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Abstract. We give a combinatorial proof of an identity that involves Eulerian numbers
and was obtained algebraically by Brenti and Welker (2009). To do so, we study alcoved
triangulations of dilated hypersimplices. As a byproduct, we describe the dual graph
of these triangulations for the dilated standard simplex and the hypersimplex in terms
of combinatorial objects, and conjecture their structure for dilated hypersimplices.
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1 Introduction

Brenti and Welker [2] studied how the numerator of a rational formal power series trans-
forms after taking a subsequence of the coefficients and computing its generating series.
In order to do so, they study a linear transformation with fixed bases related to the fol-
lowing combinatorial objects. First, we denote by [r]d the set of words of length d in the
elements [r] := {1, 2, . . . , r}.

Definition 1.1. For d, r, i ∈ N and d ≥ 1, let

C(r, d, i) :=
{
(c1, c2, . . . , cd) ∈ Nd ∣∣ c1 + c2 + · · ·+ cd = i , cj ≤ r for 1 ≤ j ≤ d

}
.

Denote by C(r, d, i) the size of the set C(r, d, i).

The other set of objects comes from the power series ∑k≥0(k + 1)dzk = Ad(z)
(1−z)d+1 that

was considered by Euler while studying the Riemann ζ-function [3]. The numerators
Ad(z) are the Eulerian polynomials and it is well-known that ad,k counts the permutations
of d elements with k descents. These numbers are commonly called Eulerian numbers.
For our purposes, and to make notation line-up in Section 3, we adopt the following
convention.

Definition 1.2. Let d ≥ 1 and 1 ≤ j ≤ d. Define

A(d, j) :=
{

σ ∈ Sd
∣∣ des(σ) = j − 1

}
.

We denote the cardinality of this sets by A(d, j) = |A(d, j)|.
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Remark 1.3. With the previous definition, the Eulerian numbers are given by ad,k =
A(d, k + 1). We will refer to the numbers A(d, k) as the Eulerian numbers, but there is a
necessary word of caution when interpreting them in terms of permutations.

By considering a change of basis, Brenti and Welker showed the following identities
involving the cardinalities of the previous sets. We point out that these two equations
follow from diagonalizing a matrix and computing the image of an eigenvector, so both
C(r, d, i) and A(d, j) appear due to algebraic considerations.

Proposition 1.4 ([2, Proposition 2.3]). Let d, r ≥ 1. Then

d

∑
j=0

C(r − 1, d + 1, ir − j)A(d, j) = rd A(d, i) (1.1)

for i = 1, 2, . . . , d. In particular, when i = 1,

d

∑
j=0

C(r − 1, d + 1, r − j)A(d, j) = rd. (1.2)

Given the enumerative nature of the quantities involved in the equations, Brenti and
Welker asked for a combinatorial proof of these identities. Our main result is to provide
one such proof by constructing suitable bijections. The key idea that allows us connect
both sides of the equations is to consider dilations of hypersimplices, in particular their
alcoved triangulations (see Section 2), since the right-hand side of Equation (1.1) can be
interpreted as the (normalized) volume of these dilated polytopes (see Section 3).

Theorem 1.5. Let A(r∆i,d) be the set of alcoves of the r-dilated hypersimplex ∆i,d. There exist
bijections

wordsi : A(r∆i,d) −→ [r]d ×A(d, i)

pairi : A(r∆i,d) −→
d⋃

j=1

C(r − 1, d + 1, ir − j)×A(d, j)

from which we obtain a combinatorial proof of Equation (1.1).

This document is organized as follows. In Section 2 we review some relevant re-
sults about alcoved polytopes. In Section 3.1 we construct the bijection needed to show
Equation (1.2) by considering dilated standard simplices; moreover, we describe the dual
graph of the triangulation using the combinatorial objects involved in the bijection. We
generalize these ideas in Section 3.2 to build the bijections that prove Equation (1.1) com-
binatorially, and describe the dual graph of the alcoved triangulation of a hypersimplex
using permutations. We conclude with some further directions in Section 4.
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Remark 1.6. After completion of this document, we found [7, Proposition 9.4] where the
authors give a formula for the volume of thick hypersimplices and specializes to Equa-
tion (1.1) when Φ = An and the parameters are carefully chosen. We point out that their
argument relies on considerations of the alcoved triangulations related to affine Weyl
groups and, in contrast, we provide a proof of Equations (1.1) and (1.2) by interpreting
alcoves in terms of combinatorial objects. Moreover, the equations are related to recent
work on slices of prisms (see [4, Corollaries 1.5 and 1.6]).

2 Alcoved polytopes

Given a set of vectors in Rn, their convex hull is the smallest convex set containing all
of them. A polytope is the convex hull of finitely many vectors in Rn. The vertices of P
is the smallest set of vectors such that their convex hull equals P. A lattice polytope is a
polytope whose vertices only have integer coordinates. We focus on a particular family
of lattice polytopes known as alcoved polytopes. There are two ways in which alcoved
polytopes usually appear in the literature, depending on the coordinates that are chosen
to describe them.

Definition 2.1. An alcoved polytope P is a polytope that has one of the following hyper-
plane descriptions:

• An (H, z)-representation

P =
{⃗

z ∈ Rn−1
z : bij ≤ zi − zj ≤ cij for 0 ≤ i < j ≤ n − 1

}
where z0 := 0 and bij, cij ∈ Z for all i and j.

• An (H, x)-representation

P =

{
x⃗ ∈ Rn

x :
bij ≤ xi+1 + · · ·+ xj ≤ cij for 0 ≤ i < j ≤ n

x1 + x2 + · · ·+ xn = k

}
where k ∈ Z and bij, cij ∈ Z for all i and j.

Example 2.2. The alcoved polytope P = P(bij, cij) in z-coordinates with parameters b0,1 =
−4, c0,1 = −1, b0,2 = −3, c0,2 = −1, b1,2 = −2, c1,2 = 1 is depicted in Figure 1. The map
ψ2(z1, z2) = (z1, z2 − z1, 2 − z2) is an affine equivalence to a polytope in x-coordinates.
After translating such polytope by the vector (1, 1, 1), we obtain a polytope that lays on
the hyperplane x1 + x2 + x3 = 5 in R3

x.

The most important alcoved polytopes for our purposes are the hypersimplices.
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z1

z2

z1 = 1 z1 = 4

z2 = 1

z2 = 3

z1 − z2 = 1z1 − z2 = −2 x1 + x2 + x3 = 5

(2, 3, 0)

(2, 1, 2) (3, 0, 2)

(5, 0, 0)

Figure 1: On the left, an alcoved polytope with its explicit (H, z)-representation; the
dotted lines represent the elements of the affine Coxeter arrangement of type A2. On
the right, the image of the polytope under the map ψ2 after translation by (1, 1, 1).

Definition 2.3. The i-th hypersimplex of dimension d, denoted by ∆i,d, is the polytope with
(H, x)-representation

∆i,d =

{
(x1, x2, . . . , xd) ∈ Rd

x :
0 ≤ xi ≤ 1 for 1 ≤ i ≤ d

x1 + x2 + · · ·+ xd = i

}
. (2.1)

The standard simplex of dimension d is the first hypersimplex of dimension d, that is
∆1,d. It can also be described as the convex hull of the standard basis vectors in Rn

x . A
unimodular simplex is a polytope S that is affinely equivalent to ∆1,d.

A subdivision of a polytope P is a collection of polytopes P such that every face of
a polytope in P is also in P, any two polytopes in P intersect in a common face and
the union of all the polytopes in P equals P. If all the polytopes in the collection are
(unimodular) simplices, we call the subdivision a (unimodular) triangulation. From a
triangulation, we can encode the adjacency of the maximal simplices in a graph.

Definition 2.4. Let T be a triangulation of a polytope P. The dual graph of the triangu-
lation GT has vertex set equal to the maximal simplices of T and two such simplices
S1 and S2 form an edge, which we denote by S1 ∼ S2, whenever the dimension of the
polytope S1 ∩ S2 is dim(P)− 1.

One of the many interesting features of alcoved polytopes is that they come equipped
with a unimodular triangulation. We refer to it as the alcoved triangulation. It is induced
by the affine Coxeter arrangement of type An−1 that subdivides Rn−1

z into unimodular sim-
plices called alcoves (see Figure 1 for the case n = 3).
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Definition 2.5. For an alcoved polytope P, let A(P) be the set of maximal simplices (with
respect to inclusion) in the alcoved triangulation of P. We refer to an element A ∈ A(P)
as an alcove of P, and usually identify it with the set of its vertices.

Lam and Postnikov [6] gave the following a combinatorial description of the alcoves
of an alcoved polytope with (H, x)-representation.

Definition 2.6. Let I = {I1, I2, . . . , Ik} be a collection of r-multisets of {1, 2, . . . , n} where
for each multiset we assume Ij = {Ij1 ≤ Ij2 ≤ . . . ≤ Ijr}. We say that the collection I is
sorted if

I11 ≤ I21 ≤ . . . Ik1 ≤ I21 ≤ I22 ≤ . . . ≤ Ikr.

Denote by MI the matrix associated to the collection of multisets I constructed by using the
(ordered) multisets as rows. Then I is sorted if the concatenation of columns of MI from
left to right and top to bottom is weakly increasing.

Definition 2.7. For an nonnegative integer vector a⃗ ∈ Nn such that a1 + a2 + · · ·+ an = r,
let I⃗a be the r-multiset of {1, 2, . . . , n} with ai elements “i” for each i. For a collection
of vectors A = {⃗a1, a⃗2, . . . , a⃗k} ⊆ Nn such that the coordinates of all of them sum to r,
define the collection of multisets of A as IA = { I⃗a1

, I⃗a2 , . . . , I⃗ak
}.

Suppose P has a (H, x)-representation in Rn
x such that all points of P have non-

negative coordinates. If this is not the case, by translating P using the vector m⃗1 =
(m, m, . . . , m) ∈ Rn

x for a sufficiently large m ∈ Z we obtain an affinely equivalent al-
coved polytope with the desired property. Denote by ZP = P∩Zn ⊆ Nn the set of lattice
points of P.

Theorem 2.8 ([6, Theorem 3.1]). Let P ⊆ Rn
x be an alcoved polytope lying in the hyperplane

x1 + x2 + · · ·+ xn = k such that all its points have nonnegative coordinates. A simplex with
vertices A = {⃗a1, a⃗2, . . . , a⃗n} ⊆ ZP is an alcove in A(P) if and only if IA is a sorted collection
of k-multisets.

3 Alcoved triangulations of dilated hypersimplices

For an alcoved polytope, its normalized volume is given by |A(P)| (see [1, Section 5.4]
for the general discussion on relative volume and [6, Theorem 3.2] for the particular case
of alcoved polytopes). Thus, in order to compute the normalized volume of an alcoved
polytope it is enough to understand the set A(P).

Definition 3.1. Let P be an alcoved polytope. A labeling of A(P) using the elements of a
finite set S is a bijection f : A(P) −→ S.
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A famous result from Laplace [8] states that the normalized volume of ∆i,d is A(d, i).
The first triangulation of the hypersimplex that showed this identity combinatorially
was constructed by Stanley [9]. We give another combinatorial proof of this result in
Section 3.2 by constructing a labeling of A(∆i,d) with permutations in Sd with i − 1
descents. Now note that the right-hand side of Equation (1.1) can be rewritten as

rd A(d, i) = rd vol(∆i,d) = vol(r∆i,d)

where r∆i,d is the dilation of the hypersimplex by a factor of r:

r∆i,d =
{

x⃗ ∈ Rd+1
x : 0 ≤ x1 , x2 , . . . , xd+1 ≤ r and x1 + x2 + · · ·+ xd+1 = ir

}
.

Thus, we want to describe a labelings of the alcoves of r∆i,d using suitable objects in
order to prove the identity. However, we first consider the case of the standard simplex
since it contains important ideas in order to construct the general labelings.

3.1 The dilated standard simplex

3.1.1 Labeling of the alcoves with words

We start by reinterpreting the sorted sets IA from Theorem 2.8 using words.

Definition 3.2. Let I = {I1, I2, . . . , Ik} be a sorted collection of different r-multisets of
{1, 2, . . . , n}. The decorated matrix M̃I is constructed as follows. Arrange the numbers of
MI in a k × r grid and then (using matrix coordinates)

(a) if Iab < I(a+1)b mark the edge between the cells (a, b) and (a + 1, b) in the grid, and

(b) if Inb < I1(b+1) mark the bottom edge of cell (n, b) in the grid.

Example 3.3. Fix n = 8 and r = 6. Consider the set of points

A = {⃗a1, a⃗2, a⃗3, a⃗4, a⃗5} = {(2, 1, 0, 1, 1, 0, 0, 1), (2, 0, 1, 1, 1, 0, 0, 1),

(1, 1, 0, 2, 0, 1, 0, 1), (1, 1, 0, 1, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0, 1, 1)} ⊆ R8

The decorated matrix M̃I for I = IA = { I⃗a1
, I⃗a2 , I⃗a3 , I⃗a4

, I⃗a5} is

1
1
1
1
1

1
1
2
2
2

2
3
4
4
4

4
4
4
5
5

5
5
6
6
7

8
8
8
8
8
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We now examine the case of sorted sets arising from the alcoves of the dilated stan-
dard simplex.

Lemma 3.4. Let A = {⃗a1, a⃗2, . . . , a⃗d+1} be the set of vertices of an alcove of r∆1,d and let
I = IA be the associated sorted collection of r-multisets. Then the decorated matrix M̃I satisfies
that for each 1 ≤ i ≤ d, there is a unique mark between rows i and i + 1, and there are no marks
in the bottom part of the matrix.

The previous lemma allows us to define a labeling of A(r∆1,d) by recording the posi-
tion of the unique mark in each of the rows.

Definition 3.5. Let word1 : A(r∆1,d) → [r]d be the map defined as follows. If A is
the set of vertices of an alcove of r∆1,d with associated collection of multisets I = IA
then word1(A) is obtained by reading the column label of the marks of M̃I from top to
bottom.

Theorem 3.6. The map
word1 : A(r∆1,d) −→ [r]d

is a bijection.

Example 3.7. Fix d = 4 and r = 6. The set of points

A = {(3, 1, 1, 0, 1), (2, 2, 1, 0, 1), (2, 2, 0, 1, 1), (2, 1, 1, 1, 1), (2, 1, 1, 0, 2)}

defines an alcove of 6∆1,4 ⊆ R5
x. The decorated matrix in this case is

1
1
1
1
1

1
1
1
1
1

1
2
2
2
2

2
2
2
3
3

3
3
4
4
5

5
5
5
5
5

and then word1(A) = 3 5 4 5 ∈ [6]4.

3.1.2 Labeling of the alcoves with pairs of compositions and permutations

We start by associating a composition to each collection of nonnegative integer vectors.

Definition 3.8. Let V = {v⃗1, v⃗2, . . . , v⃗m} ⊆ Nd+1 be a collection of vectors with nonnega-
tive integer coordinates. Define comp(V) = (c1, c2, . . . , cd+1) to be the composition with
parts ck = min

{
(⃗vj)k | j ∈ [m]

}
where (⃗vj)k denotes the k-th entry of the vector v⃗j.

If we restrict to collections of vertices of alcoves of a dilated standard simplex, we can
give a description of the composition using decorated matrices.
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Lemma 3.9. Let A = {⃗a1, a⃗2, . . . , a⃗k} ∈ A(r∆1,d). Then comp(A) = (c1, c2, . . . , cd+1) satis-
fies the following conditions: c1 = k if the first mark is in column k + 1 and cd+1 = ℓ if the last
mark is in column r − ℓ. For 2 ≤ i ≤ d, suppose the i-th mark is in column bi. Then

ci =

{
bi − bi−1 − 1 if the i-th mark is higher than the (i − 1)-th mark
bi − bi−1 if the i-th mark is higher than the (i − 1)-th mark

Now we associate a permutation to each of the alcoves of the dilated hypersimplices.

Definition 3.10. Let A = {⃗a1, a⃗2, . . . , a⃗d+1} ∈ A(r∆1,d). Define σA ∈ Sd to be the permu-
tation such that its one-line notation of is the word obtained from M̃IA by recording the
position of the marks reading the columns from top to bottom and from left to right in
the matrix.

Example 3.11. For the alcove A ∈ A(6∆1,4) from Example 3.7, comp(A) = 2 1 0 0 1, and
σA = 1 3 2 4 in one-line notation.

With these two objects we can construct the second labeling that allows us to prove
Equation (1.2) combinatorially.

Theorem 3.12. The map

pair1 : A(r∆1,d) −→
d⋃

j=1

C(r − 1, d + 1, r − j)×A(d, j)

given by pair1(A) = (comp(A), σA) is a bijection.

3.1.3 Dual graph of the triangulation

From Theorem 3.6, the maximal simplices of the alcoved triangulation of r∆1,d are labeled
by words in [r]d. The following theorem gives a description of the dual graph of this
triangulation in terms of words. We show the graph for r = 2 and d = 3 in Example 4.2.

Definition 3.13. For r, d ≥ 1, let Gr,d be the graph on vertex set [r]d and edges given by

1. w1 w2 . . . wd ∼ (wd + 1)w1 w2 . . . wd−1 whenever 1 ≤ wd < r, and

2. w1 . . . wi wi+1 . . . wd ∼ w1 . . . wi+1 wi . . . wd for any 1 ≤ i ≤ d − 1 such that
wi ̸= wi+1.

Theorem 3.14. Let T be the alcoved triangulation of r∆1,d. Then GT is isomorphic to Gr,d.
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3.2 The dilated hypersimplex

The map σ• from Definition 3.10 can be defined for alcoves of ∆i,d in an analogous way.
Moreover, this map gives a new combinatorial proof of the fact the Eulerian numbers
coincide with the volumes of the hypersimplices.

Theorem 3.15. For 1 ≤ i ≤ d, the map

σ
(i)
• : A(∆i,d) −→ A(d, i)

is a bijection, and then vol(∆i,d) = A(d, i).

Let GA,i,d be the dual graph of the alcoved triangulation of ∆i,d. We give a description
of this graph using permutations. We illustrate GA,2,3 in Example 4.2.

Proposition 3.16. The graph GA,i,d is isomorphic to the graph with vertex set A(d, i) where
{σ, τ} is an edge if and only if the permutations satisfy that

1. σ = skτ for some k = 1, 2, . . . , d − 1 (where sk is the kth simple transposition), or

2. if σ = σ1 σ2 . . . σd and τ = τ1 τ2 . . . τd are the one-line notations, and ℓ and m are the
indices such that σℓ = 1 and σm = d, then either τℓ = d and τj = σj + 1 for j ̸= ℓ, or
τm = 1 and τj = σj − 1 for j ̸= m.

3.2.1 Labeling of the alcoves with pairs of words and permutations

Theorem 3.6 can be used to label triangulations of dilated polytopes in general as follows.
This construction was considered in [5, Section 4] where the authors study the properties
of the resulting triangulations.

Observation 3.17. Let P be a polytope of dimension d that has a unimodular triangu-
lation T = {Si | i ∈ I}. Consider the (non-unimodular) triangulation rT = {rS | S ∈
T } of rP. Then we can use the map word1 from Section 3.1 to construct a labeling
f : ∆ → I × [r]d of the unimodular triangulation ∆ that arises from alcove-triangulating
each simplex rS ≃ r∆1,d.

Using this observation we can give a labeling of the alcoves of a dilated hypersimplex
as follows. Consider A ∈ A(r∆i,d). It satisfies A ⊆ rB where B ∈ A(∆i,d). Define the
permutation associated to A to be τA = σ

(i)
B . Moreover, there is an affine equivalence

φB : B → ∆1,d. Through this map, φB(A) is an alcove of r∆1,d, and we can compute
its word1. Define the word of A to be word′

i(A) = word1(φB(A)). Using these objects,
together with Theorem 3.15, we obtain the first labeling of A(r∆i,d). We show these
calculations explicitly in Example 3.20.

Theorem 3.18. The map

wordsi : A(r∆i,d) −→ [r]d ×A(d, i)

defined by wordsi(A) = (word′
i(A), τA) is a bijection.
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3.2.2 Labeling of the alcoves with pairs of compositions and permutations

Now we describe a more direct labeling of A(r∆i,d) by extending the maps from Sec-
tion 3.1.2. For alcoves A ∈ A(r∆i,d) we can still construct a composition and a permuta-
tion in a similar way as we did for r∆1,d. We denote by comp′(A) and σ′

A the composition
and permutation (respectively) obtained from M̃IA .

Theorem 3.19. The map

pairi : A(r∆i,d) −→
d⋃

j=1

C(r − 1, d + 1, ir − j)×A(d, j)

given by pairi(A) = (comp′(A), σ′
A) is a bijection.

The maps from Theorems 3.18 and 3.19 are precisely the bijections mentioned in Theo-
rem 1.5.

Example 3.20. Fix d = 5, r = 4, i = 2 and j = 3 as parameters in the previous theorems.
The set of points

A = {(2, 3, 0, 1, 2, 0), (2, 2, 1, 1, 2, 0), (2, 2, 0, 2, 2, 0),

(2, 2, 0, 2, 1, 1), (1, 3, 0, 2, 1, 1), (1, 3, 0, 1, 2, 1)} ⊆ R6
x

defines an alcove in A(4∆2,5). It satisfies conv(A) ⊆ 4A(2)
3 1 2 4 5 where A(2)

• is the inverse

of σ
(2)
• from Theorem 3.15; therefore τA = 3 1 2 4 5. Moreover, A(2)

3 1 2 4 5 = conv(B) with

B = {(1, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0),
(0, 1, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1)}.

Using B as a basis for R6
x, the elements of A can be rewritten as

A ∼= {(1, 0, 1, 0, 2, 0), (1, 1, 0, 1, 1, 0), (0, 0, 2, 0, 2, 0),
(0, 0, 2, 0, 1, 1), (0, 0, 1, 1, 1, 1), (0, 0, 1, 0, 2, 1)}

where ∼= denotes the change of basis from the standard basis to B. From this description
we see that the decorated matrix of A relative to 4A(2)

3 1 2 4 5 is

1
2
3
3
3
3

3
3
3
3
4
5

5
5
5
5
5
5

5
5
5
6
6
6
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Hence we obtain words2(A) = (1 1 4 2 2 , 3 1 2 4 5) ∈ [4]5 ×A(5, 2).
To compute pair2(A) we consider the decorated matrix of IA with respect to the

canonical basis of R6
x. That is,

1
1
1
1
1
1

1
1
1
1
2
2

2
2
2
2
2
2

2
2
2
2
2
2

2
3
4
4
4
4

4
4
4
4
4
5

5
5
5
5
5
5

5
5
5
6
6
6

Then pair2(A) = ((1, 2, 0, 1, 1, 0), 4 1 2 5 3) ∈ C(3, 6, 5)×A(5, 3).

4 Final Remarks

We conjecture the structure of the dual graph of the alcoved triangulation of r∆i,d based
on Theorem 3.14 and Observation 3.17 (see [10, Section 3.2.3] for the definitions).

Conjecture 4.1. Let G = GA,i,d and H = Gr,d. The edge-coloring of G determined by the
hyperplane types prescribes a choice of connecting sets that make G⟨H⟩ isomorphic to the dual
graph of the alcoved triangulation of r∆i,d.

Example 4.2. Consider the case i = 2, d = 3 and r = 2. The graphs G, H, and G⟨H⟩ in
Conjecture 4.1 are

1 1 1

2 1 1

1 2 1

1 1 2

2 2 1

2 1 2

2 2 2

1 2 2

1 1 1

2 1 1

1 2 1

1 1 2

2 2 1

2 1 2

2 2 2

1 2 2

1 1 1

2 1 1

1 2 1

1 1 2

2 2 1

2 1 2

2 2 2

1 2 2

1 1 1

2 1 1

1 2 1

1 1 2

2 2 1

2 1 2

2 2 2

1 2 2

j = 1

j = 2

j = 1

j = 2

G = GA,2,3

H = G2,3

(1, 3, 2) (2, 3, 1)

(2, 1, 3) (3, 1, 2)

1 1 1

2 1 1

1 2 1

1 1 2

2 2 1

2 1 2

2 2 2

1 2 2

The graph composition, shown on the right, is obtained from the connecting sets labeled
by the index j (see [10, Definition 3.36] for the relevant definitions).
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Further, we believe that Observation 3.17 can lead to combinatorial interpretations
of unimodular triangulations of dilation of polytopes arising from combinatorial objects
such as order polytopes and special cases of flow polytopes. Indeed, these polytopes
admit unimodular triangulations labeled by combinatorial objects, so it is natural to
investigate the structure of each individual dilated simplex comprising the triangulation
in terms of "folded" combinatorial objects.
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