − v⟩
⟨c, u − v⟩ : uv ∈ E(P), ⟨c, u⟩ > ⟨c, v⟩

}
. (2.1)

As the notation suggests, argmax returns the improving neighbor of v that maximizes
the given quantity. In particular genericity here means that the maximum is attained
at a unique neighbor u for every vertex v. A geometric interpretation for a max-slope
arborescence can be given as follows. Define the linear projection π : Rn → R2 by
π(x) = (⟨c, x⟩, ⟨w, x⟩). The projection of an edge uv ∈ E to the plane has a well-defined
slope with respect to the x-axis and Aw(v) selects the edge with maximal slope.

For a c-arborescence A we define

ψ(A) := ∑
v ̸=vopt

A(v)− v
⟨c,A(v)− v⟩ . (2.2)

and the max-slope pivot rule polytope of (P, c)

Π(P, c) := conv
{

ψ(A) : A c-arborescence of (P, c)
}

.

This is a (dim(P)− 1)-dimensional polytope, that geometrically encodes the various
max-slope arborescences of (P, c). For w ∈ Rn we write Qw for the face of Q that
maximizes x 7→ ⟨w, x⟩.
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Theorem 2.1 ([2, Theorem 1.4]). Let P be a polytope and c an edge-generic objective function.
Then Π(P, c)w = {ψ(Aw)} for every generic w. In particular, the vertices of Π(P, c) are in
bijection with max-slope arborescences of (P, c).

We record the following properties of max-slope pivot rule polytopes.

Corollary 2.2. Let P ⊂ Rn be a polytope and c an edge-generic objective function.
(i) Let w ∈ Rn be generic and α ∈ R. Then Aw+αc = Aw.

(ii) If h ∈ Rn such that x 7→ ⟨h, x⟩ is constant on P, then Π(P, c + h) = Π(P, c).
(iii) For any b ∈ Rn, Π(P + b, c) = Π(P, c).
(iv) If T is an invertible linear transformation, then Π(TP, (T−1)tc) = TΠ(P, c).

3 Max-slope pivot rules on simplices

Let P be an (n − 1)-dimensional simplex and c an edge-generic objective function. By
Corollary 2.2 we can assume that P is the standard simplex ∆n−1 := conv(e1, . . . , en) in
Rn and that c1 < c2 < · · · < cn.

For n ≥ 1, we write [n] := {1, 2, . . . , n}. Since ∆n−1 has a complete graph, every
vertex ej with j > i is a c-improving neighbor of ei. Thus, arborescences of (∆n−1, c)
bijectively correspond to maps A : [n − 1] → [n] such that A(i) > i for all i. Since
every vertex can choose an improving neighbor independently, there are exactly (n − 1)!
arborescences of (∆n−1, c). For the tetrahedron, it turns out that of the six arborescences
only five are max-slope arborescences and the figure prompts the following definition:

Definition 3.1 (Noncrossing arborescence). An arborescence A : [n − 1] → [n] is non-
crossing if A(j) ≤ A(i) for all 1 ≤ i < j < n with j < A(i).

Theorem 3.2. Let A : [n − 1] → [n] be an arborescence. Then A is a max-slope arborescence
for (∆n−1, c) if and only if A is noncrossing.

For the proof, we use a canonical decomposition of noncrossing arborescences; see
Figure 1.

Lemma 3.3. Let A : [n − 1] → [n] be a noncrossing arborescence on n ≥ 2 nodes. Let r be
minimal with A(r) = n. Then A1 : [r − 1] → [r] given by A1(i) := A(i) for i < r and
A2 : [n − r − 1] → [n − r] given by A2(i) := A(r + i) − r are noncrossing arborescences.
Moreover, A is uniquely determined by (A1,A2).
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Figure 1: A noncrossing arborescence on 7 nodes. r = 4 is minimal with A(r) = 7.
The decomposition into A1,A2 is obtained by restricting to 1, . . . , 4 and 5, . . . , 7. The
nodes 1, 3, 5 are leaves and they are all immediate leaves.

It follows from Lemma 3.3 that the number of vertices is the Catalan number Cn:
there is a bijection taking a noncrossing arborescence A on n nodes to a pair of non-
crossing arborescences (A1,A2) of sizes r and n − r, respectively, for r = 1, . . . , n − 1.
Since A1,A2 are arbitrary, the number of noncrossing arborescences satisfies the famous
Catalan recurrence; see [15]. We call k < n a leaf of A if there is no i with A(i) = k.
Induction on n yields

Lemma 3.4. Let A be a noncrossing arborescence on n ≥ 2 nodes. Then there is a leaf k with
A(k) = k + 1, called an immediate leaf.

4 Particles with locations and velocities

Consider n ≥ 2 labelled particles on the real line. Every particle i = 1, 2, . . . , n has a
constant velocity −ci < 0. We assume that the velocities satisfy 0 < c1 < c2 < · · · < cn.
At time t = 0, the particles are at locations −w1 ≤ −w2 ≤ · · · ≤ −wn. For example

Once the particles start moving from their initial locations −w = (−w1, . . . ,−wn)
with velocities −c = (−c1, . . . ,−cn), they will eventually collide and merge. If particles
i < j collide, then particle i is absorbed by the faster particle j, which continues at
velocity −cj. For t ≫ 0, the only remaining particle is n. For example
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For now we assume that the locations −w are chosen generically, so that at most
two particles collide at any given point in time. We record the collisions by a map
Ã−w : [n − 1] → [n] that we call a collision pattern: If particle i gets absorbed by particle
j for the initial locations −w, then we set Ã−w(i) := j. Note that any w ∈ Rn and α ≫ 0,
−(w − αc) is strictly increasing and the associated collision pattern is independent of the
choice of α. The connection to max-slope arborescences of simplices is as follows.

Theorem 4.1. Let n ≥ 2 and c ∈ Rn with 0 < c1 < · · · < cn. For A : [n − 1] → [n] and
w ∈ Rn, the following are equivalent.

i) A = Ã−(w−αc) is a collision pattern for n particles with given velocities −c and locations
−(w − αc) for some α ≥ 0.

ii) A = Aw is a max-slope arborescence of (∆n−1, c) with respect to weight w.

Proof. We can assume that −w1 < · · · < −wn. If we fix j > i and disregard all other
particles for the moment, then the time tij of collision of i and j satisfies −wi − tijci =

−wj − tijcj, that is, tij =
−(wj−wi)

cj−ci
. By construction, i will be absorbed by particle j if tij

is minimal among all tik with k > i. Thus, for i < n, we observe

Ã−w(i) = argmin

{
−(wj − wi)

cj − ci
: j > i

}
= argmax

{
wj − wi

cj − ci
: j > i

}
= Aw(i) ,

where the last equation is the definition of Aw in (2.1).

We use noncrossing arborescence and collision patterns interchangeably and write
Aw.

In the language of collision patterns, we can also interpret the decomposition of
Lemma 3.3. If Aw is the collision pattern obtained from locations −w, then there is a
time t1 at which there are only two particles left. One of these two particles is clearly
n, the other is the last particle that is absorbed by n, that is, the minimal r ≥ 1 with
Aw(r) = n. In the time between t = 0 and t = t1, the particles 1, . . . , r − 1 get absorbed
by r and the particles r + 1, . . . , n − 1 get absorbed by n. The corresponding collision
patterns are precisely A1 and A2, respectively.

Collisions of particles can be encoded in terms of bracketings. A bracket is a subset
of [n] of the form [i, j] := {i, i + 1, . . . , j} for i ≤ j. A bracketing B is a collection of
distinct brackets B1, . . . , Bm such that for every 1 ≤ r < s ≤ m, Br ⊂ Bs or Bs ⊂ Br or
Bs ∩ Br = ∅. A bracket represents particles that have collided with each other at some
point in time. If Br ⊂ Bs are contained in a bracketing B, then this means at some point
all the particles in Br have collided and later all the particles in Bs will have collided. As
there is ultimately only a single particle left, every bracketing has to contain [1, n]. The
associahedron Asson−2 is the set of bracketings of [n] ordered by reverse inclusion. The
unique maximal element is {[1, n]}. The minimal elements are the complete bracketings
of [n], that is, bracketings with n − 1 brackets.
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Theorem 4.2. Collision patterns on n particles are in bijection with complete bracketings.

The proof is by induction on n as illustrated here

The proof of Theorem 1.1 proceeds by showing that Asson−2 and Π(∆n−1, c) have
the same vertices-in-facets incidences. To that end, we need to determine the facets of
Π(∆n−1, c), which correspond to the coarsest non-trivial bracketings.

Proposition 4.3. Let 1 ≤ r < s ≤ n with (r, s) ̸= (1, n). The bracketing B = {[r, s], [1, n]} is
obtained from locations −w if and only if

−µw + γ1 − αc = −wr,s := (c1, . . . , cr−1, cs, . . . , cs, cs+1, . . . , cn)

for some γ, α, µ ∈ R with α ≥ 0 and µ > 0.

With the locations −wr,s, the particles r, r + 1, . . . , s have already collided at time
t = 0. The remaining particles collide at time t = 1.

5 Products of simplices and constrainahedra

For m, n ≥ 1 consider the Cartesian product Pm−1,n−1 = ∆m−1 × ∆n−1 ⊂ Rm × Rn. This
is a simple (m + n − 2)-dimensional polytope whose graph is on nodes Vm,n = [m]× [n]
visually arranged in an m × n-grid. An edge-generic objective function c = (c′, c′′) ∈
Rm × Rn with 0 < c′1 < c′2 < · · · < c′m and 0 < c′′1 < c′′2 < · · · < c′′n induces an
orientation on the graph with oriented vertical edges ri → rj for 1 ≤ i < j ̸= n and
horizontal edges ri → si for 1 ≤ r < s ≤ m. The unique sink is the node mn and we
write V◦

m,n := Vm,n \ {mn}.
Arborescences of (Pm−1,n−1, c) can be identified with maps A : V◦

m,n → Vm,n with the
property that if A(ri) = sj then r < s and i = j or r = s and i < j. A determines
an arborescence A′ of (∆m−1, c′) by A′(r) := s if A(rn) = sn and, analogously, an
arborescence A′′ for (∆n−1, c′′).

Every generic w = (w′, w′′) ∈ Rm × Rn determines a max-slope arborescence of
Pm−1,n−1 such as the following for (m, n) = (4, 4):



From linear programming to colliding particles 9

Inspired from this way of illustrating arborescences of Pm−1,n−1, we call A consistent if
A(ri) = si implies A′(r) = s and A(ri) = rj implies A′′(i) = j for all ri ∈ V◦

m,n. We call
A grid-noncrossing if A′ and A′′ are noncrossing and there are no 1 ≤ r ≤ s < t ≤ m
and 1 ≤ i ≤ j < k ≤ n with (r, i) ̸= (s, j) and with A(si) = sk and A(rj) = tj.

A node ri ∈ Vm,n is an immediate leaf of A if it has no incoming edges and A(ri) =
(r + 1)i or A(ri) = r(i + 1).

Definition 5.1. An arborescence A : V◦
m,n → Vm,n is reducible if m = n = 1 or

◦ there exists r ∈ [m] such that ri is a immediate leaf for every i and the restriction of A
to V◦

m,n \ (r × [n]) is reducible, or
◦ there exists i ∈ [n] such that ri is a immediate leaf for every r and the restriction of A

to V◦
m,n \ ([m]× i) is reducible.

The above example is reducible as is illustrated here

Reducibility implies that A is consistent and grid-noncrossing but the converse does
not hold. For m = 1 or n = 1, reducible arborescences are precisely the noncrossing
arborescences.

Theorem 5.2. An arborescence A : V◦
m,n → Vm,n is a max-slope arborescence of (Pm−1,n−1, c) if

and only if A is reducible.

To view max-slope arborescences of Pm−1,n−1 as particle collisions, we use the follow-
ing generalization of particles on a line due to Bottman and Poliakova [5]. We consider
m vertical lines L′

1, . . . , L′
m and n horizontal lines L′′

1 , . . . , L′′
n . The lines are labelled left-

to-right and bottom-to-top. We place a particle ri at the point of intersection of L′
r and

L′′
i . The particle movements are induced by parallel displacements of the m + n lines. In

this scenario parallel lines collide and particles contained in the colliding lines merge.
We equip every line L′

r and L′′
i with a location −w′

r and −w′′
i at time t = 0 and

we assume that −w′
1 ≤ −w′

2 ≤ · · · ≤ −w′
m and −w′′

1 ≤ −w′′
2 ≤ · · · ≤ −w′′

n . For



10 A. Black, N. Lütjeharms and R. Sanyal

t > 0, the lines L′
r move to the left with constant velocity −c′r, the lines L′′

i move down
with constant velocity −c′′i . As before we assume that 0 < c′1 < c′2 < · · · < c′m and
0 < c′′1 < c′′2 < · · · < c′′n . If two or more lines collide, they are absorbed by the line with
the largest index and this line continues at its original speed. With this setup, we can
interpret A−w as a collision pattern akin to Theorem 4.1. For example

The combinatorics of collisions of m · n particles sitting on m vertical and n horizon-
tal lines was modelled in [5] by certain preorders on L = {L′

1, . . . , L′
m−1, L′′

1 , . . . , L′′
n−1}.

Recall that a preorder on L is a reflexive and transitive relation ⪯. For x ∈ L, the equiva-
lence class [x] is the collection of elements y ∈ L with x ⪯ y and y ⪯ x. On the collection
of equivalence classes ⪯ yields a partial order. Bottman and Poliakova define a preorder
⪯ on L to be a good rectangular preorder [5, Definition 2.1] if
◦ L′

r and L′′
i are comparable for all r, i (orthogonal comparability)

and L′
o ⪯ L′

q (respectively L′′
o ⪯ L′′

q ) if and only if
◦ L′

o ⪯ L′′
p ⪯ L′

q (respectively L′′
o ⪯ L′

p ⪯ L′′
q ) for some p, or (orthogonal link)

◦ there is no min(o, q) < p < max(o, q) with L′
o ≺ L′

p ≻ L′
q (respectively L′′

o ≺ L′′
p ≻ L′′

q ).
(no gaps)
A good rectangular preorder ⪯2 is refined by ⪯1 if x ⪯1 y implies x ⪯2 y for all

x, y ∈ L.

Theorem 5.3 ([5, Theorem 4.1]). The good rectangular preorders on the set L of m + n − 2
lines partially ordered by refinement is the face poset of an (m + n − 3)-dimensional polytope,
called the (m, n)-constrainahedron C(m, n).

In contrast to the case of a single line for which the constrainahedron is the asso-
ciahedron, constrainahedra are in general not simple polytopes. Facets correspond to
elementary collisions, which are simultaneous collision of horizontal and vertical lines
that are not the result of at least two simultaneous and disjoint collisions of sets of lines.
There are three distinct types of elementary collisions. Locations for elementary colli-
sions can be given similar to Proposition 4.3. The proof of Theorem 1.2 follows a similar
strategy as that of Theorem 1.1 but is significantly more complicated.
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6 Higher products and multiplihedra

In this last section, we focus on the max-slope pivot rule polytopes of the product Qn,k =
∆n−1 × [0, 1]k ⊂ Rn × Rk together with an objective function (c, r) with c = (c1 < c2 <
· · · < cn) and r = (r1, . . . , rk) ∈ Rk with ri > 0 for all i.

For k = 1 the max-slope pivot polytope Π(Qn,k, (c, r)) is the constrainahedron C(2, n),
which is Stasheff’s multiplihedron; see [16]. For n = k = 2 the polytope Π(Qn,k, (c, r))
is as follows with a vertex labelling that illustrates Theorem 1.3

Consider an evaluation of ( fσ(1) ◦ fσ(2) ◦ · · · ◦ fσ(k))(a1 · a2 · · · an) as in Theorem 1.3
with σ fixed. Disregarding the morphisms for a moment, the order in which the n − 1
multiplications have to be carried out is encoded by a partial order ⪯T on [n − 1] whose
Hasse diagram is well-known to be a tree T rooted at the maximum (i.e., the last mul-
tiplication to be carried out). Every node in the tree has at most two children. With the
labelling given by [n − 1], the possible posets are precisely the binary search trees on
n − 1 nodes. Now, for the j-th multiplication, we record the number ϕ(j) of morphisms
that have to be applied before the multiplication can take place. The poset ([n − 1],⪯T)
together with the map ϕ : [n − 1] → {0, 1, . . . , k} completely determines the evaluation.
Note that if i ≺ j, then ϕ(i) ≤ ϕ(j) and hence ϕ is an order-preserving map. A max-
slope arborescence of (Qn,k, c) determines a noncrossing arborescence A : [n − 1] → [n]
and thus a bracketing, which is another representation of ⪯T. The map ϕ comes from
the additional information provided by the arborescence.

The order polynomial ΩP(l) of a partially ordered set (P,⪯) is a polynomial of
degree |P| such that ΩP(l) is the number of order-preserving maps P → [l]; see [1, 14].
For fixed n ≥ 2, we define Vn(k) := ∑T ΩT(k + 1), where the sum is over all binary
search trees T on [n − 1]. Our encoding of an evaluation of fσ(1) ◦ fσ(2) ◦ · · · ◦ fσ(k) on
a1 · a2 · · · an by a binary search tree and an order-preserving map into {0, 1, . . . , k} yields
the following.

Corollary 6.1. The number of evaluations of ( fσ(1) ◦ fσ(2) ◦ · · · ◦ fσ(k))(a1 · a2 · · · an) is Vn(k).
In particular, the number of vertices of Π(Qn,k, (c, r)) is k!Vn(k).

The number of vertices of the (k, n)-multiplihedron is given by Proposition 126 of [7]
in terms of generating functions. It is remarkable that the number of vertices for varying
k is essentially given by a polynomial. It can be shown that the leading coefficient of
Vn(k) is 1 and the constant coefficient is the n-th Catalan number Cn. Experiments show
that all coefficients are non-negative and, of course, we tested if the polynomials are
real-rooted. This seems to be true for n ≤ 10 but unknown beyond.



12 A. Black, N. Lütjeharms and R. Sanyal

References

[1] M. Beck and R. Sanyal. Combinatorial reciprocity theorems. Vol. 195. Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2018, pp. xiv+308. doi.

[2] A. E. Black, J. A. De Loera, N. Lütjeharms, and R. Sanyal. “The polyhedral geometry of
pivot rules and monotone paths”. SIAM J. Appl. Algebra Geom. 7.3 (2023), pp. 623–650. doi.

[3] A. E. Black, N. Lütjeharms, and R. Sanyal. “From linear programming to colliding parti-
cles”. 2024. arXiv:2405.08506.

[4] N. Bottman. “2-associahedra”. Algebr. Geom. Topol. 19.2 (2019), pp. 743–806. doi.

[5] N. Bottman and D. Poliakova. “Constrainahedra”. 2022. arXiv:2208.14529.

[6] C. Ceballos, F. Santos, and G. M. Ziegler. “Many non-equivalent realizations of the associ-
ahedron”. Combinatorica 35.5 (2015), pp. 513–551. doi.

[7] F. Chapoton and V. Pilaud. “Shuffles of deformed permutahedra, multiplihedra, con-
strainahedra, and biassociahedra”. Ann. Henri Lebesgue 7 (2024), pp. 1535–1601. doi.

[8] S. Forcey. “Convex hull realizations of the multiplihedra”. Topology Appl. 156.2 (2008),
pp. 326–347. doi.

[9] S. Gass and T. Saaty. “The computational algorithm for the parametric objective function”.
Naval Res. Logist. Quart. 2 (1955), pp. 39–45. doi.

[10] V. Pilaud and G. Poullot. “Pivot polytopes of products of simplices and shuffles of associ-
ahedra”. 2024. arXiv:2410.12658.

[11] D. Poliakova. “Homotopical algebra and combinatorics of polytopes”. PhD thesis. Univer-
sity of Copenhagen, 2021. Link.

[12] A. Postnikov. “Permutohedra, associahedra, and beyond”. Int. Math. Res. Not. IMRN 6
(2009), pp. 1026–1106. doi.

[13] N. J. A. Sloane. “The On-Line Encyclopedia of Integer Sequences” (2022). Link.

[14] R. P. Stanley. Enumerative combinatorics. Volume 1. Second edition. Vol. 49. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2012, xiv+626
pp.

[15] R. P. Stanley. Catalan numbers. Cambridge University Press, New York, 2015, pp. viii+215.
doi.

[16] J. Stasheff. H-spaces from a homotopy point of view. Vol. Vol. 161. Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin-New York, 1970, v+95 pp.

[17] W. Stein et al. Sage Mathematics Software (Version 9.5). https://www.sagemath.org. The
Sage Development Team. 2022.

https://dx.doi.org/10.1090/gsm/195
https://dx.doi.org/10.1137/22M1475910
https://arxiv.org/abs/2405.08506
https://dx.doi.org/10.2140/agt.2019.19.743
https://arxiv.org/abs/2208.14529
https://dx.doi.org/10.1007/s00493-014-2959-9
https://dx.doi.org/10.5802/ahl.225
https://dx.doi.org/10.1016/j.topol.2008.07.010
https://dx.doi.org/10.1002/nav.3800020106
https://arxiv.org/abs/2410.12658
https://noter.math.ku.dk/phd21dp.pdf
https://dx.doi.org/10.1093/imrn/rnn153
https://oeis.org
https://dx.doi.org/10.1017/CBO9781139871495

	Introduction
	Max-slope pivot rule polytopes
	Max-slope pivot rules on simplices
	Particles with locations and velocities
	Products of simplices and constrainahedra
	Higher products and multiplihedra

