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Commutative Properties of Schubert Puzzles with
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Abstract. We generalize classical triangular Schubert puzzles to puzzles with convex
polygonal boundary. We give these puzzles a geometric Schubert calculus interpreta-
tion and derive novel combinatorial commutativity statements, using both geometric
and combinatorial arguments, for puzzles with four, five, and six sides, having various
types of symmetry in their boundary conditions.
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1 Introduction

Since their introduction in [3] in 1999, Schubert puzzles have been the subject of contin-
uous research activity, but little work has been done to study non-triangular puzzles up
until now. In this extended abstract, we give a survey of the commutative properties of
generalized convex polygonal Schubert puzzles of the type that compute structure con-
stants in the ordinary cohomology of the Grassmannian. These properties are analogous
to the commutative property of classical triangular puzzles. We remark that these results
extend to puzzles that compute the cohomology of 2-step and 3-step flag varieties, as
well as puzzles that compute the K-theory of the Grassmannian. We also present an
analogue of commutativity for parallelogram-shaped equivariant puzzles.

This work was motivated by the observation that convex polygonal puzzles can be
given a geometric interpretation by associating them to classes of triangular puzzles
whose boundary conditions follow a certain form. Once translated to this more classi-
cal setting, the statements about polygonal puzzles can be proven geometrically or by
using basic properties of triangular puzzles. Future research directions include finding
interpretations or extensions of these results in other contexts.

1.1 Schubert Puzzles

1.1.1 Classical triangular puzzles

Classically, a Schubert puzzle is a tiling of an equilateral triangular region, whose
boundary we denote , using a set of labeled unit triangles
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called puzzle pieces, so that any two glued edges have the same label, and only 0 and 1

labels appear along the outer boundary , not 10s.
An equilateral triangular boundary whose NW, NE, and South sides are labeled with

strings λ, µ, and ν in the orientations shown in Figure 1a will be denoted λ,µ,ν, and a
puzzle with this boundary labeling will be called a λ,µ,ν-puzzle. See Figure 1b for an
example.
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(b) A 1010,0101,0011-puzzle

Figure 1

Triangular puzzles have three-fold rotational symmetry, i.e. there are bijections

{ λ,µ,ν-puzzles} ↔ { µ,ν,λ-puzzles} ↔ { ν,λ,µ-puzzles}

obtained by rotating puzzles in 120◦ increments. Triangular puzzles also have a commu-
tative property, i.e. that #{ λ,µ,ν-puzzles} = #{ µ,λ,ν-puzzles}, which is non-obvious
from a combinatorial standpoint. A bijective combinatorial proof is given by Purbhoo in
[4] using mosaics, which are objects that are in natural bijection with puzzles.

1.1.2 Equivariant puzzles

An equivariant puzzle, first described in [2], is one in which we additionally allow the

equivariant piece

01

01 . This piece has a weight of the form yj − yi, where (i, j) is uniquely

determined by its position in the puzzle.

1.1.3 Puzzles with convex polygonal boundary

Now we will generalize the definition of “puzzles” to include puzzle piece tilings of con-
vex polygonal shapes, where again only 0 and 1 labels are allowed to appear along the
outer boundary, not 10s. This allows us to have puzzles with trapezoidal, parallelogram-
shaped, pentagonal, and hexagonal boundary as well. (See Figure 2 for examples.)
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Similarly to λ,µ,ν, we will use a shape symbol (where only the number of sides
and angles matter, not side lengths) with a subscript sequence of strings, read clockwise
starting from the SW, to denote a labeled boundary.
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(a) 101,0101,0010111,1010-
puzzle example
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(b) 101,0101,011,0011-
puzzle example
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(c) 00,01111,0001,111,10-
puzzle example
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(d) 0,0111,01,01,011,011-
puzzle example

Figure 2: Examples of puzzles with convex polygonal boundary shapes.

1.2 Schubert calculus

1.2.1 Schubert varieties

Let Gr(k; Cn) denote the Grassmannian of k-dimensional subspaces of Cn. We will
write λ ∈ ([n]k ) to mean that λ is a binary string with a content of k 1s and n − k 0s. Let

λ = λ1λ2 · · · λn ∈ ([n]k ), and let F• be the standard complete flag {0} = F0 ⊂ F1 ⊂ · · · ⊂
Fn = Cn. Then Xλ is the Schubert variety in Gr(k; Cn) defined by

Xλ(F•) := {V ∈ Gr(k; Cn) : dim(V ∩ Fi) ≥ λ1 + λ2 + · · ·+ λi}.

We will use the superscript ∨ to denote the operation of reversing a string. Then Xλ

is the opposite Schubert variety defined by Xλ := w0 · Xλ∨ , where w0 is the anti-
diagonal permutation matrix. The classes {[Xλ] : λ ∈ ([n]k )} form a Z-basis for the

cohomology ring H∗(Gr(k; Cn)), and the classes {[Xλ] : λ ∈ ([n]k )} form a dual basis with∫
Gr(k;Cn)[Xλ][Xµ] = δλ,µ. The classes of these Schubert varieties also form dual bases over

Z[y1, . . . , yn] in the T-equivariant cohomology H∗
T(Gr(k; Cn)) := H∗(ET ×T Gr(k; Cn)),

where T = (C×)n and ET is a contractible space with a free T-action.

1.2.2 Schubert calculus

The goal of Schubert calculus is to compute the structure constants in various co-
homology theories in the Schubert basis. In H∗(Gr(k; Cn)), the structure constants
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cν
λ,µ =

∫
Gr(k;Cn)[Xλ][Xµ][Xν] are positive, and in fact they are the Littlewood–Richardson

(LR) numbers that arise in symmetric function theory. (Usually these are indexed by
triples of partitions, but we can identify our binary strings with partitions that fit in a
k × (n − k) rectangle via a simple bijection.)

1.2.3 Puzzles compute Schubert calculus

It is a result of Knutson–Tao–Woodward in [3] that puzzles using the basic puzzle piece
set compute the structure constants of H∗(Gr(k; Cn)) in the Schubert basis:

cν
λ,µ = #{ λ,µ,ν∨-puzzles}.

Knutson–Tao later proved in [2] that equivariant puzzles compute the structure con-
stants, which we denote (cT)

ν
λ,µ, of H∗

T(Gr(k; Cn)) according to the following formula:

(cT)
ν
λ,µ = ∑

λ,µ,ν∨ -puzzles P

weight(P) = ∑
λ,µ,ν∨ -puzzles P

 ∏
equivariant

pieces p in P

weight(p)

 .

1.3 Main Theorems

Theorems 1.1 (Commutative Properties of Convex Polygonal Puzzles). For each labeled
boundary shape drawn below, we can commute the labels on any pair of sides with matching
colored squiggly lines while preserving the number of puzzles filling the boundary. Namely,

(a)

(Commutative Property of Puzzles with Split Symmetry)
For α, β ∈ ([a]a1

), γ, δ ∈ ([c]c1
), and ν ∈ ( [c+a]

a1+c1
),

#{ αγ,ν,δβ-puzzles} = #{ βγ,ν,δα-puzzles}
= #{ αδ,ν,γβ-puzzles} = #{ βδ,ν,γα-puzzles}.

δ

α

γ

ν

β

(b)

(Commutative Property of Trapezoidal Puzzles)
For β ∈ ([a]a1

), γ, δ ∈ ([c]c1
), and ν ∈ ( [c+a]

a1+c1
),

#{ β,γ,ν,δ-puzzles} = #{ β,δ,ν,γ-puzzles}.

δ

β

γ

ν
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(c)

(Commutative Property of Parallelogram-Shaped Puzzles)
For α, β ∈ ([a]a1

) and γ, δ ∈ ([c]c1
),

#{ α,γ,β,δ-puzzles} = #{ β,γ,α,δ-puzzles}

= #{ α,δ,β,γ-puzzles} = #{ β,δ,α,γ-puzzles}.

γ
β

δ

α

(d)

(Commutative Property of Symmetric Rhombus-Shaped Puzzles)
For α, β, γ, δ ∈ ([a]a1

) and any bijection
f : {α, β, γ, δ} → {α, β, γ, δ},

#{ α,γ,β,δ-puzzles} = #{ f (α), f (γ), f (β), f (δ)-puzzles}.

γ β

δα

(e)

(Commutative Property of Symmetric Pentagonal Puzzles)
For β, ζ ∈ ([b]b1

), γ, ϵ ∈ ([c]c1
), and δ ∈ ([d]d1

),

#{ β,γ,δ,ϵ,ζ-puzzles} = #{ ζ,γ,δ,ϵ,β-puzzles}
= #{ β,ϵ,δ,γ,ζ-puzzles} = #{ ζ,ϵ,δ,γ,β-puzzles}. ζ

β

γ
δ

ϵ

(f)

(Commutative Property of Hexagonal Puzzles with Opposite Sides
Symmetry)

For α, δ ∈ ([a]a1
), β, ϵ ∈ ([b]b1

), and γ, ζ ∈ ([c]c1
), and any bijections

f : {α, δ} → {α, δ}, g : {β, ϵ} → {β, ϵ}, and
h : {γ, ζ} → {γ, ζ},

#{ α,β,γ,δ,ϵ,ζ-puzzles} = #{ f (α),g(β),h(γ), f (δ),g(ϵ),h(ζ)-puzzles}.

β
γ

δ

ϵ
ζ

α

(g)

(Commutative Property of Hexagonal Puzzles with Two-Way
Symmetry)

For α ∈ ([a]a1
), β, ζ ∈ ([b]b1

), γ, ϵ ∈ ([c]c1
), and δ ∈ ([d]d1

),

#{ α,β,γ,δ,ϵ,ζ-puzzles} = #{ α,ζ,γ,δ,ϵ,β-puzzles}
= #{ α,β,ϵ,δ,γ,ζ-puzzles} = #{ α,ζ,ϵ,δ,γ,β-puzzles}. ζ

α

β

γ

δ

ϵ
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(h)

(Commutative Property of Hexagonal Puzzles with Three-Way
Symmetry)

For α, γ, ϵ ∈ ([a]a1
) and β, δ, ζ ∈ ([b]b1

), and any bijections
f : {α, γ, ϵ} → {α, γ, ϵ} and g : {β, δ, ζ} → {β, δ, ζ},

#{ α,β,γ,δ,ϵ,ζ-puzzles} = #{ f (α),g(β), f (γ),g(δ), f (ϵ),g(ζ)-puzzles}. ζ
α

β

γ

δ

ϵ

(i)

(Commutative Property of Hexagonal Puzzles with All-Way
Symmetry)

For α, β, γ, δ, ϵ, ζ ∈ ([a]a1
) and any bijection

f : {α, β, γ, δ, ϵ, ζ} → {α, β, γ, δ, ϵ, ζ},

#{ α,β,γ,δ,ϵ,ζ-puzzles} = #{ f (α), f (β), f (γ), f (δ), f (ϵ), f (ζ)-puzzles}. ζ

α

β

γ

δ

ϵ

Remark 1.2. Theorems 1.1 have analogous statements for 2-step and 3-step puzzles, as

well as puzzles that include the piece 10

10

10
, which compute stucture constants in the

K-theory K(Gr(k; Cn)) in the Schubert structure sheaf basis {[Oλ] : λ ∈ ([n]k )}. Most
proofs go through with little change. Details are given in [1] but are omitted here.

In Section 3.4, we will also give a commutative property for parallelogram-shaped
equivariant puzzles.

2 Preliminaries

2.1 A geometric interpretation of convex polygonal puzzles

We can give a convex polygonal puzzle a familiar geometric Schubert calculus interpre-
tation via an operation to “complete” it to a triangular puzzle.

Let sort denote the operation of moving all of the 0s in a binary string ahead of all
the 1s. So, for λ ∈ ([n]k ), we have sort(λ) = 0n−k1k.

Proposition 2.1. By completing polygonal puzzles to triangular puzzles, we obtain the following:

(a) For β ∈ ([a]a1
), γ, δ ∈ ([c]c1

), and ν ∈ ( [c+a]
a1+c1

), there is a bijection

{ β,γ,ν,δ-puzzles} ↔ { sort(β)γ,ν,δβ-puzzles}.

(b) For α, β ∈ ([a]a1
) and γ, δ ∈ ([c]c1

), there is a bijection

{ α,γ,β,δ-puzzles} ↔ { sort(α)γ,β sort(δ),δα-puzzles}.
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(c) For α ∈ ([a]a1
), β ∈ ([b]b1

), γ ∈ ([c]c1
), δ ∈ ([d]d1

), ϵ ∈ ([e]e1
), and ζ ∈ ([z]z1

), there is a bijection

{ α,β,γ,δ,ϵ,ζ-puzzles} ↔ { sort(α)βγ,sort(γ)δ sort(ϵ),ϵζα-puzzles}.

Proof. See Figure 3. Given the labels on the triangular boundaries, there exists a unique
filling of each grey triangular region with puzzle pieces, which forces the labels around
the inner pink regions to replicate those for the polygons on the top row. In each case, a
bijection is given by gluing on the uniquely filled grey regions, and the inverse is cutting
them off.

β

γ

ν

δ

↕

β

β

sort(β)

γ

ν

δ

∃!

(a)

γ
β

α δ

↕

α
δ

α

sort(α)

γ
β

sort(δ)

δ

∃! ∃!

(b)

α

γ

ϵ

β

δ

ζ

↕

α

γ

ϵ

β

δ

ζ

γ

α ϵ

sort(ϵ)

sort(γ)

sort(α)

∃!

∃!

∃!

(c)

Figure 3: The operations of completing polygonal puzzles to triangular puzzles.

2.2 Geometric lemmas

The following two lemmas form the foundation upon which all of the geometric proofs
of the theorems are built. In particular, Lemma 2.3 tells us how we can swap substrings
in the labels on two different sides of a triangular boundary when certain symmetries
are present, such as the ones seen in the triangular boundary labels in Figure 3.

Lemma 2.2. Let F• and F̃• be the standard and anti-standard complete flags in Ca+c, respectively.
Let T := (C×)a+c, and define the T-equivariant closed immersion

Ω : Gr(a1; Fa)× Gr(c1; F̃c) ↪→ Gr(a1 + c1; Ca+c), (V, W) 7→ V ⊕ W.
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Then for α, β ∈ ([a]a1
) and γ, δ ∈ ([c]c1

), we have

Xαγ ∩ X(δβ)∨ = Ω((Xα ∩ Xβ∨)× (Xγ ∩ Xδ∨)), (1)

and
[Xαγ][X(δβ)∨ ] = Ω∗([Xα][Xβ∨ ]⊗ [Xγ][Xδ∨ ]) (2)

in H∗
T(Gr(a1 + c1; Ca+c)) and in H∗(Gr(a1 + c1; Ca+c)).

Proof idea. In [1], we prove the equality of sets in statement (1) by checking that there is
an inclusion in both directions, by directly verifying that the conditions on intersection
dimensions encoded by the strings are satisfied. Then statement (2) follows immediately
from statement (1).

Lemma 2.3. Define block matrices Φa :=
[

Ja 0
0 Ic

]
and Φc :=

[
Ia 0
0 Jc

]
in GL(Ca+c), where

Ia and Ja (resp. Ic and Jc) denote the a × a (resp. c × c) identity and anti-diagonal permutation
matrices, respectively. Let α, β ∈ ([a]a1

) and γ, δ ∈ ([c]c1
). Then,

(i) in H∗
T(Gr(a1 + c1; Ca+c)), we have

[Xαγ][X(δβ)∨ ] = Φa · ([Xβγ][X(δα)∨ ]) = Φc · ([Xαδ][X(γβ)∨ ]) = Φc ·Φa · ([Xβδ][X(γα)∨ ])

(ii) in H∗(Gr(a1 + c1; Ca+c)), we have

[Xαγ][X(δβ)∨ ] = [Xβγ][X(δα)∨ ] = [Xαδ][X(γβ)∨ ] = [Xβδ][X(γα)∨ ].

Proof idea. Applying Lemma 2.2 and a simple geometric argument gives us that
[Xαγ][X(δβ)∨ ] = Ω∗([Xα][Xβ∨ ] ⊗ [Xγ][Xδ∨ ]) = Ω∗((Ja, Ic) · ([Xβ][Xα∨ ] ⊗ [Xγ][Xδ∨ ])) =

Φa · Ω∗([Xβ][Xα∨ ] ⊗ [Xγ][Xδ∨ ]) = Φa · ([Xβγ][X(δα)∨ ]). A similar argument gives the
other two equalities in (i). Then (ii) follows from the fact that, in ordinary cohomology
H∗(Gr(a1 + c1; Ca+c), Φa and Φc act trivially on the classes.

3 Proofs of Theorems

3.1 Puzzles with split symmetry and trapezoidal puzzles

3.1.1 Proof of Theorems 1.1(a) (puzzles with split symmetry)

Proof. Geometric Proof. The claim is equivalent to∫
Gra+c

[Xαγ][X(δβ)∨ ][Xν] =
∫

Gra+c

[Xβγ][X(δα)∨ ][Xν]

=
∫

Gra+c

[Xαδ][X(γβ)∨ ][Xν] =
∫

Gra+c

[Xβδ][X(γα)∨ ][Xν],
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which follows immediately from Lemma 2.3.
Proof by the commutative property of triangular puzzles.
In any αγ,ν,δβ-puzzle, due to the symmetries in string content, there can be no 10s

appearing along the red line shown in Figure 4a. So we can divide the puzzle into a
triangular puzzle and a trapezoidal puzzle. Then we can sum over choices of label λ on
the red line and obtain

#{ αγ,ν,δβ-puzzles} = ∑
λ

(
#{ α,λ,β-puzzles}

) (
#{ λ∨,γ,ν,δ-puzzles}

)
.

Since #{ α,λ,β-puzzles} = #{ β,λ,α-puzzles} by the commutative property of triangular
puzzles and three-fold rotational symmetry, this implies that α and β commute.

To prove that γ and δ commute, we first apply the commutative property of triangular
puzzles to the NW and NE sides of the outer boundary to get #{ αγ,ν,δβ-puzzles} =
#{ ν,αγ,δβ-puzzles}, which leads to the picture in Figure 4b. Then we follow a similar
argument as the one used to commute α and β above.

λ

β

α

γ

ν

δ

(a) α and β commute via the commutative
property of triangular puzzles.

µ

β

ν

γ

α

δ

(b) γ and δ commute via the commutative
property of triangular puzzles.

Figure 4

3.1.2 Proof of Theorems 1.1(b) (trapezoidal puzzles)

Proof. Proof by the commutative property of puzzles with split symmetry. After com-
pleting to a triangle as in Figure 3a, we can immediately apply Theorems 1.1(a).

3.2 Parallelogram-shaped puzzles

3.2.1 Proof of Theorems 1.1(c) (parallelogram-shaped puzzles)

Proof. For all of the proofs below, we begin by completing to a triangle as in Figure 3b.
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Geometric proof. The claim is equivalent to∫
Gra+c

[Xsort(α)γ][Xβ sort(δ)][X
(δα)∨ ] =

∫
Gra+c

[Xsort(α)γ][Xα sort(δ)][X
(δβ)∨ ]

=
∫

Gra+c

[Xsort(α)δ][Xβ sort(δ)][X
(γα)∨ ] =

∫
Gra+c

[Xsort(α)δ][Xα sort(δ)][X
(γβ)∨ ],

which can be easily obtained through applications of Lemma 2.3.
Proof by the commutative property of triangular puzzles. We first apply the com-

mutative property of triangular puzzles to the NW and NE sides of the outer boundary
to get #{ β sort(δ),sort(α)γ,δα-puzzles} = #{ ν,αγ,δβ-puzzles}. From there, we can immedi-
ately commute the pairs α, β and γ, δ in a manner similar to that in Figure 4.

Proof by the commutative property of puzzles with split symmetry. This property
(given in Theorems 1.1(a)) combined with the three-fold rotational symmetry of puzzles
proves the statement.

3.2.2 Proof of Theorems 1.1(d) (symmetric rhombus-shaped puzzles)

Proof. Geometric proof. A geometric proof is given in [1] but is omitted here.
Proof by the commutative properties of triangular and parallelogram-shaped puz-

zles. This special case of a parallelogram-shaped puzzle can be seen as two triangular
puzzles glued together. We apply Theorems 1.1(c) along with the commutative property
of triangular puzzles to obtain all permutations of the rhombus’s boundary labels.

3.3 Hexagonal puzzles

Proof of Theorems Theorems 1.1(f) (hexagonal puzzles with opposite sides symmetry)

3.3.1 Proof of Theorems Theorems 1.1(f) (hexagonal puzzles with opposite sides
symmetry)

Proof. Geometric proof. A geometric proof is given in [1] but is omitted here.
Proof by the commutative property of parallelogram-shaped puzzles. We can

complete a hexagonal puzzle to a parallelogram-shaped puzzle to obtain a bijection
{ α,β,γ,δ,ϵ,ζ-puzzles} ↔ { sort(ζ)α,βγ,sort(γ)δ,ϵζ-puzzles}. We can then use Theorems 1.1(c)
to swap the SW and NE labels, i.e. sort(ζ)α and sort(γ)δ, which effectively swaps α and
δ, as sort(γ) = sort(ζ). Combining this with three-fold rotational symmetry yields the
other swaps.
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3.3.2 Proof of Theorems 1.1(g) (hexagonal puzzles with two-way symmetry)

Proof. Geometric proof. A geometric proof is given in [1] but is omitted here.
Proof by the commutative property of trapezoidal puzzles: A hexagonal puzzle

with this type of symmetry can be seen as two trapezoidal puzzles glued together. Thus,
the claim follows easily from Theorems 1.1(b).

3.3.3 Proof of Theorems 1.1(e),(h),(i)

Proof. These statements can be derived from Theorems 1.1(f) and Theorems 1.1(g), as
they are just more specialized cases of those types of symmetries.

3.4 Commutative property of parallelogram-shaped equivariant puz-
zles

The equivariant structure constants in the theorem below are the ones associated to
parallelogram-shaped equivariant puzzles, after completing to a triangle as in Figure 3b.

Theorem 3.1 (Commutative Property of Structure Constants Associated to Parallelo-
gram-Shaped Equivariant Puzzles). Let Φa and Φc be defined as in Lemma 2.3. Let α, β ∈
([a]a1

) and γ, δ ∈ ([c]c1
). Then in H∗

T(Gr(a1 + c1; Ca+c)), we have

(cT)
(δα)∨

sort(α)γ,β sort(δ) = Φa · (cT)
(δβ)∨

sort(β)γ,α sort(δ)

= Φc · (cT)
(γα)∨

sort(α)δ,β sort(γ) = Φc · Φa · (cT)
(γβ)∨

sort(β)δ,α sort(γ).

In other words commuting the pair α, β reverses the y1, . . . , ya, and commuting the pair γ, δ

reverses the ya+1, . . . , ya+c, in the structure constant.

Proof idea. It is not difficult to show that Φa · Xsort(α)γ = Xsort(α)γ, and this along with
Lemma 2.3 gives

Φa · (cT)
(δβ)∨

sort(β)γ,α sort(δ) =
∫

Gra+c

(
Φa · [Xsort(α)γ]

) (
Φa · ([Xα sort(δ)][X

(δβ)∨ ])
)

=
∫

Gra+c

[Xsort(α)γ][Xβ sort(δ)][X
(δα)∨ ] = (cT)

(δα)∨

sort(α)γ,β sort(δ).

A similar argument proves the other two equalities in the claim.

Example 3.2. See Figure 5.
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(a) The set of all 0011,010,1100,001-puzzles.
Sum of the puzzle weights: (y5 − y1)(y7 −
y1)(y7 − y2) + (y6 − y2)(y7 − y1)(y7 − y2)
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(b) The set of all 1100,010,0011,001-puzzles.
Sum of the puzzle weights: (y6 − y4)(y7 −
y3)(y7 − y4) + (y5 − y3)(y7 − y3)(y7 − y4)

Figure 5: The effect of commuting the labels on the SW and NE sides is reversing the
y1, y2, y3, y4 in the structure constant.

4 Further Questions

So far, we relate polygonal puzzles to special classes of triangular puzzles and their asso-
ciated structure constants, but it is unknown if polygonal puzzles hold a more intrinsic
meaning geometrically, combinatorially, or representation-theoretically. It would be in-
teresting to explore this question and to find any illuminating manifestations or proofs
of these commutative properties in the various contexts where LR numbers arise.
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