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Abstract. The amplituhedron An,k,m is a geometric object which generalizes the positive
Grassmannian (when n = k + m) and cyclic polytopes (when k = 1). It was originally
introduced in the context of scattering amplitudes. Of substantial interest are the tilings
of the amplituhedron, which are analogous to triangulations of a polytope. In [13], it
was conjectured that for even m the tilings of An,k,m have cardinality the MacMahon
number, the number of plane partitions which fit inside a k × (n − k − m) × m

2 box.
We refer to this prediction as the Magic Number Conjecture. In this paper we prove the
Magic Number Conjecture for the m = 2 amplituhedron: that is, we show that each
tiling of An,k,2 has cardinality (n−2

k ). We prove this by showing that all positroid tilings
of the hypersimplex ∆k+1,n have cardinality (n−2

k ), then applying T-duality. In addition,
we give volume formulas for Parke–Taylor polytopes and tree positroid polytopes in
terms of circular extensions of cyclic partial orders; and we prove new variants of the
classical Parke–Taylor identities.
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1 Introduction

The (tree) amplituhedron An,k,m(Z) is the image of the positive Grassmannian Gr≥0
k,n under

the amplituhedron map Z̃ : Gr≥0
k,n → Grk,k+m, a map induced by matrix multiplication by

a positive matrix Z ∈ Mat>0
n,k+m. The amplituhedron was introduced by Arkani-Hamed

and Trnka [2] in order to give a geometric interpretation of scattering amplitudes in N = 4
super Yang–Mills theory. Central to this interpretation are tilings of An,k,m(Z), which are
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decompositions of An,k,m(Z) into tiles (see Definition 2.2). The notion of tiling can be
thought of as a generalization of the notion of triangulation of a polytope.1

While the case m = 4 is most directly relevant to physics, the amplituhedron
An,k,m(Z) makes sense for any positive n, k, m such that k + m ≤ n, and has a very rich
geometric and combinatorial structure. It generalizes cyclic polytopes (when k = 1),
cyclic hyperplane arrangements [12] (when m = 1), and the positive Grassmannian
(when k = n − m), and it is connected to the hypersimplex and the positive tropical
Grassmanian [14, 21] (when m = 2). This paper will focus on the case m = 2.

In [13] it was observed that the known tilings of An,k,2(Z) have cardinality (n−2
k ), the

known tilings of An,k,4(Z) have cardinality the Narayana number 1
n−3(

n−3
k+1)(

n−3
k ), and all

tilings of An,1,m for even m have cardinality (
n−1−m

2
m
2

).2 Based on these observations, [13,
Conjecture 8.1] conjectured that when m is even, An,k,m has a tiling with cardinality

Mn,k,m := M
(

k, n − k − m,
m
2

)
, where M(a, b, c) :=

a

∏
i=1

b

∏
j=1

c

∏
ℓ=1

i + j + ℓ− 1
i + j + ℓ− 2

is the MacMahon number. This number has many remarkable interpretations, e.g.
M(a, b, c) counts the number of plane partitions which fit inside an a × b × c box, col-
lections of c noncrossing lattice paths inside an a × b rectangle, perfect matchings of
the honeycomb lattice, and more (see [17, 7]). [10] later conjectured that each tiling
should have this cardinality. We refer to the prediction that tilings of the amplituhedron
An,k,m(Z) should have cardinality Mn,k,m as the Magic Number Conjecture.

Main results. The main result of this abstract is the proof of the Magic Number
Conjecture for the m = 2 amplituhedron (Theorem 3.7). We first prove that each tiling of
the hypersimplex ∆k+1,n by positroid polytopes has cardinality (n−2

k ) (Theorem 3.5). In
the special case tilings are finest regular subdivisions of ∆k+1,n into positroid polytopes,
this recovers [26]. We also prove the more general result that if ΓM is a full-dimensional
positroid polytope, all of its tilings have the same cardinality (Corollary 3.6). The key
ingredient for the proofs is to show that, although tiles do not have the same volume
(see Figure 3), there is an additive invariant on ∆k+1,n defined in terms of Parke–Taylor
functions (Definition 3.1) that is constant for all tiles (Proposition 3.3). Parke–Taylor
functions have numerous connections e.g. with the cohomology of the moduli space
M0,n of n points on the Riemann sphere in relation with scattering equations [8] and
Lie polynomials [9]. Then we use Theorem 3.5 and apply the T-duality theorem from
[21, Theorem 11.6] (which appears here as Theorem 2.9) to prove the Magic Number
Conjecture for the m = 2 amplituhedron (Theorem 3.7). Finally, we introduce Parke–
Taylor polytopes (Definition 3.15), whose volume equals the number of circular extensions

1We do not require tiles to intersect in a common “face".
2Every triangulation of the cyclic polytope C(n, m) contains exactly (

n−1− m
2

m
2

) simplices when m is even

[5, 24] and for C(n, m) tilings and triangulations coincide [19].
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of a certain partial cyclic order (Proposition 3.18). For each Parke–Taylor polytope we
associate a combinatorial identity among Parke–Taylor functions involving such circular
extensions (Theorem 3.21). As corollary, we obtain a formula for the volume of the
positroid polytopes which are tiles for ∆k+1,n (Remark 3.19). Complete arguments for
these results appear in [20].

2 Background

The Grassmannian Grk,n = Grk,n(R) is the space of all k-dimensional subspaces of the Rn

vector space. Let [n] denote {1, . . . , n}, and ([n]k ) denote the set of all k-element subsets
of [n]. We can represent a point V ∈ Grk,n as the row-span of a full-rank k × n matrix C
with entries in R. Then for I = {i1 < · · · < ik} ∈ ([n]k ), the Plücker coordinate PI(C) is the
k × k minor of C using the columns I. The Plücker coordinates of V are independent of
the choice of matrix representative C (up to common rescaling). The Plücker embedding
V 7→ {PI(C)}I∈([n]k )

embeds Grk,n into projective space3.

Definition 2.1 ([16, 22]). We say that V ∈ Grk,n is totally nonnegative if (up to a global
change of sign) PI(C) ≥ 0 for all I ∈ ([n]k ). Similarly, V is totally positive if PI(C) > 0

for all I ∈ ([n]k ). We let Gr≥0
k,n and Gr>0

k,n denote the set of totally nonnegative and totally
positive elements of Grk,n, respectively. The set Gr≥0

k,n is called the totally nonnegative
Grassmannian, or sometimes just the positive Grassmannian.

If we partition Gr≥0
k,n into strata based on which Plücker coordinates are strictly posi-

tive and which are 0, we obtain a cell decomposition of Gr≥0
k,n into positroid cells [22] that

glue together to form a CW complex [23]. Each positroid cell S gives rise to a matroid
M, whose bases are precisely the k-element subsets I such that the Plücker coordinate
PI does not vanish on S; the matroid M is called a positroid.

We will be interested in certain images of positroid cells.

Definition 2.2. Let ϕ : Gr≥0
k,n → X be a continuous surjective map where dim X = d.

The closure ϕ(S) of the image of a positroid cell S ⊂ Gr≥0
k,n is a positroid tile for X if ϕ is

injective on S and dim S = d. A positroid tiling of X is a collection {ϕ(S)}S∈C of positroid
tiles that cover X and have pair-wise disjoint interiors.

We will focus here on positroid tilings for two different maps ϕ: the moment map
µ and the amplituhedron map Z̃, which maps Gr≥0

k,n onto the hypersimplex and the
amplituhedron, respectively.

3We will sometimes abuse notation and identify C with its row-span.
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The hypersimplex. Let {e1, . . . , en} denote the standard basis of Rn, and define eI :=
∑i∈I ei ∈ Rn. If x ∈ Rn and I ⊂ [n], we set xI := ∑i∈I xi. For i ̸= j ∈ [n], the cyclic
interval from i to j is [i, j] := {i, i + 1, . . . , j − 1, j}.

Definition 2.3. The (k + 1, n)-hypersimplex ∆k+1,n ⊂ Rn is the convex hull of the points
eI where I runs over ( [n]

k+1).

The hypersimplex ∆k+1,n is the image of the Grassmannian Grk+1,n (or the positive
Grassmannian Gr≥0

k+1,n, [28, Proposition 7.10]) under the moment map. The hypersimplex
∆k+1,n is (n − 1)-dimensional, as it is contained in the hyperplane x[n] = k + 1.

Remark 2.4. The projected hypersimplex π(∆k+1,n) under π : (x1, . . . , xn) 7→ (x1, . . . , xn−1)
is the slice of the unit hypercube �n−1 contained between x[n−1] = k and x[n−1] = k + 1.

The moment map images of positroid cells can easily be described using positroids:

Proposition 2.5 ([28, Proposition 7.10]). Let S ⊂ Gr≥0
k+1,n be a positroid cell, M its corre-

sponding positroid, and ΓM := conv{eI : I ∈ M} its associated positroid polytope. Then
µ(S) = ΓM.

Specializing Definition 2.2, with ϕ being the moment map µ and X being the hyper-
simplex ∆k+1,n, we denote the positroid tiles for ∆k+1,n as ΓS := µ(S).
The amplituhedron. Building on [1, 11], Arkani-Hamed and Trnka [2] defined the (tree)
amplituhedron as the image of the positive Grassmannian under a positive linear map.
Let Mat>0

n,p denote the set of n × p matrices whose maximal minors are positive.

Definition 2.6. Let Z ∈ Mat>0
n,k+m, where k + m ≤ n. The amplituhedron map Z̃ : Gr≥0

k,n →
Grk,k+m is defined by Z̃(C) := CZ, where C is a k × n matrix representing an element of
Gr≥0

k,n, and CZ is a k × (k + m) matrix representing an element of Grk,k+m. The amplituhe-
dron An,k,m(Z) ⊂ Grk,k+m is the image Z̃(Gr≥0

k,n).

Specializing Definition 2.2, with ϕ being the amplituhedron map Z̃ and X being the
amplituhedron An,k,m(Z), we denote the positroid tiles for An,k,m(Z) as ZS := Z̃(S).

In this work it is convenient to work with “all-Z” tilings, as defined below.

Definition 2.7. We call {ZS}S∈C an all-Z tiling of the amplituhedron An,k,m if {ZS}S∈C is
a tiling of An,k,m(Z) for all Z ∈ Mat>0

n,k+m.

Correspondence between the hypersimplex and the amplituhedron.

Definition 2.8. Let Pn be a convex n-gon with vertices labeled from 1 to n in clockwise
order. A tricolored subdivision τ is a partition of Pn into black, white, and grey polygons
such that two polygons sharing an edge have different colors. We say that τ has type
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Figure 1: (Left): A tricolored subdivision τ of type (3, 2, 8). It gives rise to the cyclic
order Cτ which is the union of the chains C(2,5,7), C(5,7,6), and C(1,8,7,2). (Right): A
bicolored subdivision σ of type (5, 9), it corresponds to a tile Γσ in ∆6,9.

(k, ℓ, n) if any triangulation of the black (respectively, grey) polygons consists of exactly
k black (respectively, ℓ grey) triangles.

A bicolored subdivision σ of type (k, n) is a tricolored subdivision of type (k, 0, n), that
is, with no grey polygons. See Figure 1.

In [21], a subset of the authors of this work showed that positroid tiles for both ∆k+1,n
and An,k,2(Z) are in bijection with the bicolored subdivisions of type (k, n)4. From a
bicolored subdivision σ of type (k, n) one can directly read the inequalities describing
the associated positroid tile Γσ for ∆k+1,n and the positroid tile Zσ for An,k,2(Z). In
particular, tiles of the hypersimplex ∆k+1,n and tiles of the amplituhedron An,k,2 are in
bijection with each other, and this bijection induces a bijection on tilings as well:

Theorem 2.9 ([21, Theorem 11.6]). Let S be a collection of bicolored subdivisions of type (k, n).
Then {Γσ}σ∈S is a positroid tiling of ∆k+1,n if and only if {Zσ}σ∈S is a tiling of An,k,2.

See [21, Table 1] for many other correspondences between the hypersimplex and the
m = 2 amplituhedron.
The triangulation of the hypersimplex into w-simplices.

Definition 2.10. Let w ∈ Sn. A letter i < n is a left descent5 of w if i occurs to the right
of i + 1 in w, i.e. w−1(i) > w−1(i + 1). We say i ∈ [n] is a cyclic left descent of w if either
i < n is a left descent of w or if i = n and 1 occurs to the left of n in w. We let cDesL(w)
be the set of cyclic left descents of w. We often omit the word ‘left’ in ‘cyclic left descent’.

Definition 2.11. Choose 0 ≤ k ≤ n − 2. We let Dn be the set of permutations w ∈ Sn
with wn = n and Dk+1,n to be the set of permutations w ∈ Dn with k + 1 cyclic descents.

Note that |Dk+1,n| equals the Eulerian number Ek,n−1 := ∑k+1
ℓ=0(−1)ℓ(n

ℓ)(k + 1 − ℓ)n−1.

4these are enumerated by a refinement of the large Schröder numbers [25, A175124] and are in bijection
with separable permutations on [n − 1] with k descents [21, Corollary 12.6].

5Left descents, sometimes called recoils in the literature, are discussed extensively in [6, Chapter 1].
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Example 2.12. The set D2,4 contains the following E2,3 = 4 permutations.

w 1324 3124 2134 2314
cDesL(w) {2, 4} {2, 4} {1, 4} {1, 4}

For w = w1w2 . . . wn ∈ Sn, we write (w) = (w1 w2 · · ·wn) for the cycle w1 7→ w2 7→
· · · 7→ wn 7→ w1. The map w 7→ (w) bijects Dn onto the set of n-cycles in Sn.

Definition 2.13 (w-simplices). For w = w1w2 . . . wn ∈ Dk+1,n, let w(a) denote the cyclic
rotation of w ending at a. We denote6 Ir = Ir(w) := cDesL(w(r)) and define the w-simplex
∆(w) ⊆ ∆k+1,n to be the convex hull of eI1 , . . . , eIn ; this is an (n − 1)-dimensional simplex.

Example 2.14. By Example 2.12, ∆2,4 has four w-simplices, see Figure 2. The vertices of
∆(w) with w = 1324 are computed from the cyclic descents of the rotations of w.

r 1 2 3 4
w(r) 3241 4132 2413 1324

Ir = cDesL(w(r)) {1, 2} {2, 3} {1, 3} {2,4}

Then ∆(1324) is the convex hull of e12, e23, e13, e24 (the top-right red simplex in Figure 2).

Figure 2: (Left): The hypersimplex ∆2,4 projected in R3. (Right): w-simplices for ∆2,4.
We omit parentheses in subscripts for readability.

The following triangulation of the hypersimplex first appeared in [27], though the
description in terms of w-simplices appeared first in [15].

Proposition 2.15 (∆k+1,n is the union of w-simplices [27]). The w-simplices {∆(w) : w ∈
Dk+1,n} are the maximal simplices of a triangulation of the hypersimplex ∆k+1,n. Moreover,
projecting {∆(w) : w ∈ Sn} into Rn−1 (see Remark 2.4), we obtain the maximal simplices
in a triangulation of the hypercube �n−1 which refines the subdivision of the hypercube into
hypersimplices.

6Note Ir depends only on (w) rather than w itself.
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The triangulation into w-simplices is the simultaneous refinement of all positroid
tilings [15, Theorem 2.7]. It follows that:

Proposition 2.16 ([15]). Every positroid tile7 for ∆k+1,n has a triangulation into w-simplices.

Remark 2.17. The bijection between tiles of the hypersimplex and the amplituhedron can
be further refined using w-simplices and w-chambers. Each tile Zσ of the amplituhedron
is a union of w-chambers [21, Corollary 10.17]. If ∆Z

(w) is nonempty, then ∆Z
(w) ⊂ Zσ if

and only if ∆(w) ⊂ Γσ [21, Proposition 11.1].

3 Results

The Magic Number Theorem for the m = 2 Amplituhedron. We show that every tiling
of the hypersimplex ∆k+1,n and every all-Z tiling of An,k,2 consists of (n−2

k ) tiles.

Definition 3.1. The Parke–Taylor function of a permutation8 w = w1 . . . wn ∈ Sn is:

PT(w) :=
1

Pw1 w2 Pw2 w3 . . . Pwn w1

, (3.1)

viewed as a rational function on Ĝr2,n, the affine cone over the Grassmannian Gr2,n,
where the Pij are Plücker coordinates9 on Gr2,n.

Definition 3.2. Let the weight function of a w-simplex for ∆k+1,n be Ω(∆(w)) := PT(w).
Let Γ ⊂ ∆k+1,n be a full-dimensional positroid polytope, or any other subset of ∆k+1,n
which is a union of w-simplices (cf. Proposition 2.16). We define the weight function of Γ
to be the sum of the weight functions of w-simplices included in Γ:

Ω(Γ) := ∑
∆(w)⊂Γ

Ω(∆(w)).

The main step to prove the magic number conjecture for An,k,2 is the following:

Proposition 3.3. Let Γσ be a tile of ∆k+1,n. Then the weight function of Γσ is

Ω(Γσ) = (−1)k PT(In), (3.2)

with In ∈ Sn the identity permutation. Hence, all tiles of ∆k+1,n have the same weight function.

In contrast, the normalized volume of tiles is far from constant (see Figure 3).

7In fact, this statement hold for any full-dimensional positroid polytope.
8PT(w) depends only on the n-cycle (w); that is, if (u) = (w), then PT(w) = PT(u)
9with the convention that Plücker coordinates are antisymmetric in their indices
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Proposition 3.4. Let R ⊂ ∆k+1,n be a subset of ∆k+1,n which admits a positroid tiling, i.e. it can
be written as the union of positroid tiles {Γσ}σ∈S whose interiors are disjoint. Then all positroid
tilings of R have the same cardinality.

Proof. For any tiling {Γσ}σ∈S of R, we have

Ω(R) = ∑
σ∈S

∑
∆(w)⊂Γσ

Ω(∆(w)) = ∑
σ∈S

Ω(Γσ) = |S|(−1)k PT(In),

where for the first and second equality we used that Γσ = ∪∆(w)⊂Γσ
∆(w) and that the

tiles {Γσ}σ∈S have disjoint interiors and cover ∆k+1,n. For the last equality we used
Proposition 3.3. It follows that each positroid tiling of R must have the same cardinality.

By Proposition 3.4, and the fact that ∆k+1,n admits tilings of size (n−2
k ) [4], we deduce:

Theorem 3.5. Every positroid tiling of ∆k+1,n consists of (n−2
k ) tiles.

Figure 3: A collection of 10 = (7−2
3 ) = M7,3,2 bicolored subdivisions of type (3, 7)

(labelled from 1⃝ to 10⃝) which gives a tiling for ∆4,7 and A7,3,2. The number in the
box below each bicolored subdivision σ is the volume of the corresponding positroid
polytope Γσ in ∆4,7, which equals Ext(Cσ). E.g. for 5⃝ we have: Cσ = C(1247) ∪ C(243) ∪
C(4765) and Ext(Cσ) = 26. The sum of their volumes is the Eulerian number E3,6 = 302.

Using results on the positive Dressian, one can show that every full-dimensional
positroid polytope has a positroid tiling; see [20, Proposition 5.14]. Therefore, by Propo-
sition 3.4:

Corollary 3.6. All positroid tilings of a full-dimensional positroid polytope ΓM ⊂ ∆k+1,n have
the same cardinality.
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It would be interesting to find an explicit combinatorial formula for such cardinality.
Using Theorem 2.9 and Theorem 3.5 we can deduce the Magic Number Conjecture:

Theorem 3.7. Every all-Z positroid tiling of An,k,2 consists of Mn,k,2 = (n−2
k ) tiles.

We can also get the amplituhedron-analogue of Proposition 3.4:

Proposition 3.8. If R is a full-dimensional subset of An,k,2(Z) which admits an all-Z positroid
tiling, then every all-Z positroid tiling of R has the same cardinality.

An interesting case for Proposition 3.8 is when R is (the closure of) the full-dimension-
al image of a positroid cell S under the amplituhedron map Z̃, also called Grasstope.
Circular extensions: Parke–Taylor polytopes and identities. Circular extensions and
partial cyclic orders are analogues of linear extensions and partial orders.

Definition 3.9. A (partial) cyclic order on a finite set X is a ternary relation C ⊂ X3 such
that for all a, b, c, d ∈ X:

(a, b, c) ∈ C =⇒ (c, a, b) ∈ C (cyclicity)
(a, b, c) ∈ C =⇒ (a, c, b) /∈ C (asymmetry)

(a, b, c) ∈ C and (a, c, d) ∈ C =⇒ (a, b, d) ∈ C (transitivity)

A cyclic order C is total if for all a, b, c ∈ X, either (a, b, c) ∈ C or (a, c, b) ∈ C.

Informally, a total cyclic order C on [n] is a way of placing 1, . . . , n on a circle, just as
a total order is a way of placing 1, . . . , n on a line. Given w = w1 . . . wn ∈ Sn, we denote
as Cw the total cyclic order obtained by placing w1, w2, . . . , wn on the circle clockwise.
We also identify Cw with the n-cycle (w).

Definition 3.10. A total cyclic order C is a circular extension of a cyclic order C′ if C′ ⊂ C.
We let Ext(C) denote the set of all10 circular extensions of a cyclic order C.

Definition 3.11. Let x1, . . . , xm be a sequence of m distinct elements of [n]. The chain
C(x1,x2...,xm) is the cyclic order in which x1, x2 . . . , xm appear on a circle ordered clockwise.

We now associate a partial cyclic order to every tricolored subdivision. See Figure 1
for an example.

Definition 3.12 (τ-order). Let τ be a tricolored subdivision of Pn which includes q non-
grey polygons P1, . . . , Pq. If Pa is white (respectively, black), we let v1, . . . , vr denote its list
of vertices read in clockwise (respectively, counterclockwise) order. We then associate the
chain Ca = C(v1,...,vr) to Pa. Finally, we define the τ-order Cτ to be the cyclic order which
is the union of the cyclic orders associated to the black and white polygons C1, . . . , Cq,
see Figure 1.

10Not all cyclic orders have a circular extension [18], that is, Ext(C) could be empty.
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For each tricolored subdivision, we now introduce a polytope in Rn−1. We will need
to work with the projection π : Rn → Rn−1 from Remark 2.4.

Definition 3.13. Given a bicolored subdivision σ, let Γ̃σ denote the projected polytope
π(Γσ). Given a w-simplex ∆(w), let ∆̃(w) denote the projected simplex π(∆(w)).

Definition 3.14. Let τ be a tricolored subdivision. Given a pair of vertices i, j of Pn, we
say that the arc i → j is compatible with τ if the arc either is an edge of a black, white, or
grey polygon, or lies entirely inside a black or white polygon of τ. If i → j is compatible
with τ, the area to the left of i → j (respectively, grey area to the left of i → j), denoted by
area(i → j) (respectively, gr-area(i → j)), is the number of black triangles (respectively,
grey triangles) to the left of i → j in any triangulation of the black (respectively, grey)
polygons of τ.

Definition 3.15. Let τ be a tricolored subdivision of Pn of type (k, ℓ, n). We define the
Parke–Taylor polytope Γ̃τ ⊂ Rn−1 by the following inequalities: for any compatible arc
i → j with i < j,

area(i → j) ≤ x[i,j−1] ≤ area(i → j) + gr-area(i → j) + 1.

Example 3.16. If τ is the tricolored subdivision of Pn which is just a grey polygon on n
vertices, then the Parke–Taylor polytope Γ̃τ is the unit hypercube �n−1 ⊂ Rn−1.

Remark 3.17. In the case when τ has no grey polygons (ℓ = 0), i.e. τ is a bicolored subdi-
vision of type (k, n), Parke–Taylor polytopes are (the projected) tree positroid polytopes,
which are the tiles for ∆k+1,n. This follows from Definition 3.15 and [21, Proposition 9.5].

Parke–Taylor polytopes admit positroid tilings, for example via the kermit subdivisions
(see [20, Definition 2.23])). Each Γ̃τ can also be triangulated into projected w-simplices
using the combinatorics of circular extensions of the cyclic τ-order:

Proposition 3.18. Let τ be a tricolored subdivision of type (k, ℓ, n). Then

Γ̃τ =
⋃

(w)∈Ext(Cτ)

∆̃(w).

It follows that the volume of Γ̃τ is the number of circular extensions of the cyclic order Cτ. That
is, Vol(Γ̃τ) = |Ext(Cτ)|, see Figure 3.

Remark 3.19. By Remark 3.17, Proposition 3.18 describes exactly which w-simplices tri-
angulate the positroid polytope Γσ, which is a tile for ∆k+1,n. Moreover, it provides a
formula for the volume of Γσ as the number of circular extensions of the cyclic order Cσ.

Remark 3.20. Part of Proposition 3.18 bears some analogies with a result from [3]. The
two results agree in a very special case, but otherwise deal with different contexts.
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For each tricolored subdivision, using Proposition 3.3, we also prove an identity
among Parke–Taylor functions (cf. Definition 3.1).

Theorem 3.21 (Parke–Taylor identities from tricolored subdivisions). Let τ be a tricolored
subdivision of Pn which contains at least one grey polygon, and let Cτ be the corresponding cyclic
partial order. Recall that Ext(Cτ) is the set of cyclic extensions of Cτ. Then we have that

∑
(w)∈Ext(Cτ)

PT(w) = 0.

By specializing to particular tricolored subdivisions, we can use Theorem 3.21 to
prove some well-known Parke–Taylor identities from physics [9], such as the shuffle and
U(1)-decoupling identities [20, Proposition 7.17, Corollary 7.16].
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