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Abstract. Given any two equi-oriented collections A and B of vectors in Rr, we con-
struct a family of tilings of Rr. The tiles themselves are related to the bases of A, while
their relative frequency are related to bases of B. Our construction gives a common
generalization to Penrose tilings as well as zonotopal space tilings associated to regular
matroids.
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1 Introduction

A well known theorem by Shephard [16] states that the zonotope associated with a real
matrix M tiles its affine span if and only if the matroid represented by M is regular; this
happens in particular if M is unimodular. A less well known generalization by Crapo
and Senechal [5] states that for general M, one can still tile space using the bases of
M, but some tiles will appear with higher frequency than others. In particular, their
tilings consist of translates of the zonotope associated with M along with some addi-
tional copies of certain tiles to fill in the gaps. Crapo and Senechal showed further that
when the entries of M are rational, the tiling is periodic.

Their work utilizes the cut-and-project method, which uses a lattice Zn and a lower
dimensional affine space X (that "cuts" Zn). The tiling is constructed by projecting certain
points of Zn on to X when these points are sufficiently close to X. This construction goes
back to DeBruijn who used it to give an algebraic proof of the properties of the Penrose
tilings of the plane with thin and thick rhombi [6]. In the Crapo–Senechal construction,
every tile appears with frequency proportional to its volume. In particular, Penrose
tilings are aperiodic because the ratio of the volumes of the two types of rhombi is the
irrational number ϕ = 1+

√
5

2 .
In cases like the Penrose tiling, where the frequency of each tile is proportional to its

volume, it follows that the total volume covered by all tiles of a given type is proportional
to the square of its volume. When the tilings are periodic, this property essentially implies
(via the Cauchy–Binet formula) that the volume of the fundamental domain of the tiling
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must agree with the determinant of the Laplacian matrix L := M · MT. This was already
observed in particular when M is unimodular: the zonotope Z(M) has volume equal to
det(L) (see for instance [8, Proposition 2.52]).

The second author first explored tilings as a way to understand a Laplacian result
in high-dimensional chip-firing, where a matrix is multiplied by its own transpose [12].
However, later work suggested that related constructions can be used to give a geometric
interpretation for more general applications of the Cauchy–Binet formula, where one is
interested in A · BT for two possibly distinct matrices A and B [9]. This idea ties in with
works of the first author, which suggest that such generalizations often encode nontrivial
combinatorics [3, 4]. In this project we unite the two approaches and prove the following
main result (see Theorems 2.2 and 2.3 and Corollary 2.4 for more details):

Theorem 1.1. For a pair A, B of equi-oriented r × n matrices, there exist tilings of Rr whose
tiles are given by the bases AI of A, I ⊂ [n], and appear with frequencies equal to the volumes
Vol(BI). When all frequencies are integers, the tiling is periodic and its fundamental domain has
volume equal to det(L) for the Laplacian L := A · BT.

Figure 1: Root-Coroot tiling for I2(6)

As an application to (irreducible) Weyl
groups W, we construct periodic tilings T (W),
whose combinatorics are described by root-
theoretic invariants: the Coxeter number h, the
rank n, and the connection index I(W) of W.
In particular, their fundamental domains have
volume hn, which explains the following well
observed [7] phenomenon. The volumes of
the root zonotopes in type-A are given by a
product formula vol

(
Z(An−1)

)
= nn−2, while

for the other root systems they are not, even
though the associated Laplacian determinants
do factor. Indeed, it is the fundamental do-
main of T (W) that behaves well and is related to the Laplacian, as the previous theorem
suggests, not the root zonotope Z(W) which is often a strict subset of the fundamental
domain.

Example 1.2. In Figure 1 we see a tiling T
(

I2(6)
)
; five translates of the fundamental do-

main are indicated by thick black boundaries, while the central copy contains in orange
dashed boundary the root zonotope Z(Φ+). There is a total of 9 types of tiles, which
form three classes: small rhombi, large rhombi, and parallelograms. Moreover, the lit-
tle rhombi have volume 1 and relative frequency 3, while the opposite is true for the
large rhombi; the parallelograms have volume 2 and relative frequency 2. Theorem 6.1
expresses the probability that a point lies in a translate of some tile Φ+

σ as I(Wσ)/hn,
where I(Wσ) is the connection index of the reflection subgroup Wσ ≤ W associated
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to the tile. Indeed, a point belongs to the translate of a fixed (big or little) rhombus
with probability 3/36 (note that 3 = I(A2)) and it belongs to the translate of a fixed
parallelogram with probability 4/36 (note that 4 = I(A1 × A1)).

2 The Main Construction

Throughout this article, fix positive integers r, k, and n such that n = r + k. We will use
the notation ([n]r ) for the r element subsets of the numbers 1 through n. We often use
the variable σ for an element of ([n]r ), and will write σ̂ for the set [n] \ σ. For any matrix
M with n columns, and any σ ∈ ([n]r ), we write Mσ for the submatrix of M restricted
to columns indexed by σ and Mσ̂ for the submatrix of M restricted to the remaining
columns. Similarly, if v is an n-dimensional vector, we will write vσ for the restriction of
v to entries indexed by σ and vσ̂ for the restriction of v to the remaining entries.

Let A and B be two full rank r × n matrices with real valued entries. Note that
many of our results depend only on the subspaces of Rn generated by the rows of these
matrices, but our construction is easier to describe when specific values are provided.
More precisely, row operations on A do not change the combinatorics of the tiling, while
row operations on B have no impact at all.

For our construction, we also require that A and B are equi-oriented. We say that A
and B are equi-oriented if for every σ ∈ ([n]r ), we have

det(Aσ)det(Bσ) ≥ 0.

In addition to equi-oriented matrices A and B, our tiling also depends on a choice of
vector γ ∈ Rn which must satisfy a certain genericity condition.

For a fixed r × n matrix A and a choice of σ ∈ ([n]r ), we will write Tσ for the funda-
mental parallelepiped of Aσ. In particular, Tσ is the polytope whose vertices are the sums
of all 2r subsets of columns of Aσ. Equivalently,

Tσ := {Aσx | x ∈ [0, 1]r} .

The set of parallelepipeds of the form Tσ for σ ∈ ([n]r ) are the prototiles of our tiling
(with possible duplicates and volume 0 tiles). The translates of the prototiles correspond
to the vectors in Zr. More precisely, for every σ ∈ ([n]r ) and z ∈ Zr, we will construct
a translation vector s(σ,z) ∈ Rr and then place a copy of Tσ that is translated by this
amount. The formula for s(σ,z) is given by (2.2), but it will take some work to define the
necessary terminology.

Instead of working directly with B, most of our calculations involve a matrix B̃ that is
in some sense dual to B. To be precise, B̃ is any full rank k × r matrix whose row space
is dual to the row space of B. In other words,

B̃BT = 0 and B̃ is full rank. (2.1)
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There is a simple procedure to compute B̃ from B. First, permute the columns of B
until the first r columns are linearly independent (which must be possible since B is full
rank). Second, use row operations to put this matrix into reduced row echelon form.
This produces a matrix of the form

(
Ir D

)
, where Ir is the r × r identity matrix and

D is any r × k real matrix. Next, define a new k × n matrix
(
−DT Ik

)
. Finally, undo

the initial row permutation. For straightforward linear algebra reasons, this final matrix
must satisfy the conditions for B̃. Furthermore, there is a nice relationship between the
minors of B and B̃.

Lemma 2.1. The matrix B̃ can be chosen such that for every σ ∈ ([n]r ), we have det(Bσ) =

det(B̃σ̂).

Note that Lemma 2.1 can be generalized to any B̃ satisfying (2.1) to say that the ratio
det(Bσ)/ det(B̃σ̂) is always a fixed value, but is not necessarily 1.

For any choice of z ∈ Zr and σ ∈ ([n]r ), the formula for s(σ,z) is given by (2.2). In this
formula, we use ⌈·⌉ for the element-wise ceiling function. In other words, we round up
each entry to the nearest larger integer. Recall that γ ∈ Rn is a generic vector, and γσ

and γσ̂ are its restrictions to entries in and out of σ respectively. The precise genericity
condition for γ is that for all z ∈ Zr and σ ∈ ([n]r ), the vector given by B̃−1

σ̂ B̃σ(γσ − z)+γσ̂

does not have any integer entries.

s(σ,z) := Aσ(z − γσ) + Aσ̂

(⌈
B̃−1

σ̂ B̃σ(γσ − z) + γσ̂

⌉
− γσ̂

)
. (2.2)

We are now ready to state the two main theorems of this article.

Theorem 2.2. For each σ ∈ ([n]r ) and z ∈ Zr, place a copy of Tσ translated by s(σ,z). This gives
a tiling of Rr with no gaps or overlaps (other than the volume 0 overlap at the boundaries of the
tiles).

In Section 3, we show how to obtain this tiling by taking a slice of a periodic tiling of
Rn. One appealing property of the tiling is the following probabilistic result.

Theorem 2.3. Consider the tiling described in Theorem 2.2. The probability that a randomly
chosen point of the tiling lies in a translate of Tσ is equal to

det(Aσ)det(Bσ)/ det(ABT). (2.3)

Corollary 2.4. If det(Bσ) is an integer for all σ ∈ ([n]r ), then the tiling is periodic. If the
determinants do not all have a common factor, then the fundamental domain of the tiling contains
det(Bσ) copies of the tile Tσ for each σ ∈ ([n]r ).

Remark 2.5. To make the statement of Theorem 2.3 precise, fix any convex polytope P in Rr and
consider the uniform probability density when restricting to a dilation of P. Theorem 2.3 says
that as the dilations increase in volume, the limiting probability of choosing a point in a translate
of Tσ is given by (2.3).
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Figure 2: This is the tiling obtained in Example 2.6. Note that 5 of the 6 prototiles
have the same area, while the sixth has double the area. This corresponds to the fact
that |det(A{2,4})| = 2, but |det(Aσ)| = 1 for every other σ ∈ ([n]r ). Furthermore,
|det(B{1,3})| = 2, but |det(Bσ)| = 1 for every other σ ∈ ([n]r ). This means that T{1,3}
(the brown square) appears twice as often as every other prototile.

Example 2.6. Consider the matrices

A =

(
1 −1 0 1
0 1 1 1

)
and B =

(
1 −1 −1 0
2 −1 0 1

)
.

It is straightforward to show that these are full rank and equi-oriented matrices. Thus,
the construction from Theorem 2.2 will produce a tiling that satisfies the conditions of
Theorem 2.3. This tiling is given in Figure 2.

The first step is to choose a matrix B̃ which satisfies (2.1) and a sufficiently generic
vector γ. In particular, we can choose

B̃ =

(
1 0 1 −2
0 1 −1 1

)
and γ = (

√
2,
√

3,
√

5,
√

7)T.

Applying the construction will give a tiling of R2 with (4
2) = 6 different tiles. For

example, the tile T{1,3} a unit cube such that the proportion of the plane covered is

det(A{1,3})det(B{1,3})

det(ABT)
=

det
(

1 0
0 1

)
det

(
1 −1
2 0

)
det

(
2 4
−2 0

) =
2
8

.

This means that the brown squares in Figure 2 cover a quarter of R2 when the tiling is
repeated.

To calculate the position where each copy of Tσ is placed, we use the translation
vector from (2.2). For example, the translation vector corresponding to z = (1, 2)T is
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given by

s({1,3},z) =

1 0
0 1

1−
√

2
2−
√

5

+

−1 1
1 1




0 −2

1 1

−11 1
0 −1

√2−1√
5−2

+

√3√
7


−

√3√
7




=

(
1−
√

2
2−
√

5

)
+

(
−1 1
1 1

)(⌈
1
2

(
1 +

√
2 + 2

√
3 −

√
5

3 −
√

2 −
√

5 + 2
√

7

)⌉
−

(√
3√
7

))
=

(
1−
√

2
2−
√

5

)
+

(
−1 1
1 1

)(
2−
√

3
3−
√

7

)
=

(
2 −

√
2 +

√
3 −

√
7

7 −
√

3 −
√

5 −
√

7

)
This calculation shows that one of the squares in the tiling must have its bottom left
vertex at this coordinate.

3 Why the tiling works

Our construction is based on a periodic tiling of Rn that was introduced by the second
author and then generalized by Doolittle and the second author [13, 12, 9]. In the original
construction, the tiles correspond to bases of an oriented arithmetic matroid, while the lattice
points in the fundamental domain correspond to elements of the matroid’s sandpile group.
When this tiling is intersected with a plane that is perpendicular to the last k coordinates,
this produces the tiling of Rr that is defined in Section 2.

As before, we begin with a pair of equi-oriented matrices A and B, and then find a
matrix B̃ whose row space is orthogonal to the row space of A. We also need a new
n × n matrix M which is given by

M =

(
A
−B̃

)
.

For each σ ∈ ([n]r ), let Sσ(M) be the n × n matrix whose ith column is given by:

1. If i ∈ σ, then the first r entries of the ith column of Sσ(M) match the ith column of
A and the last k entries are all 0.

2. If i ̸∈ σ, then the first r entries of the ith column of Sσ(M) are all 0 and the last k
entries match the ith column of B̃.

For example, if A and B̃ are the same as in Example 2.6, then

M =


1 −1 0 1
0 1 1 1
−1 0 −1 2
0 −1 1 −1

 and S{1,3}(M) =


1 0 0 0
0 0 1 0
0 0 0 −2
0 1 0 1

 .
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Theorem 3.1 ([9, Corollary 3.10], [13, Corollary 9.2.8]). Suppose that det(Sσ(M)) is non-
negative for all σ ∈ ([n]r ) or non-positive for all σ ∈ ([n]r ). Then, every point in Rn can be
expressed as a sum of the form Mz + Sσ(M)x for some z ∈ Zn, x ∈ [0, 1]n, and σ ∈ ([n]r ). For
all but a measure 0 set of points, such an expression is unique.

Another way to state Theorem 3.1 is to say that the fundamental parallelepipeds of
each matrix Sσ(M) form a periodic tiling of Rn with the columns of M as translation
vectors. Note that the “measure 0 set overlap” caveat can be removed by working with
half-open parallelepipeds. See [9] for more details.

The condition required by the first sentence of Theorem 3.1 can be shown to be
equivalent to our requirement for B̃ in Section 2. In particular, det(Sσ(M)) is always
non-negative or always non-positive if and only if the row space of B̃ is dual to the row
space of a full rank matrix B where A and B are equi-oriented.

3.1 Proof of Theorem 2.2

To obtain the construction from Section 2, we intersect the tiling of Rn from Theorem 3.1
with a hyperplane that is perpendicular to the last k coordinates. This idea was partially
explored in [12, Section 7], but the technique used is only applicable for integer matrices,
and cannot be used to produce an aperiodic tiling.

Before intersecting the tiling with a hyperplane, we first translate all of the tiles
by −Mγ for some vector γ. Note that since M is the fundamental domain of the n-
dimensional tiling, the entries of γ only matter mod 1. In particular, we can think of γ

as a vector in [0, 1]n.
Each tile of the n-dimensional tiling corresponds to a choice of σ ∈ ([n]r ) and z ∈ Zn.

In particular, this tile is made up of all points of the form M(z − γ) + Sσ(M)x, where
x ∈ [0, 1]n. From the structures of M and Sσ(M), it is straightforward to show that the
first r values of this point are given by

Aσ(zσ − γσ + xσ) + Aσ̂(zσ̂ − γσ̂),

while the last k values are given by

B̃σ(γσ − zσ) + B̃σ̂(γσ̂ − zσ̂ + xσ̂).

Observe that for every choice of zσ, there is a unique choice of zσ̂ and xσ̂ such that these
last k entries are zero. Routine algebraic manipulations show that

zσ̂ = B̃−1
σ̂

(
B̃σ(γσ − zσ)

)
+ γσ̂ + xσ̂.

Additionally, since all of the values of xσ̂ are between 0 and 1, and we choose γσ̂ such
that they cannot be exactly 0 or 1, we can conclude that

zσ̂ =
⌈

B̃−1
σ̂

(
B̃σ(γσ − zσ)

)
+ γσ̂

⌉
,
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where ⌈·⌉ is the entry-wise ceiling function. Plugging back into the formula for the first
r coordinates gives (2.2).

3.2 Proof sketch of Theorem 2.3

Let P be a convex polytope with volume vol(P). If P is sufficiently large relative to the
tiles, we get a good approximation for the number of copies of Tσ that lie inside of P by
considering the number of z ∈ Zr such that the translation vector s(σ,z) lies inside of P.
We can also ignore tiles that lie partially inside of P since these cases will be sparse in
the limit.

For a given z and σ, let ϵσ,z be the vector added when the ceiling function is applied
in (2.2). This lets us rewrite (2.2) as

Aσ(z − γσ) + Aσ̂

(
B̃−1

σ̂

(
B̃σ(γσ − z)

)
+ ϵσ,z

)
=(

Aσ − Aσ̂B̃−1
σ̂ B̃σ

)
z + Aσ̂ϵσ,z + Aσ̂B̃−1

σ̂ B̃σγσ.

The vectors ϵσ,z and γσ always have entries between 0 and 1. Thus, the first term is
the only relevant term in the limit.

The number of integer points in a region is approximately equal to the volume
of the region, and the determinant of a linear transformation describes how this vol-
ume changes. In particular, the number of s(σ,z) that lie within P is approximately
vol(P)/|det(Aσ − Aσ̂B̃−1

σ̂ B̃σ)|. Furthermore, by the Schur complement formula,

det(B̃σ̂)det(Aσ − Aσ̂B̃−1
σ̂ B̃σ) = det

(
Aσ Aσ̂

B̃σ B̃σ̂

)
Notice that the matrix on the right has the same determinant up to sign for every σ ∈ ([n]r )
(the columns will just be rearranged). This implies that the number of translates of Tσ

contained in P is (in the limit) proportional to det(B̃σ̂). Since each tile has volume
det(Aσ), the total volume of points contained in a translate of Tσ is proportional to
det(Aσ)det(B̃σ̂).

By Lemma 2.1, we can choose B̃σ̂ so that det(Bσ) = det(B̃σ̂) for all σ ∈ ([n]r ). Thus, the
total volume of points contained in a translate of Tσ is proportional to det(Aσ)det(Bσ).
Finally, it follows from the Cauchy–Binet formula that the sum of det(Aσ)det(Bσ) over
all σ ∈ ([n]r ) is equal to det(ABT).

4 The Penrose Tiling and other Special cases

One simple condition to guarantee that A and B are equi-oriented is to simply choose
A = B. This condition is used to construct one of the most famous tilings in mathematics:
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Figure 3: The first two tilings are generalized Penrose tilings that come from our con-
struction. On the left is a tiling obtained from γ = (.5, .5, .5, .00001, .5)T, which satisfies
the matching rules for a traditional Penrose tiling within this region. In the center is
the tiling obtained from γ = (.5, .5, .5, .5, .5)T, which was studied in [11, Section 7.4].
Finally, the image on the right is from an analogous construction using seventh roots
of unity and γ = (.5, .5, .00001, .00001, .00001, .00001, .00001)T.

the Penrose tiling. The first step of the tiling is to set the columns of A and B to be the
5th roots of unity. In other words,

A = B =

(
1 cos(ζ) cos(2ζ) cos(3ζ) cos(4ζ)
0 sin(ζ) sin(2ζ) sin(3ζ) sin(4ζ)

)
,

where ζ = 2π/5.
All of the maximal minors of A are nonzero, which means that there are a total of

(5
2) = 10 prototiles. However, the symmetry of the vectors actually means that there are

actually just two kinds of tiles up to rotation. In particular, the parallelepiped formed
by vi and vj will have an area of sin(ζ) if i − j ≡ ±1(mod5) and will have an area of
sin(2ζ) if i − j ≡ ±2(mod5).

By Theorems 2.2 and 2.3, any choice of γ ∈ [0, 1]5 will produce a tiling of R2 using the
10 prototiles. Furthermore, each of the 5 possible rotations of each tile appears with the
same frequency. In particular, the probability that a randomly chosen point is contained
in a large tile is

5 sin2(ζ)

det(ABT)
=

5 sin2(ζ)

5(sin2(2ζ) + sin2(ζ))
=

sin2(ζ)

sin2(2ζ) + sin2(ζ)
=

5 +
√

5
10

Such a tiling is called a generalized Penrose tiling. However, the precise tiling depends
on γ. See Figure 3 for a few possibilities. For an excellent reference on Penrose tilings
and other related tilings, we recommend [15].

We learned while researching Penrose tilings that our method of generating tilings is
closely related to something called an oblique tiling [14]. For our tilings, we begin with a
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somewhat complicated tiling of Rn and then slice along a plane that is perpendicular to
the last k coordinates (see Section 3). Conversely, the oblique tiling begins with a simple
tiling of unit cubes in Rn and then slices along a more complicated hyperplane. While
the two constructions work similarly for the A = B case, the oblique tiling perspective
does not generalize as naturally to the case where A and B are equi-oriented but not
equal. In the last two sections, we will explore a few applications where the equi-
oriented generality is necessary.

5 The Laplacian of two equi-oriented matrices

Burman et al. [2] define a Laplacian operator L(A, B) that depends on two collections
of vectors A := (ai)

n
i=1 and B := (bi)

n
i=1, from some vector space V ∼= Rr as follows:

L(A, B)(x) :=
N

∑
i=1

⟨bi, x⟩ · ai or equivalently L(A, B)(x) = ABT · x. (5.1)

Notice that L(A, B) is a sum of rank-1 operators (x → ⟨bi, x⟩ · ai has its image in the line
spanned by ai). The following proposition gives the characteristic polynomial of L(A, B)
in terms of the Grammian determinants of associated sets of columns of A and B. Recall
here that given two equal sized collections of vectors K = (ki)i∈I and P = (pi)i∈I , the
Grammian determinant GD(K, P) is defined as

GD(K, P) :=det
(
⟨ki, pj⟩

)
i,j∈I

, (5.2)

as the determinant of the (generalized) Grammian matrix formed by K and P. The
following is essentially [4, Lemma 8.2]. In this abstract we are only interested in the
determinant det

(
L(A, B)

)
for which case the following proposition is the Cauchy–Binet

formula.

Proposition 5.1. The characteristic polynomial of the Laplacian operator (5.1) is given via:

det
(
t · Ir + L(A, B)

)
= ∑

σ⊆[n]
|σ|≤r

GD(Aσ, Bσ) · tr−|σ|.

When two matrices A, B are equi-oriented, all grammian determinants GD(Aσ, Bσ)
are non-negative and equal the product of the volumes of the fundamental parallele-
pipeds for bases Aσ and Bσ. After applying Corollary 2.4, we have proven the following.

Corollary 5.2. The volume of the fundamental domain for a periodic tiling T (A, B) equals the
determinant of the Laplacian L(A, B).
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6 Tiling space with root zonotopes and their relatives

A particularly nice application of Theorems 2.2 and 2.3 is for the case that the collections
of vectors A and B are respectively the (positive) roots Φ+ and coroots Φ̂+ of a Weyl
group W (we will mostly represent the roots in terms of a basis of the ambient space V
of W instead of the root or weight basis because it leads to more appealing pictures but
this is not necessary). We will denote such a tiling by T (W) := T

(
Φ+, Φ̂+

)
.

Theorem 6.1. Let W be an irreducible Weyl group of rank n and Coxeter number h, and T (W)
its associated periodic tiling described above. Then, any fundamental domain of T (W) has volume
equal to hn. Moreover, for every tile Tσ of T (W) the probability that a random point belongs to a

translate of Tσ is equal to
I(Wσ)

hn where I(Wσ) is the connection index of the reflection subgroup
Wσ associated to Tσ.

Proof. Let N = hn/2 = |Φ+| denote the number of roots of W, and Q and Q̂ its root and
coroot lattice. Then, any R-basis of roots corresponding to some σ ∈ ([N]

n ) generates a
rank-n reflection subgroup Wσ ≤ W. Furthermore, the roots Φ+

σ and coroots Φ̂+
σ generate

respectively the root and coroot lattices Qσ and Q̂σ of Wσ (see [1, Corollary 1.2]). This
means that Vol(Φ+

σ ) = Vol(Qσ) and Vol(Φ̂+
σ ) = Vol(Q̂σ). Now, the connection index

I(Wσ) is defined as the determinant of the Cartan matrix of Wσ, which is the Laplacian
of the two collections of simple roots and simple coroots of Wσ, and hence agrees with
the product of the volumes of the two lattices:

I(Wσ) = Vol(Qσ) · Vol(Q̂σ).

Finally the determinant of the Laplacian L(Φ+, Φ̂+) is equal to hn after [3, Proposi-
tion 3.3] and the proof is complete.

Remark 6.2. The theorem above gives a geometric exegesis to the formula [10, Section 7.3]

hn = ∑
W ′≤W

# RGS(W ′) · I(W ′),

where the sum is over all rank-n reflection subgroups of W and RGS(W ′) denotes the set of
minimum generating sets of reflections of W ′. Indeed, it corresponds to the partition of the
fundamental domain of T (W) with respect to the distinct tiles Tσ.
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