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Abstract. This extended abstract is a summary of a paper that studies the colored
multiset Eulerian polynomials. These polynomials are a common generalization of
MacMahon’s multiset Eulerian polynomials and the colored Eulerian polynomials,
both of which are known to satisfy well-studied distributional properties including
real-rootedness, log-concavity and unimodality. The symmetric colored multiset Eule-
rian polynomials are characterized and used to prove sufficient conditions for a colored
multiset Eulerian polynomial to be self-interlacing. The latter property implies the
aforementioned distributional properties as well as others, including the alternatingly
increasing property and bi-γ-positivity. To derive these results, multivariate gener-
alizations of an identity due to MacMahon are deduced. The results are applied to
a pair of questions, both previously studied in several special cases, that are seen to
admit more general answers when framed in the context of colored multiset Eulerian
polynomials. The first question pertains to s-Eulerian polynomials, and the second to
interpretations of γ-coefficients.

Keywords: Eulerian polynomials; colored permutations; h∗-vectors; interlacing poly-
nomials; γ-positivity; weakly increasing trees

1 Introduction

For a positive integer n, we let [n] := {1, 2, ..., n} and [n]0 := {0, 1, ..., n}. We denote by
Mm = {1m1 , 2m2 , ..., nmn}, where m := (m1, m2, ..., mn) ∈ Zn

>0, the multiset of cardinality
m := m1 + · · · + mn containing mk copies of k, for 1 ≤ k ≤ n. The permutations of
the multiset Mm, i.e., words π = π1π2 . . . πm in which k appears exactly mk times, are
called multiset permutations, the set of which we denote SMm . For r := (r1, ..., rn) ∈ Zn

>0,
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we denote by SMr
m the set of colored multiset permutations of Mm, with color-vector r :=

(r1, ..., rn); that is, words of the form πc = πc1
1 πc2

2 . . . πcm
m , where k appears exactly mk

times and 1 ≤ ck ≤ rπk , for each 1 ≤ k ≤ m. When r = 1 := (1, ..., 1), the set SMr
m

coincides with the multiset permutations SMm . When m = 1, SM1
1

is the permutations
of [n], SM21

1
is the signed permutations of [n] and more generally SMr1

1
for r ≥ 1 is the

r-colored permutations of [n], all of which appear frequently in algebraic combinatorics.
Of particular interest are properties of descent statistics defined on SMr1

1
and SM1

m
,

which admit a common generalization via a descent statistic on SMr
m . Let kci represent

the multiset element k with color ci ∈ [rk]. We impose the color ordering [20]

11 < 21 < · · · < n1 < (n + 1)1 < 12 < 22 < · · · < n2 < 13 < · · · < nmax{r1,...,rn},

on the elements in the ground set Mr
m of SMr

m , where we include the extra term (n + 1)1

by setting π
cm+1
m+1 := (n + 1)1 in every colored permutation πc1

1 πc2
2 · · ·πcm

m ∈ SMr
m . We say

that j ∈ [m] is a descent (respectively, ascent) of πc = πc1
1 πc2

2 · · ·πcm
m π

cm+1
m+1 if π

cj
j > π

cj+1
j+1

(respectively, π
cj
j < π

cj+1
j+1 ) according to the color ordering. We denote by DES(πc) the set

of descents of a colored multiset permutation πc, and we let des(πc) = |DES(πc)|.
Early in the 20th century, MacMahon proved the following identity for the multiset

permutations SM1
m

,

∑
π∈SM1

m

xdes(π)

(1 − x)m+1 = ∑
t≥0

(
t + m1

m1

)(
t + m2

m2

)
· · ·
(

t + mn

mn

)
xt. (1.1)

(see, for instance, [15, Volume 2, Chapter IV, page 211].) When m = 1, MacMahon’s
formula recovers a well-known identity for the n-th Eulerian polynomial

An = ∑
π∈Sn

xdes(π),

which is ubiquitous in enumerative and algebraic combinatorics. The Eulerian polyno-
mials An enjoy a variety of sought-after distributional properties including symmetry,
unimodality, log-concavity, real-rootedness as well as γ-positivity [6]. When the Eule-
rian polynomials arise as special cases of larger families of generating polynomials, such
as the P-Eulerian polynomials [19, Chapter 3] or the s-Eulerian polynomials [16], many of
these desirable distributional properties are often seen to extend to the larger family. In
this paper, we consider the colored multiset Eulerian polynomial

AMr
m = ∑

πc∈SMr
m

xdes(π).

These polynomials are a common generalization of both the r-colored Eulerian polynomials
AMr1

1
and MacMahon’s multiset Eulerian polynomials AM1

m
. The distributional properties
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of both r-colored Eulerian polynomials and MacMahon’s multiset Eulerian polynomials
have been studied extensively. For instance, the colored Eulerian polynomials were
shown to be real-rooted, log-concave and unimodal [18], and they are symmetric if and
only if r ∈ {1, 2}. More recently, they were shown to possess a strong distributional
property investigated by Brändén and Solus [8]; namely, they are interlaced by their own
reciprocal. This implies additional distributional properties including bi-γ-positivity,
and real-rootedness, unimodality and log-concavity of their symmetric decomposition.

The colored Eulerian polynomials as well as the (uncolored) multiset Eulerian poly-
nomial for m = 21 were further shown to be s-Eulerian polynomials by Savage and
Visontai [18]. Savage and Visontai conjectured that the same is true for the Type-B
analog AM21

21
[18, Conjecture 3.25] in an effort to more fully describe the combinatorial

generating polynomials that are s-Eulerian; i.e., equal to some s-Eulerian polynomial. To
settle this conjecture, Lin [13, Theorem 6] generalized MacMahon’s formula to signed
multiset permutations, showing that

∑
πc∈SM21

m

xdes(π)

(1 − x)m+1 = ∑
t≥0

n

∏
j=1

(
2t + mj

mj

)
xt. (1.2)

In this extended abstract, we study how the various distributional properties of the
Eulerian polynomials and colored Eulerian polynomials extend to the larger family of
colored multiset Eulerian polynomials. A characterization of AMr

m that are symmet-
ric with respect to degree m (the cardinality of Mm) is provided. This characterization
is applied to show that all AMr

m of degree m are interlaced by their own reciprocal.
This condition implies that these polynomials satisfy a wealth of desirable distributional
properties, including real-rootedness, log-concavity, unimodality, the alternatingly in-
creasing property and bi-γ-positivity. To prove these results, an identity of multivariate
generating functions, generalizing MacMahon’s formula, is proven and utilized. Con-
nections to prior work on s-Eulerian polynomials and combinatorial interpretations of
γ-coefficients of certain polynomials are drawn. Some open questions are also proposed.

2 Preliminaries

The main results of this paper describe the distributional properties of the colored mul-
tiset Eulerian polynomials. We now recall the definitions of the distributional properties
of interest and their basic properties. For a more detailed discussion of these properties
and their significance in combinatorics, we recommend the survey article [6].

A polynomial p(x) = p0 + p1x + · · ·+ pdxd of degree d is unimodal if its coefficients
satisfy p0 ≤ p1 ≤ · · · ≤ ps ≥ · · · ≥ pd for some s ∈ {0, ..., d}. It is log-concave if
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p2
i ≥ pi−1pi+1 for all i = 1, . . . , d. It is well-known that a log-concave polynomial with

no internal zeros is also unimodal.
The polynomial p is called symmetric with respect to degree n if ps = pn−s for all

s = 0, ..., n. The linear space of polynomials that are symmetric with respect to degree n
can be expressed in the basis

{xi(x + 1)n−2i : 0 ≤ i ≤ ⌊n/2⌋, }

commonly referred to as the γ-basis. If a polynomial has nonnegative coefficients in the
γ-basis it is called γ-positive (or γ-nonnegative). If p is γ-positive then it is also unimodal.

The polynomial p is said to be real-rooted if p is a constant polynomial or all its zeros
are real numbers. When the coefficients of p are nonnegative, it follows that p is log-
concave. Moreover, when p is real-rooted and symmetric, p is also γ-positive. Hence, a
proof that p with only positive coefficients is real-rooted and symmetric is a proof that
p satisfies all of the above distributional properties.

The following distributional property has recently received much attention in the con-
text of algebraic combinatorics and discrete geometry: The polynomial p is alternatingly
increasing if p0 ≤ pd ≤ p1 ≤ pd−1 ≤ · · · ≤ p⌊ d+1

2 ⌋. When p is alternatingly increasing, it
is also unimodal. The property has received much attention in algebraic combinatorics
since the following alternative characterization makes proving alternatingly increasing
particularly useful when studying the unimodality of Hilbert polynomials of graded
rings expressed in the multinomial basis.

Given n ≥ d, it can be shown that there exist unique polynomials a, b ∈ R[x] such
that (1) p = a + xb, (2) deg(a) ≤ n, (3) deg(b) ≤ n − 1, (4) a is symmetric with respect
to n, and (5) b is symmetric with respect to n − 1. The pair (a, b) is called the symmetric
decomposition of p with respect to n, or the In-decomposition of p. A basic observation
is that p is alternatingly increasing if and only if both a and b have only nonnegative
coefficients and are unimodal. It is therefore of interest to investigate the distributional
properties of the polynomials in a symmetric decomposition. We say that p has a real-
rooted, unimodal, or log-concave symmetric decomposition whenever both a and b fulfill
the specified condition. When a and b are both γ-positive p is said to be bi-γ-positive.

Note that it is possible for a polynomial that is not real-rooted to have a real-rooted
symmetric decomposition with respect to its degree. For instance, the polynomial 1 +
5x + 17x2 + 15x3 + 2x4 has no real zeros but I4-decomposition ((1 + x)4, A3(x)). In [8],
it was shown that a sufficient condition for a symmetric decomposition to be real-rooted
is that it is interlaced by its own reciprocal. Given two real-rooted polynomials p and q
with respective zeros α1 ≥ α2 ≥ · · · and β1 ≥ β2 ≥ · · · , we say that p is interlaced by q,
denoted q ≺ p if

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · .

In [8], it is shown that a polynomial p of degree d with Id-decomposition (a, b) having
only nonnegative coefficients is interlaced by its own reciprocal Id(p) = xd p(1/x) if and
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only if b ≺ a. In this case, it follows that the symmetric decomposition of p is real-rooted,
log-concave, and unimodal, but we also recover that p is alternatingly increasing, real-
rooted, log-concave, unimodal and bi-γ-positive. Hence, it is of interest to determine
when a given combinatorial generating polynomial interlaces its own reciprocal. This
property was shown to hold, for example, for colored Eulerian polynomials and then
applied to settle several conjectures in algebraic combinatorics [8]. Below, we describe
when this condition generalizes to the class of colored multiset Eulerian polynomials.

3 Generating function identities

To derive the desired results on the distributional properties of the polynomial AMr
m , we

first give a generalization of MacMahon’s formula (1.1) to the colored multiset permu-
tations. The required univariate identity can be recovered from a multivariate identity
that also specializes to other previously observed generalizations and q-analogues of
MacMahon’s formula. Throughout this section, we fix a positive integer n and the pos-
itive integral vectors m = (m1, ..., mn) and r = (r1, ..., rn). We let πc = πc1

1 · · ·πcm
m π

cm+1
m+1

denote a permutation in the set SMr
m . We then have the following result.

Theorem 3.1. For positive integral vectors m = (m1, ..., mn) and r = (r1, ..., rn), we have

∑
πc∈SMr

m

zc1−1
π1 · · · zcm−1

πm ∏
i∈[m+1]\{1}
i−1∈DES(π)

z
rπi
πi · · · zrπm

πm zm+1

∏
i∈[m+1]

(
1 − z

rπi
πi · · · zrπm

πm zm+1
) = ∑

t≥0
zt

m+1 ∏
k∈[n]

rkt + mk

mk


zk

. (3.1)

The proof of Theorem 3.1 is combinatorial, and uses the notion of barred permuta-
tions popularized by Gessel and Stanley [12], further explored by Lin [13] in the study
of signed multiset permutations. While somewhat garish in form, the identity in The-
orem 3.1 specializes to several known identities. Setting zm+1 = x, zk = 1 and r = 1

recovers (1.1). Similarly, (1.2) is recovered by setting zm+1 = x, zk = 1 and r = 21. Equa-
tions (1.1) and (1.2) also have q-analogs that are analogously recovered by an appropriate
specialization. When m = 1 and r = r1 for a positive integer r, (3.1) specializes to a for-
mula of Steingrimsson [20, Theorem 17] for zm+1 = x and zk = 1 (and its q-analog, [4,
Proposition 8.1], for zk = q). Another interesting evaluation arises for zm+1 = x and
zk = q for all k ∈ [n], for r = r1, where (a flag version of) a permutation statistic similar
to the inversion-sequence statistic dmaj considered in [17] appears on the enumerator in
(3.1).

For our study of the distributional properties of AMr
m , the relevant specialization of

the identity in Theorem 3.1 is given by zm+1 = x, zk = 1, which yields the following.
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Corollary 3.2. For positive integral vectors m = (m1, ..., mn) and r = (r1, ..., rn), we have

AMr
m

(1 − x)m+1 = ∑
t≥0

(
n

∏
i=1

(
rit + mi

mi

))
xt.

Corollary 3.2 says that the colored multiset Eulerian polynomial AMr
m is the polyno-

mial ∏n
i=1 (

rix+mi
mi

) expressed in the multinomial basis for the vector space of univariate
polynomials of degree at most d. This observation will allow us to derive real-rootedness
and interlacing results on the Im-decomposition of AMr

m .

Remark 3.3. We note that Corollary 3.2 may alternatively be proven using the identity
[7, Proposition 3.5(5)] associated to the s-lecture hall order polytopes of Brändén and
Leander. Specifically, Corollary 3.2 arises as a mild generalization of [7, Corollary 3.6].

4 Distributional properties

We now consider the distributional properties of the colored multiset Eulerian polyno-
mials AMr

m for positive integral vectors m = (m1, . . . , mn) and r = (r1, . . . , rn). To do so,
we make use of the identity in Corollary 3.2, noting first that this identity has a simple
geometric interpretation.

The Ehrhart polynomial of a d-dimensional convex lattice polytope P ⊂ Rn is L(P; t) =
|tP ∩ Zn|, where tP = {tp : p ∈ P} denotes the t-th dilate of P for t ∈ Z>0. The (Ehrhart)
h∗-polynomial of P, denoted h∗(P; x), is the Ehrhart polynomial of P when expressed in
the multinomial basis for the vector space of polynomials of degree at most d. It is well-
known that the L(∆d; t) = (t+d

d ) when ∆d is the the standard d-dimensional simplex [3,
Theorem 2.2.]. Since L(rP; t) = L(P; rt) for any positive integer r and taking a direct
product of polytopes corresponds to multiplying the Ehrhart polynomials, we have that
the polynomial ∏n

i=1 (
rit+mi

mi
) appearing in Corollary 3.2 is the Ehrhart polynomial of the

product of dilated simplices

Pr
m :=

n

∏
j=1

rj∆mj .

It follows that AMr
m(x) is the h∗-polynomial of Pr

m.

Lemma 4.1. AMr
m(x) = h∗(Pr

m; x).

Lemma 4.1 provides a generalization of the well-known relationship between the
Eulerian polynomials An(x) = AM1

1
and the h∗-vector of the n-dimensional cube, which

is a product of n one-dimensional simplices. We further note that the corresponding
relation for uncolored multisets can arise via the theory of order polytopes for a suitable
choice of posets. Lastly, the case m = (2, ..., 2) and r = (2, ..., 2) has also been studied
(see [1]).

Basic results in Ehrhart theory then imply the following.
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Lemma 4.2. AMr
m has degree m + 1 − maxk∈[n]

⌈
mk+1

rk

⌉
.

Results of Hibi and DeNegri [9] can then be applied to characterize when AMr
m is

symmetric with respect to degree m.

Theorem 4.3. AMr
m is symmetric (with respect to its degree) if and only if

max
k∈[n]

⌈
mk + 1

rk

⌉
rj = mj + 1 for all j ∈ [n]. (4.1)

It follows that AMr
m is symmetric with respect to its degree m if and only if rj = mj + 1

for all j ∈ [n].
Theorem 4.3 can in turn be applied to describe when the polynomial AMr

m is inter-
laced by its own reciprocal, and hence fulfills the numerous distributional properties de-
scribed in Section 2. To do so, one uses the subdivision operator, which is the linear trans-
formation on the space of univariate polynomials given by E : (x

k) 7−→ xk. When applied
to an Ehrhart polynomial L(P; t) that can be expressed as L(P; t) = ∑d

i=0 citi(1 + t)d−i

for nonnegative ci, the subdivision operator returns a [−1, 0]-rooted polynomial that is
the h∗-polynomial up to a transformation that preserves (−∞, 0)-rootedness [5]. Hence,
h∗(P; x) is real-rooted, log-concave and unimodal. It can be shown that Ehrhart polyno-
mial L(Pr

m; t) does indeed have nonnegative coefficients in this so-called magic basis [10]
ti(1 + t)d−i, i = 0, . . . , d. Since the polynomials satisfying rj = mj + 1 for all j ∈ [n] are
symmetric with respect to their degree m, they are trivially interlaced by their own recip-
rocal. Applying the results of [8] allows us to deduce the following more general result.

Theorem 4.4. Suppose that m, r satisfy rj ≥ mj + 1 for all j = 1, ..., n. Then

Im(AMr
m) ≺ AMr

m .

It follows that if rj ≥ mj + 1 for all j = 1, ..., n, then the colored multiset Eulerian
polynomial AMr

m(x) is real-rooted, log-concave, unimodal, alternatingly increasing and
bi-γ-positive with a real-rooted, log-concave and unimodal Im-decomposition. This gen-
eralizes the observation of Brändén and Solus [8, Corollary 3.2] for colored Eulerian
polynomials to the colored multiset Eulerian polynomial setting.

5 Combinatorial interpretations

We end with a discussion of some alternative interpretations of certain colored multiset
Eulerian polynomials as a motivation for future work connecting these polynomials with
desirable distributional properties to other lines of combinatorial investigation.
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5.1 s-Eulerian polynomials

The s-Eulerian polynomials Es
n are a large family of combinatorial generating polynomi-

als defined for any sequence of positive integers s = (s1, . . . , sn). They are known to be
real-rooted and admit numerous connections to classically studied problems, including
the enumeration of lecture hall sequences, as well as connections to discrete geome-
try where they are interpreted as h∗-polynomials of s-lecture hall simplices Ps

n; namely,
Es

n = h∗(Ps
n; x). The s-Eulerian polynomials are surveyed in [16]. It is shown in [18],

for instance, that E(r,2r,...,rn)
n = AMr1

1
, the r-colored Eulerian polynomial and AM1

21
= Es

2n,
where s = (1, 1, 3, 2, 5, 3, . . . , 2n − 1, n).

In the following, we fix s = (1, 1, 3, 2, . . . , 2n − 1, n), p = (1, 1, 3, . . . , n − 1, 2n − 1)
and rs = (r, r, 3r, 2r, . . . , r(2n − 1), rn), rp = (r, r, 3r, . . . , r(n − 1), r(2n − 1)) for r ≥ 1.
It is seen that the s-lecture hall simplex Prs

2n is the r-th dilate of Ps
2n; that is, Prs

2n = rPs
2n.

Similarly, Prp
2n−1 = rPp

2−1n. In [17, Theorem 14], it is shown that

∑
t≥0

(t + 1)n
(

t + 2
2

)n
xt =

Es
2n

(1 − x)2n+1 and ∑
t≥0

(t + 1)n
(

t + 2
2

)n−1

xt =
Ep

2n−1
(1 − x)2n .

It follows that the Ehrhart polynomials of Prs
2n and Prp

2n−1 are, respectively,

L(Prs
2n; t) = (rt + 1)n

(
rt + 2

2

)n
and L(Prp

2n−1; t) = (rt + 1)n
(

rt + 2
2

)n−1

.

It then follows from Equation (3.1) that AMr1
21
= Ers

2n and AMr1
(2,...,2,1)

= Erp
2n−1 for any r ≥ 1.

Hence we have observed the following.

Proposition 5.1. The colored multiset Eulerian polynomial AMr
m is an s-Eulerian polynomial

for any m ∈ {(1, . . . , 1), (2, . . . , 2), (2, . . . , 2, 1)} and r = r1 for any r ≥ 1.

It follows from Theorem 4.4 that for r ≥ 3 the s-Eulerian polynomials captured in
Proposition 5.1 satisfy the strongest distributional property in Section 2; namely, they are
interlaced by their own reciprocal and hence satisfy all other distributional properties
of interest. In the case that r = 1, the same is true for Es

2n since it is known to be
symmetric and real-rooted by prior work [18] as well as in [1, Theorem 6.2] where these
polynomials appear in the study of bipermutohedra. Ep

2n−1 is also known to have a real-
rooted symmetric decomposition [14]. Similarly, when r = 2, it is only known that E2s

2n
and E2p

2n−1 are bi-γ-positive. This connection prompts the following question.

Question 5.2. Characterize the colored multiset Eulerian polynomials that are s-Eulerian
polynomials. What are the strongest distributional properties they satisfy?
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Such results may give us deeper insights into when an s-Eulerian polynomial inter-
laces its own reciprocal. To see that such a characterization may be challenging, we note
that there is no s-sequence and n ≥ 1 such that Es

n = AMr
m for r = (1, 1) and m = (3, 3).

Remark 5.3. In [7], Brändén and Leander introduced a common generalization of s-
lecture hall simplices and order polytopes called s-lecture hall order polytopes. If p =
h∗(O(P, s); x), we say that p is (P, s)-Eulerian. Question 5.2 asks when AMr

m is s-Eulerian.
We saw above that not all colored multiset Eulerian polynomials have this property. On
the other hand, AMr

m is always (P, s)-Eulerian.

5.2 Interpreting γ-coefficients

The results of Theorem 4.4 and the observations on bi-γ-positivity in the previous sub-
section yield a large family of relatively unexplored combinatorial generating polynomi-
als that are γ-positive. A natural endeavour is then to explore combinatorial interpreta-
tions of these γ-coefficients. Such investigations may prove fruitful in, for instance, the
development of a complete understanding of the γ-coefficients for s-Eulerian polynomi-
als. We motivate this investigation with a complete characterization of the γ-coefficients
in the symmetric decompositions of AM1

21
and AM1

(2,...,2,1)
.

A plane tree is a rooted tree in which the children of each node are ordered (according
to any ordering).

Definition 5.4 (Weakly increasing trees [14]). Let M = {1m1 , 2m2 , · · · , nmn} be a multiset.
A weakly increasing tree on M is a plane tree that:

(i) contains |M|+ 1 nodes, labeled by the elements in M ∪ {0},

(ii) its root is labeled by 0 and each node receives a label weakly greater than its parent,

(iii) the labels of the children of each node are weakly increasing from left to right.

A leaf or an internal node (other than the root) of a weakly increasing tree is old if
it is the rightmost child of its parent; otherwise, it is young. The polynomial AM1

21
is

known to be symmetric, and hence it is its own symmetric decomposition. Since it is
also real-rooted, it is γ-positive. In [14] it was shown that its γ-coefficient γi counts the
number of weakly increasing trees on M1

21 with i + 1 leaves and no young leaves. The
polynomial AM1

(2,...,2,1)
is not symmetric with respect to its degree, but it is known to be

bi-γ-positive [14]. The b-polynomial in its symmetric decomposition is a scalar multiple
of AM1

21
[14], and hence we recover a combinatorial description of the γ-coefficients by

the result above. For the a-polynomial, one can extend the methods of [14] to prove the
following.
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Theorem 5.5. For n ≥ 1, the a-polynomial in the symmetric decomposition of AM1
(2,...,2,1)

satisfies

a(x) =
(n−1)

∑
i=0

γn,ixi(1 + x)2(n−1)+1−2i, (5.1)

where γn,i is the number of weakly increasing trees on {12, 22, · · · , (n− 1)2, n, n+ 1} with i + 1
leaves and no young leaves.

Theorem 4.4 yields a large family of relatively unexplored combinatorial generat-
ing polynomials that are bi-γ-positive. A natural endeavour is to explore combinatorial
interpretations of these γ-coefficients. Such investigations may prove fruitful in, for in-
stance, the development of a complete understanding of the γ-coefficients for s-Eulerian
polynomials when interpreted through the lens of Proposition 5.1. Hence, in this section,
we provide results pertaining to the following general question:

Question 5.6. Let (a, b) be the Id-decomposition of a bi-γ-positive colored multiset Eu-
lerian polynomial AMr

m , where d is the degree of AMr
m . What is a combinatorial inter-

pretation of the coefficients of a and b when expressed in the γ-basis?

Theorem 4.4 provides a general family of colored multiset Eulerian polynomials that
are bi-γ-positive for which Question 5.6 may be considered. This family includes the
previously studied colored Eulerian polynomials AMr1

1
for r ≥ 1. In [2, Question 2.27],

Athanasiadis considers a special case, asking for a solution to Question 5.6 for AMr1
1

for
r ≥ 1. A solution to Athanasiadis’s question would extend the well-known interpretation
of the γ-coefficients for the Eulerian polynomial An = AM1

1
due to Foata and Strehl

[11] (see for instance [6, Section 3.1]), to all colored Eulerian polynomials. Hence, one
could more generally solve Athanasiadis’s question by solving Question 5.6 for all AMr

m

captured in Theorem 4.4.
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